
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 25–35 (Aug. 2013)

Regular Paper

On Implementation and Evaluation of Inverse Iteration
Algorithm with Compact WY Orthogonalization

Hiroyuki Ishigami1,a) Kinji Kimura1 Yoshimasa Nakamura1

Received: July 26, 2012, Revised: November 1, 2012,
Accepted: January 23, 2013

Abstract: In this paper, we introduce an inverse iteration algorithm that can be used to compute all the eigenvectors of
a real symmetric tri-diagonal matrix on parallel processors. To overcome the sequential bottleneck created by modified
Gram-Schmidt orthogonalization in classical inverse iteration, we propose the use of the compact WY representation in
the reorthogonalization process, based on the Householder transformation. This change results in drastically reduced
synchronization cost during parallel processing.

Keywords: parallel processing, inverse iteration, reorthogonalization, compact WY representation, Householder
transformation

1. Introduction

The eigenvalue decomposition of a symmetric matrix (i.e., de-
composition into a product of matrices consisting of eigenvectors
and eigenvalues) is one of the most important operations in linear
algebra. It is used in vibrational analysis, image processing, data
searches, etc. In general cases, the eigenvalue decomposition of a
real symmetric matrix A is reduced to that of a real symmetric tri-
diagonal matrix T . This reduction is called tri-diagonalization.
The eigenvectors of A are obtained by transforming eigenvectors
of T after solving the eigenvalue decomposition of T . This trans-
formation is called inverse transformation.

With the introduction of computers equipped with multicore
processors, there has been a sharp increase in the demand for an
eigenvalue decomposition algorithm that can be effectively paral-
lelized. Several parallelization techniques for tri-diagonalization
and inverse transformation have been proposed for shared mem-
ory parallel computers and for distributed memory parallel sys-
tems [6], [8].

The inverse iteration algorithm computes eigenvectors inde-
pendently associated with mutually distinct eigenvalues. When
eigenvalues are very close to one another, we must reorthogo-
nalize the eigenvectors, typically using modified Gram-Schmidt

(MGS) algorithm (hereafter referred to classical inverse itera-

tion). Unfortunately, the MGS is sequential and does not map
effectively to parallel processors.

The Householder transformation [12] offers another method to
orthogonalize vectors (hereafter referred to as Householder or-

thogonalization). Like MGS, the Householder orthogonalization
is sequential, and therefore unsuited to parallel processing. Un-
like MGS, however, the Householder orthogonalization can be

1 Graduate School of Informatics, Kyoto University, Kyoto 606–8501,
Japan

a) hishigami@amp.i.kyoto-u.ac.jp

considered stable, since the orthogonality of the resulting vectors
does not depend on the condition number of the matrix [13].

In 1989, R. Schreiber et al. proposed a stable and paralleliz-
able Householder orthogonalization in terms of the compact WY
representation [11] (hereafter referred to as compact WY orthog-

onalization). Yamamoto et al. [13] reformulated this algorithm
for incremental orthogonalization, and showed that it could the-
oretically achieve very accurate orthogonality and high scala-
bility through parallel computation [13]. The incremental or-
thogonalization is implemented on several numerical computa-
tion libraries, such as LAPACK (Linear Algebra PACKage) [9],
which is implemented using BLAS (Basic Linear Algebra Sub-
routines). The compact WY orthogonalization algorithm can be
implemented by using BLAS, directly.

In Ref. [7], the authors implemented the compact WY orthogo-
nalization for reorthogonalization of inverse iteration in comput-
ing eigenvectors of a symmetric tri-diagonal matrix. They also
showed that, in parallel processing, this inverse iteration algo-
rithm is faster than the classical one.

In this paper, we introduce two new implementations of com-
pact WY orthogonalization. The first is based on BLAS, and is
focused on reformulating the mathematical structure of the al-
gorithm in order to reduce the overall computational cost. The
second focuses on the inverse iteration algorithm for a real sym-
metric tri-diagonal matrix. We then evaluate the performance of
the second implementation through numerical experiments.

2. Classical Inverse Iteration and Its Limita-
tion

2.1 Classical Inverse Iteration
We first consider the problem of computing eigenvectors of a

real symmetric tri-diagonal matrix T ∈ Rn×n. Let λ j ∈ R be
eigenvalues of T such that λ1 < λ2 < · · · < λn and let u j ∈ Rn

be the eigenvector associated with λ j. When λ̃ j, an approximate

c© 2013 Information Processing Society of Japan 25

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 25–35 (Aug. 2013)

value of λ j, and a starting vector u(0)
j are given, we can compute

the eigenvectors of T using the following equation iteratively:(
T − λ̃ jI

)
u(k)

j = u
(k−1)
j , (1)

where I is the n-dimensional identity matrix. If the eigenvalues of
T are mutually well-separated, u(k)

j , the solution of Eq. (1), gener-
ically converges to the eigenvector associated with λ j as k goes
to ∞. The above iteration method is inverse iteration. Its com-
putational cost is O(mn) when we compute m eigenvectors. In
the implementation, we must normalize the vectors u(k)

j to avoid
overflow.

When some of the eigenvalues are close to one another or there
are clusters of eigenvalues of T , we must reorthogonalize all the
eigenvectors associated with such eigenvalues. In the classical
inverse iteration, we use the MGS algorithm to accomplish this,
with a computational cost of O(m2n). Thus, when we compute
eigenvectors of a matrix with many clustered eigenvalues, the
computational cost increases significantly. Note that the classi-
cal inverse iteration has also been implemented using the Peters-
Wilkinson method [10]. In this method, when the distance be-
tween the close eigenvalues is less than 10−3‖T‖, we regard them
as members of the same cluster of eigenvalues, and we orthogo-
nalize all of the eigenvectors associated with the clustered eigen-
values. The classical inverse iteration algorithm is given by Algo-
rithm 1, where j1 denotes the index of the minimum eigenvalue of
some cluster. This algorithm is implemented as DSTEIN, a LA-
PACK [9] code for computing eigenvectors of a real symmetric
tri-diagonal matrix.

2.2 Limitation of Classical Inverse Iteration
Inverse iteration is an important method for computing eigen-

vectors, because it allows us to compute eigenvectors indepen-
dently. When there are many clusters in the distribution of eigen-
values, the inverse iteration can be parallelized by assigning each
cluster to a core.

Let us consider the Peters-Wilkinson method in the classical
inverse iteration. When the dimension of T is greater than 1,000,
most of the eigenvalues are regarded as being in the same clus-

Algorithm 1 Classical inverse iteration
1: for j = 1 to n do

2: Generate u(0)
j from random numbers.

3: k = 0.

4: repeat

5: k ← k + 1.

6: Normalize u(k−1)
j .

7: Solve
(
T − λ̃ j I

)
u(k)

j = u
(k−1)
j (Eq. (1)).

8: if |λ̃ j − λ̃ j−1 | ≤ 10−3‖T‖, then

9: for i = j1 to j − 1 do

10: u(k)
j ← u(k)

j − 〈u(k)
j , ui〉ui

11: end for

12: else

13: j1 = j.

14: end if

15: until some condition is met.

16: Normalize u(k)
j to u j.

17: end for

ter [3], in which case we need to parallelize the inverse iteration
not with respect to the cluster but with respect to the computa-
tion loop described in lines 2 through 16 in Algorithm 1. We can
consider this parallelization in several ways, but this computation
loop is sequential. Thus, parallelization with respect to BLAS
operations should be adequate for this loop.

The computation loop includes the inverse iteration in Eq. (1)
and the orthogonalization of the eigenvectors and the latter repre-
sents a bottleneck in the classical inverse iteration with respect to
the computational cost. Since the MGS algorithm is mainly based
on BLAS level-1 operations, when we compute all the eigenvec-
tors in parallel processing, the number of synchronizations per-
forms O(m2) time. Thus, it is unsuitable for parallel processing.

3. Other Orthogonalization Algorithms

In this section, we present alternatives to the MGS orthogonal-
ization algorithm. Consider the incremental orthogonalization of
u j ∈ Rn to q j ∈ Rn (j = 1, . . . , m, m ≤ n). The incremental
orthogonalization occurs in the reorthogonalization of the inverse
iteration and is defined as follows: u j (2 ≤ j ≤ m) is not given in
advance but is computed from q1, . . . , q j−1.

Let us then define a vector 0i as the i-dimensional zero vector
and matrices V , Q ∈ Rn×m as V = [u1 · · · um], Q =

[
q1 · · · qm

]
.

3.1 Householder Orthogonalization
If vectors u j, w j ∈ Rn (j = 1, . . . , m) satisfy ‖u j‖2 = ‖w j‖2,

there exist orthogonal matrices Hj called the Householder ma-
trices, satisfying HjH
j = H
j H j = I, Hju j = w j defined by
Hj = I − t jy jy

j , y j = u j − w j, t j = 2/‖y j‖22. The transformation

from u j to u j by Hj is called the Householder transformation, and
is used for orthogonalization, as shown in Algorithm 2. The vec-
tor y j is the vector in which the elements from 1 to (j− 1) are the
same as the elements of u j and the elements from (j + 1) to n are
zeros. The vectors u j and w j are defined as follows:

u j =
[
u1, j · · · u j−1, j u j, j u j+1, j · · · un, j

]

= Hj−1Hj−2 · · ·H2H1u j,

w j =
[
u1, j · · · u j−1, j c j 0
n− j

]

,

where ui, j (i = 1, . . . , n) is the i-th element of u j and

c j = − sgn(u j, j)

√√ n∑
i= j

u2
i, j.

Hence, y j is computed as

Algorithm 2 Householder orthogonalization
1: for j = 1 to m do

2: u j ←
(
I − t1y1y

1

)
u j

3: for i = 2 to j − 1 do

4: u j ←
(
I − tiyiy

i

)
u j

5: end for

6: Compute y j and t j by using u j

7: q j ←
(
I − t jy jy

j

)
e j

8: for i = j − 1 to 1 do

9: q j ←
(
I − tiyiy

i

)
q j

10: end for

11: end for

c© 2013 Information Processing Society of Japan 26

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 25–35 (Aug. 2013)

y j =
[
0
j−1 u j, j − c j u j+1, j · · · un, j

]

. (2)

The vector e j in Algorithm 2 is the j-th vector of an n-
dimensional identity matrix.

The orthogonality of the vectors q j generated by the
Householder orthogonalization does not depend on the condition
number of V , making it more stable than that of MGS. On the
other hand, like MGS, it is a sequential algorithm, mainly based
on BLAS level-1 operations, with a computational cost of about
double than that of MGS. Thus, it too is an ineffective for parallel
processing.

3.2 Compact WY Orthogonalization
Yamamoto and Hirota [13] suggested that the Householder or-

thogonalization can be computed using BLAS level-2 operations
in terms of compact WY representation proposed by Schreiber
and van Loan [11]. They also theoretically demonstrated that this
algorithm could achieve high orthogonality and high scalability
across parallel processing [13].

Let us consider the Householder orthogonalization in Algo-
rithm 2 with the addition of compact WY representation. First,
we define Y1 = [y1] ∈ Rn×1 and T1 = [t1] ∈ R1×1. We then de-
fine matrices Yj ∈ Rn× j and upper triangular matrices T j ∈ R j× j,
recursively, as follows:

Yj =
[
Yj−1 y j

]
, T j =

⎡⎢⎢⎢⎢⎢⎣T j−1 −t jT j−1Y
j−1y j

0
j−1 t j

⎤⎥⎥⎥⎥⎥⎦ . (3)

In this case, the following equation holds

H1H2 · · ·Hj = I − YjT jY

j . (4)

As shown in Eq. (4), we can rewrite the product of the
Householder matrices H1H2 · · ·Hj in a simple block matrix form.
Here I−YjT jY
j is the compact WY representation of the product
H1H2 · · ·Hj of the Householder matrices. Algorithm 3 shows the
compact WY orthogonalization algorithm.

3.3 Implementation of Compact WY Orthogonalization
In this subsection, we present an implementation of the com-

pact WY orthogonalization algorithm using BLAS operations.
We also discuss the mathematical structure of this algorithm and
present a new implementation of the compact WY orthogonaliza-
tion that reduces computational cost.
3.3.1 Ordinary Implementation of Compact WY Orthogo-

nalization Using BLAS
Consider the implementation of the compact WY orthogonal-

Algorithm 3 compact WY orthogonalization algorithm
1: Compute y1 and t1 by using u1 = u1

2: Y1 =
[
y1
]
, T1 = [t1]

3: q1 ←
(
I − Y1T1Y
1

)
e j

4: for j = 2 to m do

5: u j ←
(
I − Yj−1T
j−1Y
j−1

)
u j

6: Compute y j and t j by using u j

7: Yj =
[
Yj−1 y j

]
, T j =

[
T j−1 −t jT j−1Y
j−1y j

0
j−1 t j

]
.

8: q j ←
(
I − YjT jY
j

)
e j

9: end for

ization in lines 5 to 8 of Algorithm 3. To use BLAS operations
here, we need to reformulate line 5 as follows:

u j =
(
I − Yj−1T
j−1Y
j−1

)
u j

= u j − Yj−1T
j−1Y
j−1u j.

We can now implement this formula by using BLAS as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u j ← u j (DCOPY)

u′j−1 ← Y
j−1u j + 0 · u′j−1 (DGEMV)

u′j−1 ← T
j−1u
′
j−1 (DTRMV)

u j ← (−1) · Yj−1u
′
j−1 + u j (DGEMV)

,

where u′j−1 ∈ R j−1. We set the initial memory address of u′j−1 to
correspond to that of u j. DCOPY denotes the copying operation
of a vector x to a vector y: y ← x. DGEMV denotes the matrix-
vector operation y← αAx + βy, where A is a general rectangular
matrix. DTRMV denotes the matrix-vector product x ← T x,
where T is a triangular matrix.

Next, on line 6, we compute y j in Eq. (2) and t j. These compu-
tations are mostly performed using BLAS level-1 operations, so
their cost is relatively low. We implement the computation of y j

and t j as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi, j ← 0, (i = 1, . . . , j − 1)

yi, j ← ui, j, (i = j, . . . , n) (DCOPY)

y j, j ← u j, j − c j, c j = − sgn(u j, j)
√∑n

i= j u2
i, j (DNRM2)

t j ← 2/‖y j‖22 (DNRM2)

,

where yi, j (i = 1, . . . , n) is the i-th column element of y j, and
DNRM2 denotes the computation of the 2-norm of a vector.

On line 7, updating Yj and t j is easily accomplished. Let
t̂ j ∈ R j−1 be t̂ j = −t jT j−1Y
j−1y j. Note that t̂ j is implemented
by using BLAS as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

t̂ j ← (−t j)Y
j−1y j + 0 · t̂ j (DGEMV)

t̂ j ← T j−1 t̂ j (DTRMV)
.

Finally, on line 8, we can reformulate as follows:

q j =
(
I − YjT jY

j

)
e j

= e j − YjT jY

j e j,

where the matrix-vector product Y
j e j can be simplified by

Y
j e j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y j,1

...

y j, j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

This computation can be performed only by copying the j-th col-
umn of Yj to some vector. Thus, using BLAS, we implement the
formula of line 8 as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q j ← e j (DCOPY)

u′j ←
[
y j,1 · · · y j, j

]

(DCOPY)

u′j ← T
j u
′
j (DTRMV)

q j ← (−1) · Yju
′
j + q j (DGEMV)

,

c© 2013 Information Processing Society of Japan 27

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 25–35 (Aug. 2013)

where u′j ∈ R j, q j ∈ Rn. We set the initial memory address of u′j
and q j to correspond to that of u j and u j, respectively.

The computational cost of the above compact WY orthogonal-
ization algorithm is almost 4m2n + m3. In the worst case, i.e.,
when m = n, the computational cost is 5n3. Worse yet, for this
implementation, we have to use almost mn + m2 memory, since
Ym uses mn and Tm uses m2.
3.3.2 New Implementation of Compact WY Orthogonaliza-

tion Using BLAS
Having detailed the ordinary implementation of the compact

WY orthogonalization algorithm, we now discuss the mathemat-
ical structure of this algorithm and present a new implementation
of compact WY orthogonalization with lower computational cost.

We discuss the formula in line 5 before moving on to that in
line 6 of Algorithm 3. Since

c j = − sgn
(
u j, j

) √√ n∑
i= j

u2
i, j,

we have

‖y j‖22 =
(
u j, j − c j

)2
+

n∑
i= j+1

u2
i, j

=

n∑
i= j

u2
i, j − 2u j, jc j + c2

j

= 2(c2
j − u j, jc j).

Hence, we have

t j =
2

‖y j‖22
=

1

c2
j − u j, jc j

.

From this fact and the definition of y j and c j, we observe that
we do not need to compute the 1-th to the (j − 1)-th elements of
u j in actual. Restricting our computation to the j-th to the n-th
elements of u j, the formula on line 5 is reduced to

û j = û j − Ŷ j−1T
j−1Y
j−1u j,

where û j ∈ Rn−(j−1) is û j =
[
u j, j · · · un, j

]

and û j ∈ Rn−(j−1)

is û j =
[
v j, j · · · vn, j

]

.

Now, considering the structure of y j, we can represent y j

(j = 2, . . . , m) from Eq. (2) as the block vector of the form

y j =

⎡⎢⎢⎢⎢⎣0 j−1

ŷ j

⎤⎥⎥⎥⎥⎦ ,
where ŷ j ∈ Rn−(j−1) is the vector of nonzero elements of y j. From
this fact, Yj can be represented as the following block matrix:

Yj =

⎡⎢⎢⎢⎢⎣Lj

Ŷ j

⎤⎥⎥⎥⎥⎦ ,
where Lj ∈ R j× j is a lower triangular matrix and Ŷ j ∈ R(n− j)× j is
generally a dense rectangular matrix. Let us also consider u j as
the block vector of the form

u j =

⎡⎢⎢⎢⎢⎣ǔ j

û j

⎤⎥⎥⎥⎥⎦ ,
where ǔ j ∈ R j−1 is ǔ j =

[
v1, j · · · v j−1, j

]

. Using these block

forms of u j and Yj, we can reduce the computational cost of the
matrix-vector product Y
j−1u j through

Y
j−1u j =

⎡⎢⎢⎢⎢⎣Lj−1

Ŷ j−1

⎤⎥⎥⎥⎥⎦

 ⎡⎢⎢⎢⎢⎣ǔ j

û j

⎤⎥⎥⎥⎥⎦ = L
j−1ǔ j + Ŷ
j−1û j.

Hence, the formula of û j can be simplified as follows:

û j = û j − Ŷ j−1T
j−1

(
L
j−1ǔ j + Ŷ
j−1û j

)
.

This formula can then be implemented using BLAS as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û j ← û j (DCOPY)

ǔ j ← L
j−1ǔ j (DTRMV)

ǔ j ← Ŷ
j−1û j + ǔ j (DGEMV)

ǔ j ← T
j−1ǔ j (DTRMV)

û j ← (−1) · Ŷ j−1ǔ j + û j (DGEMV)

.

Given the above, we can now implement the computation on
line 6 using BLAS as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
yi, j ← ui, j, (i = j, . . . , n) (DCOPY)

y j, j ← u j, j − c j, c j = − sgn(u j, j)
√∑n

i= j u2
i, j (DNRM2)

t j ← 1/
(
c2

j − u j, jc j

) .

On line 7, we can further reduce the computational cost of t̂ j

through

t̂ j = −t jT j−1Y
j−1y j

= −t jT j−1

⎡⎢⎢⎢⎢⎣Lj−1

Ŷ j−1

⎤⎥⎥⎥⎥⎦

 ⎡⎢⎢⎢⎢⎣0 j−1

ŷ j

⎤⎥⎥⎥⎥⎦
= −t jT j−1

(
L
j−10 j−1 + Ŷ
j−1ŷ j

)
= −t jT j−1Ŷ
j−1ŷ j.

This formula can be implemented using BLAS as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
t̂ j ← (−t j)Ŷ
j−1ŷ j + 0 · t̂ j (DGEMV)

t̂ j ← T j−1 t̂ j (DTRMV)
.

Finally, on line 8, even if the sign of the orthogonal vector q j

is reversed, the orthogonality with respect to other vectors is not
changed. Thus, we can reformulate q j as q j =

(
YjT jY
j − I

)
e j.

Furthermore, let us consider q j as the following block vector:

q j =

⎡⎢⎢⎢⎢⎣q̌ j

q̂ j

⎤⎥⎥⎥⎥⎦ ,
where q̌ j ∈ R j, q̂ j ∈ Rn− j. These can be reformulated as follows:⎡⎢⎢⎢⎢⎣q̌ j

q̂ j

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣LjT jY
j e j

Ŷ jT jY
j e j

⎤⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎣ ě j

0n− j

⎤⎥⎥⎥⎥⎦ ,
where ě j is the j-th vector of the j-dimensional identity matrix.
This formula can be implemented by using BLAS as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x j ←
[
y j,1 · · · y j, j

]

(DCOPY)

x j ← T
j x j (DTRMV)

q̌ j ← x j (DCOPY)

q̌ j ← Lj q̌ j (DTRMV)

q̂ j ← Ŷ jx j + 0 · q̂ j (DGEMV)

q j, j ← q j, j − 1

,

c© 2013 Information Processing Society of Japan 28

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 25–35 (Aug. 2013)

Fig. 1 Assignment model for Yj and T j.

Table 1 Comparison of the orthogonalization methods [1], [13].

orthogonalization Computation Synchronization Orthogonality
MGS 2m2n O(m2) O(εκ(V))

Householder 4m2n O(m2) O(ε)
compact WY 4m2n + m3 O(m) O(ε)

new compact WY 4m2n − m3 O(m) O(ε)

where x j ∈ R j.
When the above implementation is adopted, the highest order

of computational cost for the compact WY algorithm is reduced
from 4m2n+m3 to 4m2n−m3. In the worst case, i.e., when m = n,
the computational cost of the new implementation of the compact
WY algorithm is no more than 3n3. In addition, our implementa-
tion does not have to refer any zero elements of Yj and T j, so if
Yj and T j are assigned as in Fig. 1, memory use can be reduced
to almost n(m + 1).

3.4 Comparison of Orthogonalization Algorithms
The compact WY orthogonalization has a stable orthogonality

arising from the Householder transformations, and its numerical
computation is mainly performed by BLAS level-2 operations.
As a result, it is better suited to parallel processing than MGS.
Table 1 displays the differences in performance among the or-
thogonalization algorithms mentioned above. Computation de-
notes the order of the computational cost, Synchronization indi-
cates the order of the number of synchronizations, Orthogonality

indicates the norm ‖Q
Q− I‖, ε denotes the machine epsilon, and
κ(V) denotes the condition number of V .

4. Inverse Iteration Algorithm with Compact
WY Orthogonalization

The authors have also proposed an alternative inverse iteration
algorithm in Ref. [7]. This algorithm is based on the classical in-
verse iteration algorithm implemented in DSTEIN, with compact
WY orthogonalization substituted for MGS orthogonalization, as
given in Algorithm 4 (hereafter referred to as compact WY inverse

iteration). We identify two codes of this algorithm, DSTEIN-
cWY and DSTEIN-ncWY, corresponding to the two implementa-
tions of compact WY orthogonalization. DSTEIN-cWY is based
on the processing described in Section 3.3.1, and has already been
shown to be faster for parallel processing than classical inverse it-
eration [7]. DSTEIN-ncWY is based on the processing described
in Section 3.3.2.

There are a couple of differences between the classical inverse
iteration and the compact WY inverse iteration. For one, in the
classical inverse iteration algorithm, we need not know the index

Algorithm 4 compact WY inverse iteration
1: for j = 1 to n do

2: Generate u(0)
j from random numbers.

3: k = 0

4: repeat

5: k ← k + 1.

6: Normalize u(k−1)
j .

7: Solve
(
T − λ̃ j I

)
u(k)

j = u
(k−1)
j .

8: if |λ̃ j − λ̃ j−1 | ≤ 10−3‖T‖, then

9: jc ← j − j1.

10: if jc = 1 and k = 1, then

11: Compute Y1 = [y1] and T1 = [t1] by using u j1 .

12: end if

13: u jc+1 =
(
I − Yjc T
jc Y
jc

)
u(k)

j .

14: Compute y jc+1 and t jc+1 by using u jc+1.

15: Yjc+1 =
[
Yjc y jc+1

]
, T jc+1 =

[
T jc −t jc+1T jc Y
jcy jc+1

0
jc t jc+1

]
.

16: u(k)
j ←

(
I − Yjc+1T jc+1Y
jc+1

)
e jc+1.

17: else

18: j1 ← j.

19: end if

20: until Some condition is met.

21: Normalize u(k)
j to u j.

22: end for

k that denotes the k-th eigenvalue of the cluster in computing the
eigenvector associated with it, but we must know the index for the
compact WY orthogonalization when we compute and update Tk

and Yk. To address this, we introduce a variable jc on line 9.
The introduction of jc enables us to execute the intended code.
Further, in the classical inverse iteration algorithm, we need not
know the first eigenvalue λ j1 of the cluster, but we must compute
y1 and t1 in the compact WY inverse iteration algorithm. Hence,
at the starting point of the computation of the eigenvector asso-
ciated with the second eigenvalue λ j1+1, we compute T1 = [t1],
Y1 = [y1] using u j1 . Because u j1 is a normalized vector equal to
(I − Y1T1Y
1)e1, we need not compute u j1 again.

5. Numerical Experiments

We now describe some numerical experiments involving
DSTEIN, DSTEIN-cWY, and DSTEIN-ncWY on parallel pro-
cessors, and compare the computation time and orthogonality
of computing eigenvectors using each of these codes. Here
DSTEIN of LAPACK is based on the classical inverse iteration,
and DSTEIN-cWY and DSTEIN-ncWY make use of the compact
WY inverse iteration presented in the previous section.

5.1 Details of Numerical Experiments
Our goal is to report the computations of all the eigenvectors

associated with eigenvalues of given matrices using DSTEIN,
DSTEIN-cWY, and DSTEIN-ncWY on parallel processors, and
compare their elapsed time and orthogonality. Table 2 shows
the specifications of all three experimental environments. Note
that Environments 2 and 3 are run the same computer but use
different compilers and BLAS software. We begin by finding
the approximate eigenvalues using LAPACK’s code DSTEBZ,
which can compute eigenvalues using the bisection method. We
then record the elapsed time for DSTEIN, DSTEIN-cWY, and

c© 2013 Information Processing Society of Japan 29

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 25–35 (Aug. 2013)

Table 2 The specification of Environments 1, 2 and 3.

Environment 1 Environment 2 Environment 3
AMD Opteron 2.0 GHz Intel Xeon 2.93 GHz Intel Xeon 2.93 GHz

CPU
32 cores (8 cores × 4) 8 cores (4 cores × 2) 8 cores (4 cores × 2)

RAM 256 GB 32 GB 32 GB
Compiler gfortran-4.4.5 gfortran-4.4.5 Intel Fortran Compiler 13.0.1
LAPACK LAPACK-3.3.0 LAPACK-3.3.0 Intel Math Kernel Library

BLAS GotoBLAS2-1.13 GotoBLAS2-1.13 11.0 update 1

DSTEIN-ncWY using SYSTEM CLOCK (an internal function
of Fortran) and compute the orthogonality criterion of eigenvec-
tors as ‖VV
 − I‖∞ where V =

[
u1 · · · un

]
and u j (j = 1, · · · ,

n) is an eigenvector computed by each code.
In our experiments, we used two computers equipped with

multicore CPUs. As mentioned in Section 2.2, we parallelize the
inverse iteration with respect to BLAS operations. For this paral-
lelization, we employed GotoBLAS2 [5] in Environments 1 and
2 and the Intel Math Kernel Library in Environment 3.

For our target matrices, we used symmetric tri-diagonal matri-
ces of three types. Type-1 is a tri-diagonal random matrix, the el-
ements of which were set to random numbers in the range [0, 1).
Assuming that the dimension of a random matrix is sufficiently
large, we divide the eigenvalues of a tri-diagonal random matrix
into clusters using Peters-Wilkinson method [10]. These clusters
were typically included 10–100 isolated eigenvalues, the major
portion of which composed the largest cluster. The tri-diagonal
matrix of Type-2 is defined as follows:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1 1

1
. . .

. . .

. . .
. . . 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

All the eigenvalues of a Type-2 matrix with large dimensions
were included in a single cluster as determined with the Peters-
Wilkinson method except in the case where n = 1,050. Type-3
is a glued-Wilkinson matrix W†

g . W†
g consists of the block matrix

W†
21 ∈ R21×21, and the scalar parameter δ ∈ R and is defined as

follows:

W†
g =

⎡⎢⎢⎣

W†
21
δ

δ W†
21

δ

δ
. . .

. . .

. . .
. . . δ

δ W†
21

⎤⎥⎥⎦

, (6)

where W†
21 is defined by

W†
21 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 1
1 9 1

1
. . .

. . .

. . . 0
. . .

. . .
. . . 1
1 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where δ satisfies 0 < δ < 1 and is also the semi-diagonal el-
ement of W†

g . Since W†
g is real symmetric tri-diagonal and its

semi-diagonal elements are nonzero, all the eigenvalues of W†g
are real and are divided into 14 clusters of closed eigenvalues.
The size of seven of these clusters is n/21 and the size of the
remaining clusters is 2n/21. When δ is small, the distance be-
tween the minimum and maximum eigenvalues in any cluster is
small. In our experiments, we set δ = 10−4. Computing eigen-
values and eigenvectors of the Type-3 (glued-Wilkinson) matrix
is one of the benchmark problems of eigenvalue decomposition,
and was also used to evaluate the performance of matrix eigen-
value algorithms [2], [4].

5.2 Results and Discussion
5.2.1 Computation Time

Tables 3, 4, and 5 show the dimension n and the computation
time for Environments 1, 2, and 3, respectively. In the tables, n is
the dimension of the target matrices and t, tcWY, and tncWY are the
computation times for DSTEIN, DSTEIN-cWY, and DSTEIN-
ncWY, respectively. We also introduce a barometer t/tncWY of the
reduction effect using the code DSTEIN-ncWY, which depends
on n. Figures 2, 3, and 4 illustrate the results from Tables 3, 4,
and 5, respectively.

From Figs. 2 and 3, we can see that both DSTEIN-ncWY and
DSTEIN-cWY were faster than DSTEIN for all cases except
those for Type-1 matrix at n = 1,050 in Environments 1 and 2.
On the other hand, from Fig. 4, we can see that DSTEIN-ncWY
was faster than DSTEIN for all matrix types and DSTEIN-cWY
is faster than DSTEIN for Type-1 and Type-3 matrices as n be-
comes larger in Environment 3.

In addition, comparing Tables 4 and 5, DSTEIN in Environ-
ment 3 is faster than in Environment 2. Therefore, when comput-
ing eigenvectors using DSTEIN, we can get better performance
from the processors equipped in Environments 2 and 3 using In-
tel Math Kernel library than by GotoBLAS2. We also see that
the change from MGS to compact WY orthogonalization in the
DSTEIN code for parallel processing results in a significant re-
duction of computation time. Compared with DSTEIN-ncWY
and DSTEIN-cWY, DSTEIN-ncWY is faster than DSTEIN-cWY
as n becomes larger for all the test matrices. In particular, from

c© 2013 Information Processing Society of Japan 30

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 25–35 (Aug. 2013)

Table 3 Dimension n of each matrix and the computation time in Envi-
ronment 1. t, tcWY and tncWY denotes the computation time for
DSTEIN, DSTEIN-cWY and new DSTEIN-cWY, respectively and
the unit of them are second. A barometer t/tncWY is the reduction
effect by using the code DSTEIN-ncWY.

(a) Type-1 matrix

t tcWY tncWY t/tncWY

1,050 0.39 0.41 0.41 0.94
2,100 1.76 1.64 1.60 1.10
3,150 5.30 3.77 3.77 1.41
4,200 17.4 7.61 7.85 2.22
5,250 53.6 13.8 13.7 3.90
6,300 157 25.6 25.1 6.22
7,350 996 137 115 8.64
8,400 2,436 381 307 7.93
9,450 4,004 554 449 8.93

10,500 13,231 1,953 1,291 10.25

(b) Type-2 matrix

t tcWY tncWY t/tncWY

1,050 1.73 0.46 0.45 3.85
2,100 154 14.2 7.04 21.93
3,150 448 53.2 28.1 15.94
4,200 989 171 94.6 10.45
5,250 1,897 267 167 11.34
6,300 3,281 494 311 10.56
7,350 5,192 739 476 10.92
8,400 7,749 1,268 795 9.74
9,450 10,986 1,596 1,029 10.68

10,500 14,867 2,165 1,389 10.70

(c) Type-3 matrix

t tcWY tncWY t/tncWY

1,050 2.26 0.64 0.62 3.66
2,100 11.5 2.50 2.49 4.62
3,150 31.8 5.85 5.82 5.47
4,200 72.9 11.2 10.9 6.71
5,250 138 18.2 18.1 7.66
6,300 230 29.2 28.4 8.10
7,350 359 47.4 45.9 7.82
8,400 526 77.8 74.5 7.06
9,450 738 107 103 7.18

10,500 986 147 141 6.99

Tables 3 and 4, when the size of the eigenvalue cluster equals
the dimension size n, as in Type-2 matrices, DSTEIN-ncWY is
about 1.6 times faster than DSTEIN-cWY (using GotoBLAS2).
These results are in accordance with the ratio of the computa-
tional cost of the compact WY orthogonalization to that of the
new algorithm. Thus, the reduction of the computational cost of
the compact WY orthogonalization effectively accelerates the re-
orthogonalization sub-process of the inverse iteration algorithm.

We now introduce a barometer t/tncWY for the reduction effect
using the code DSTEIN-ncWY which depends on n, the dimen-
sion of the target matrix. In Environment 1, the maximum value
of α = t/tncWY is α = 10.25 for n = 10,500 of Type-1, α = 21.93
for n = 2,100 of Type-2, and α = 8.10 for n = 6,300 of Type-3.
In Environment 2, α = 2.51 for n = 5,250 of Type-1, α = 4.69
for n = 2,100 of Type-2, and α = 3.83 for n = 3,150 of Type-3.
In Environment 3, α = 1.51 for n = 10,500 of Type-1, α = 1.51
for n = 2,100 of Type-2, and α = 1.58 for n = 4,200 of Type-3.
Given these conditions, even if the dimension of the target matri-
ces is larger than that of these examples, we cannot expect that the
computation time can be further reduced using DSTEIN-ncWY.

We can see that DSTEIN-cWY and DSTEIN-ncWY are faster
than DSTEIN for any dimension n of the target matrix in Envi-
ronments 1 and 2. As mentioned earlier, according to the theoret-

(a) Type-1 matrix

(b) Type-2 matrix

(c) Type-3 matrix

Fig. 2 Dimension n of each matrix and the computation time by DSTEIN,
DSTEIN-cWY and DSTEIN-ncWY in Environment 1.

ical background in Section 3.3, this result shows that the compact
WY orthogonalization is an effective algorithm for parallel pro-
cessing.

The cause of this is related to the time required for floating-
point arithmetic and for synchronization in parallel computing.
Floating-point computation time increases with the dimension n

of the target matrices. By comparison, the synchronization cost
does not change significantly even if n becomes larger. Here, in
parallel processing, DSTEIN, which contains MGS (for which
the number of synchronizations is large), creates a significant
bottleneck for the synchronization cost when n is small. This
bottleneck gradually lessons as n increases. However, DSTEIN-
cWY and DSTEIN-ncWY have a smaller bottleneck for the syn-
chronization cost, because compact WY orthogonalization re-
quires less synchronization, and floating-point computation time
becomes greater than that of DSTEIN. This reduction effect can

c© 2013 Information Processing Society of Japan 31

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 25–35 (Aug. 2013)

Table 4 Dimension n of each matrix and the computation time in Envi-
ronment 2. t, tcWY and tncWY denotes the computation time for
DSTEIN, DSTEIN-cWY and new DSTEIN-cWY, respectively and
the unit of them are second. A barometer t/tncWY is the reduction
effect by using the code DSTEIN-ncWY.

(a) Type-1 matrix

t tcWY tncWY t/tncWY

1,050 0.16 0.18 0.18 0.91
2,100 0.75 0.74 0.73 1.02
3,150 2.13 1.72 1.70 1.25
4,200 6.41 3.39 3.42 1.87
5,250 19.2 7.94 7.66 2.51
6,300 58.3 26.0 24.7 2.36
7,350 372 213 179 2.08
8,400 889 539 430 2.06
9,450 1,416 857 703 2.01
10,500 4,357 3,011 1,933 2.25

(b) Type-2 matrix

t tcWY tncWY t/tncWY

1,050 0.52 0.19 0.20 2.67
2,100 57.4 24.9 12.2 4.69
3,150 171 95.8 55.3 3.10
4,200 375 216 136 2.75
5,250 688 440 266 2.58
6,300 1,143 745 462 2.48
7,350 1,774 1,141 723 2.45
8,400 2,570 1,764 1,067 2.41
9,450 3,586 2,416 1,519 2.36
10,500 4,884 3,400 2,070 2.36

(c) Type-3 matrix

t tcWY tncWY t/tncWY

1,050 0.68 0.27 0.27 2.54
2,100 3.58 1.10 1.10 3.27
3,150 10.4 2.87 2.72 3.83
4,200 24.5 6.90 6.59 3.72
5,250 50.1 18.6 16.9 2.97
6,300 86.8 38.4 35.7 2.43
7,350 137 67.1 63.4 2.16
8,400 203 112 103 1.97
9,450 289 157 149 1.94

10,500 393 225 209 1.88

be seen in Tables 3, 4, and 5.
In some cases when n is small, DSTEIN-cWY is faster than

DSTEIN-ncWY. This can result from bottlenecks in synchro-
nization. Since DSTEIN-ncWY includes more BLAS operations
than DSTEIN-cWY, the computation time of DSTEIN-ncWY is
more delayed by synchronization in such cases.
5.2.2 Orthogonality

Figure 5 graphs the dimension n and the orthogonality crite-
rion ‖VV
 − I‖∞ in Environment 1.

From our experiments, the orthogonality of eigenvectors com-
puted by DSTEIN-ncWY was a little bit better than those com-
puted by DSTEIN-cWY. However, contrary to theoretical analy-
sis, the orthogonality of the eigenvectors calculated by DSTEIN
was the best.

Since the reorthogonalization in the inverse iteration algorithm
is performed on each inverse iteration, the condition number of
vectors to be orthogonalized may change on each inverse iteration
and reorthogonalization. On the other hand, the computational
cost of the compact WY orthogonalization is greater than that
of the MGS algorithm, as can been seen in Section 3.3, and the
computation error generally increases as the computational cost
becomes larger. These phenomena occur because the orthogonal-
ity computed by DSTEIN-cWY and DSTEIN-ncWY is affected

(a) Type-1 matrix

(b) Type-2 matrix

(c) Type-3 matrix

Fig. 3 Dimension n of each matrix and the computation time by DSTEIN,
DSTEIN-cWY and DSTEIN-ncWY in Environment 2.

by computation errors.

6. Expectation Model of Computation Time

In this section, we present expectation models for eigenvec-
tor computation time using DSTEIN-ncWY on each computer
shown in Table 2.

From the experiment results in the previous section, we can see
that the majority eigenvalues of large-dimensional Type-1 matri-
ces end up in the largest single cluster, and all eigenvalues of
large-dimensional Type-2 matrices are included in a single clus-
ter. Given this fact, we can expect that computation times on
Type-2 matrices will be slowest.

For estimation modeling, we extract many sample data points
from the computation time in Environments 1, 2, and 3 and per-
form multiple regression analysis using the least square method
(Regression in Data Analysis tools of Microsoft Excel 2010). Let

c© 2013 Information Processing Society of Japan 32

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 25–35 (Aug. 2013)

Table 5 Dimension n of each matrix and the computation time in Envi-
ronment 3. t, tcWY and tncWY denotes the computation time for
DSTEIN, DSTEIN-cWY and new DSTEIN-cWY, respectively and
the unit of them are second. A barometer t/tncWY is the reduction
effect by using the code DSTEIN-ncWY.

(a) Type-1 matrix

t tcWY tncWY t/tncWY

1,050 0.13 0.16 0.16 0.83
2,100 0.57 0.78 0.78 0.74
3,150 1.54 1.84 1.86 0.83
4,200 4.31 3.92 3.95 1.09
5,250 12.3 8.80 8.77 1.40
6,300 36.1 25.6 24.8 1.45
7,350 227 204 174 1.30
8,400 546 493 411 1.33
9,450 882 796 661 1.33
10,500 2,818 2,745 1,861 1.51

(b) Type-2 matrix

t tcWY tncWY t/tncWY

1,050 0.17 0.17 0.18 0.97
2,100 21.8 24.2 14.4 1.51
3,150 82.4 91.1 57.9 1.42
4,200 196 223 145 1.35
5,250 383 407 272 1.41
6,300 661 704 474 1.39
7,350 1,051 1,112 740 1.42
8,400 1,568 1,662 1,101 1.42
9,450 2,237 2,324 1,537 1.46
10,500 3,081 3,162 2,095 1.47

(c) Type-3 matrix

t tcWY tncWY t/tncWY

1,050 0.21 0.25 0.25 0.84
2,100 1.45 1.32 1.33 1.09
3,150 5.67 3.85 3.89 1.46
4,200 14.0 9.05 8.90 1.58
5,250 28.8 18.9 18.3 1.57
6,300 51.9 36.4 34.9 1.49
7,350 84.3 61.8 59.2 1.42
8,400 127 97.9 94.5 1.35
9,450 182 142 137 1.33

10,500 250 195 188 1.33

m × 103 be the number of required eigenvectors and n × 103 be a
dimension of a Type-2 matrix, and let the computation time de-
pend on m and n. For sample data, the combination of m and n

is used so as not to reduce the computation time through cache
use: 3 ≤ m ≤ n ≤ 11 in Environment 1, 2 ≤ m ≤ n ≤ 10 in
Environments 2 and 3.

By this approach, we construct our model from the function
t̄i = aim3 + bim2n + cimn + di (i = 1, 2, 3), since the total compu-
tational cost of the compact WY orthogonalization is 4m2n − m3

and that of the inverse iteration is on the order of mn. Here, t̄1, t̄2,
and t̄3 correspond to the expectation models in Environments 1,
2, and 3, respectively.

From the above analysis, we get the following function for our
expectation models:

(a1, b1, c1, d1) = (−0.183, 1.36, 0.714,−10.2),

(a2, b2, c2, d2) = (−0.351, 1.81, 0.680,−6.03),

(a3, b3, c3, d3) = (−0.211, 1.94, 1.86,−15.5).

Figures 6, 7, and 8 show the expectation model and sample
data in Environments 1, 2, and 3, respectively. Here, b1, b2, and
b3 are coefficients of m2n, on which the models greatly depend. In
models given above, we can see b1 < b2 < b3, which corresponds

(a) Type-1 matrix

(b) Type-2 matrix

(c) Type-3 matrix

Fig. 4 Dimension n of each matrix and the computation time by DSTEIN,
DSTEIN-cWY and DSTEIN-ncWY in Environment 3.

to the fact that Environment 1 has a more parallel configuration
than Environments 2 and 3. In addition, as a result of the theoret-
ical analysis of computational cost, the sign of coefficients a1, a2,
and a3 is minus.

7. Conclusions

In this study, we presented a new inverse iteration algorithm for
computing all the eigenvectors of a real symmetric tri-diagonal
matrix. The new algorithm is equipped with our new implemen-
tation of the compact WY orthogonalization algorithm.

We tested the performance of two types of inverse iteration al-
gorithm by computing eigenvectors for certain real symmetric tri-
diagonal matrices with several thousand dimensions. The results
of these experiments showed that the compact WY inverse itera-
tion is more efficient than classical inverse iteration owing to par-
allel processing. As the number of cores of the CPU increases, so

c© 2013 Information Processing Society of Japan 33

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 25–35 (Aug. 2013)

(a) Type-1 matrix

(b) Type-2 matrix

(c) Type-3 matrix

Fig. 5 Dimension n of each matrix and the orthogonality ‖VV
 − I‖∞ by
DSTEIN, DSTEIN-cWY and DSTEIN-ncWY in Environment 1.

Fig. 6 The expectation model of the computation time and sample data in
Environment 1. m × 103 is a number of required eigenvectors and
n × 103 is a dimension of Type-2 matrices.

does parallelization efficiency.
We expect that our new inverse iteration algorithm can be

applied to other types of matrix eigenvector problems, such as
eigenvectors of a real symmetric band matrix, or singular vectors

Fig. 7 The expectation model of the computation time and sample data in
Environment 2. m × 103 is a number of required eigenvectors and
n × 103 is a dimension of Type-2 matrices.

Fig. 8 The expectation model of the computation time and sample data in
Environment 3. m × 103 is a number of required eigenvectors and
n × 103 is a dimension of Type-2 matrices.

of a bidiagonal matrix.
While we have shown that the proposed algorithm is effective

on shared memory computers, we do not expect it to be effec-
tive on distributed memory parallel systems. This is because this
algorithm is parallelized with respect to BLAS operations, which
do not map efficiently to distributed systems. If we implement the
compact WY orthogonalization algorithm to the reorthogonaliza-
tion process of the block inverse iteration algorithm, the result-
ing algorithm could be effective in distributed environments, as
it would be based on BLAS level-3 operations. This application
will be considered in a future work.

Acknowledgments This work was supported by JSPS KA-
KENHI Grant Number 24360038. The authors would like to ex-
press our gratitude to reviewers of this paper for their insightful
comments and thank Professor Yusaku Yamamoto of Kobe Uni-
versity for providing several helpful suggestions.

References

[1] Demmel, J., Grigori, L., Hoemmen, M.F. and Langou, J.:
Communication-optimal parallel and sequential QR and LU factor-
izations, SIAM J. Sci. Comput., Vol.34, No.1, pp.A206–A239 (2012).

[2] Demmel, J.W., Marques, O.A., Parlett, B.N. and Vömel, C.: Per-
formance and accuracy of LAPACK’s symmetric tridiagonal eigen-
solvers, SIAM J. Sci. Comput., Vol.30, No.3, pp.1508–1526 (2008).

[3] Dhillon, I.S.: A new O(n2) algorithm for the symmetric tridiagonal
eigenvalue/eigenvector problem, PhD Thesis, EECS Department, Uni-
versity of California, Berkeley (1997).

[4] Dhillon, I.S., Parlett, B.N. and Vömel, C.: Glued matrices and the
MRRR algorithm, SIAM J. Sci. Comput., Vol.27, No.2, pp.496–510
(2005).

[5] GotoBLAS2: (online), available from 〈http://www.tacc.utexas.edu/
tacc-projects/gotoblas2/〉.

[6] Imamura, T., Yamada, S. and Machida, M.: Development of a high
performance eigensolver on the peta-scale next generation supercom-
puter system, Prog. Nuclear Science and Technology, Vol.2, pp.643–
650 (2011).

[7] Ishigami, H., Kimura, K. and Nakamura, Y.: Implementation and
performance evaluation of new inverse iteration algorithm with

c© 2013 Information Processing Society of Japan 34

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.2 25–35 (Aug. 2013)

Householder transformation in terms of the compact WY repre-
sentation, Proc. 2011 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA2011),
Vol.II, pp.775–780 (2011).

[8] Katagiri, T. and Itoh, S.: A massively parallel dense symmetric eigen-
solver with communication splitting multicasting algorithm, High
Performance Computing for Computational Science VECPAR 2010,
Vol.6449, pp.139–150 (2011).

[9] LAPACK: (online), available from 〈http://www.netlib.org/lapack/〉.
[10] Peters, G. and Wilkinson, J.: The calculation of specified eigenvectors

by inverse iteration, Handbook for Automatic Computation, pp.418–
439, Springer-Verlag, Berlin (1971).

[11] Schreiber, R. and van Loan, C.: A storage-efficient WY representa-
tion for products of Householder transformations, SIAM J. Sci. Stat.
Comput., Vol.10, No.1, pp.53–57 (1989).

[12] Walker, H.: Implementation of the GMRES method using
Householder transformations, SIAM J. Sci. Stat. Comput., Vol.9, No.1,
pp.152–163 (1988).

[13] Yamamoto, Y. and Hirota, Y.: A parallel algorithm for incremental
orthogonalization based on the compact WY representation, JSIAM
Letters, Vol.3, pp.89–92 (2011).

Hiroyuki Ishigami received his B.E. and
M.I. degrees from Kyoto University in
2011 and 2013. Since 2013, he has been
a doctoral course student at Kyoto Uni-
versity and a research fellow (DC1) of
JSPS. He is a student member of IPSJ and
JSIAM.

Kinji Kimura received his Ph.D. degree
from Kobe University in 2004. He be-
came a PRESTO, COE, and CREST re-
searcher in 2004 and 2005. He became
an assistant professor at Kyoto Univer-
sity in 2006, an assistant professor at
Niigata University in 2007, a lecturer at
Kyoto University in 2008, and has been

a program-specific associate professor at Kyoto University since
2009. He is an IPSJ member.

Yoshimasa Nakamura has been a pro-
fessor of Graduate School of Informat-
ics, Kyoto University from 2001. His re-
search interests include integrable dynam-
ical systems which originally appear in
classical mechanics. But integrable sys-
tems have a rich mathematical structure.
His recent subject is to design new numer-

ical algorithms such as the mdLVs and I-SVD for singular value
decomposition by using discrete-time integrable systems. He is a
member of JSIAM, SIAM, MSJ and AMS.

c© 2013 Information Processing Society of Japan 35

