
IPSJ Transactions on System LSI Design Methodology Vol.6 101–111 (Aug. 2013)

[DOI: 10.2197/ipsjtsldm.6.101]

Regular Paper

Energy-efficient High-level Synthesis for HDR
Architectures with Clock Gating Based on

Concurrency-oriented Scheduling

Hiroyuki Akasaka1,a) Shin-ya Abe1 Masao Yanagisawa2 Nozomu Togawa1,b)

Received: November 26, 2012, Revised: March 8, 2013,
Accepted: April 26, 2013, Released: August 5, 2013

Abstract: With the miniaturization of LSIs and its increasing performance, demand for high-functional portable de-
vices has grown significantly. At the same time, battery lifetime and device overheating are leading to major design
problems hampering further LSI integration. On the other hand, the ratio of an interconnection delay to a gate delay
has continued to increase as device feature size decreases. We have to estimate interconnection delays and reduce
energy consumption even in a high-level synthesis stage. In this paper, we propose a high-level synthesis algorithm for
huddle-based distributed-register architectures (HDR architectures) with clock gatings based on concurrency-oriented
scheduling/functional unit binding. We assume coarse-grained clock gatings to huddles and we focus on the number
of control steps, or gating steps, at which we can apply the clock gating to registers in every huddle. We propose
two methods to increase gating steps: One is that we try to schedule and bind operations to be performed at the same
timing. By adjusting the clock gating timings in a high-level synthesis stage, we expect that we can enhance the effect
of clock gatings more than applying clock gatings after logic synthesis. The other is that we try to synthesize huddles
such that each of the synthesized huddles includes registers which have similar or the same clock gating timings. At
this time, we determine the clock gating timings to minimize all energy consumption including clock tree energy. The
experimental results show that our proposed algorithm reduces energy consumption by a maximum of 23.8% compared
with several conventional algorithms.

Keywords: HDR, clock gating, concurrency-oriented scheduling, clock tree, clock gating timing

1. Introduction

With the miniaturization of LSIs and its increasing perfor-
mance, demand for high-functional portable devices has grown
significantly. At the same time, battery lifetime and device over-
heating are leading to major design problems hampering further
LSI integration. On the other hand, the ratio of an interconnection
delay to a gate delay has continued to increase as device feature
size decreases. We have to estimate interconnection delays and
reduce energy consumption even in a high-level synthesis stage.

Clock gating is one of the low-power design techniques in LSI
design [4], [8], which reduces the dynamic power of registers by
cutting off the clock signal supply when they are not used. Tradi-
tionally, clock gating is done at the logic synthesis stage as seen
in Ref. [4]. However, since register-writing timing is already de-
termined there, we cannot fully optimize clock gating timing. We
should expect better optimization results if clock gating is applied
at the high-level synthesis stage combined with floorplanning.

Three types of floorplan-oriented high-level synthesis algo-
rithms have been proposed so far: Cong et al. have proposed

1 Department of Computer Science and Engineering, Waseda University,
Shinjuku, Tokyo 169–8555, Japan

2 Department of Electronic and Photonic Systems, Waseda University,
Shinjuku, Tokyo 169–8555, Japan

a) hiroyuki.akasaka@togawa.cs.waseda.ac.jp
b) togawa@togawa.cs.waseda.ac.jp

a high-level synthesis algorithm based on regular-distributed-
register (RDR) architectures [3]. Ohchi et al. have proposed a
high-level synthesis algorithm based on generalized-distributed-
register (GDR) architectures [5], [6]. In 2012, Abe et al. have
introduced the concept of islands into GDR and proposed huddle-
based distributed-register (HDR) architectures and its associated
high-level synthesis algorithm [1]. In HDR architectures, func-
tional units, registers, and a controller located close to each other
are grouped as a huddle. The HDR architecture is easy to esti-
mate the interconnection delays and, by giving multiple supply
voltages to huddles, it can have power-optimized high-level syn-
thesis. However, the original algorithm in Ref. [1] does not take
into account the clock gatings. Moreover, as far as we know, there
have been no previous works proposed which deal with clock gat-
ings in floorplan-oriented high-level synthesis.

Based on the previous work described above, we propose a
concurrency-oriented scheduling/binding clock gating algorithm
for HDR architectures *1. This paper is organized as follows: Sec-
tion 2 first introduces our target architecture and then defines our
high-level synthesis problem; Section 3 proposed our high-level
synthesis algorithm based on concurrency-oriented scheduling;
Section 4 demonstrates experimental results; Section 5 gives sev-
eral concluding remarks and future works.

*1 Preliminary version of this paper appeared in Ref. [2].

c© 2013 Information Processing Society of Japan 101

IPSJ Transactions on System LSI Design Methodology Vol.6 101–111 (Aug. 2013)

2. Target Architecture and Problem Definition

In this section, we introduce HDR architectures and describe
an overview of clock gatings. After that we define our high-level
synthesis problem for HDR architectures using clock gatings.

2.1 Huddle-based Distributed-register Architecture
We use an HDR architecture as our target architecture [1].

HDR is an architecture that introduces huddles into GDR and
abstracts each module inside an LSI chip. A huddle has a rect-
angular shape within a range determined by the clock cycle and
share functional units, registers, a controller, and level convert-
ers in its inside. Since huddles are rectangle but not regular ones
unlike RDR, we can achieve small area by packing them effec-
tively. Moreover, huddles abstract modules inside them and then
it is easy to add extra modules into each huddle as in RDR.

Figure 1 shows an example of a huddle. The huddle consists
of the following components:
• Huddled Local Register (HLR)

Set of local registers and multiplexers dedicated to each hud-
dle.

• Huddled Functional Unit (HFU)
Set of functional units collected in each huddle. HFU mainly
accesses the HLR in its huddle.

• Finite State Machine (FSM)
Controller dedicated to each huddle. It controls the HFU and
HLR in its huddle.

• Huddled Level Converter (HLC)
Set of level converters collected in each huddle. It is used to
transfer a data to different-voltage huddles

Figure 2 shows an example of the HDR architecture. If we
communicate data inside each huddle, data transfer time can be
ignored, i.e., it can be done in a single clock cycle. If we com-
municate data between two huddles, multi-cycle data communi-
cation between these huddles can be done as in GDR and RDR.
HLC is used when the voltages of the two huddles are different.

2.2 Clock Gating
There are two types of clock gating: One is fine-grained clock

gating which cuts off the clock signal to registers one by one.
The other is coarse-grained clock gating which cuts off the clock

Fig. 1 Huddle.

signal to some groups of blocks [9].
Fine-grained clock gating has an advantage that each register

does not consume extra energy, since we determine the clock gat-
ing timing considering the active timing of each register. But fine-
grained clock gating must be done at the leaf side of a clock tree.
Coarse-grained clock gating has a disadvantage that each register
may consume extra energy, since we determine the clock gating
timing considering the active timing of some register groups. But
coarse-grained clock gating can be done at the root side of a clock
tree. When we focus on a clock tree itself, it consumes energy
caused by its drivers and buffers inserted for adjusting the skew.
If we apply clock gatings at its root side, low-energy clock tree
can be synthesized [7].

In a high-level synthesis stage, the operation execution timing
and module floorplanning are not determined yet. This means
that we can apply a clock gating at the root side of a clock tree
as much as possible during high-level synthesis assuming coarse-
grained clock gatings. Coarse-grained clock gating is better for us
to use there. Moreover, fine-grained clock gating can be applied
even in a logic synthesis stage if necessary.

Now we consider that we apply a clock gating at the root of
the entire HDR architecture. However, it is very hard since we
have to deal with interconnection delays in clock trees between
huddles. One of the reasonable solutions is that we apply a clock
gating at the root of each huddle, since we can ignore intercon-
nection delays inside huddles and it is close enough to the root of
entire HDR architecture.

Based on the discussion above, we assume coarse-grained
clock gatings to huddles (Fig. 3), i.e., we set at most one clock
gating circuit per huddle. We synthesize huddles such that each
of the synthesized huddles include registers having similar or the
same clock gating timings *2.

Figure 3 shows our huddle-based clock tree, which is com-
posed of upper clock trees and lower clock trees. An upper clock
tree (bold lines in Fig. 3) is a clock tree from the clock terminal of
the chip to huddles and lower clock tree (normal lines in Fig. 3)
is a clock tree from a huddle edge to registers. Since we only

Fig. 2 HDR architecture.

*2 As can be seen in our experimental results later, energy consumption
including clock trees in huddle-based coarse-grained clock gatings is
smaller than that in fine-grained clock gatings in most cases.

c© 2013 Information Processing Society of Japan 102

IPSJ Transactions on System LSI Design Methodology Vol.6 101–111 (Aug. 2013)

Fig. 3 Our huddle-based clock tree.

consider one clock gating circuit per huddle, lower clock trees
in each huddle are composed of at most a gated clock tree and a
non-gated clock tree (Huddles 2–5 in Fig. 3). If all the registers in
a huddle are clock-gated, i.e., all the register in a huddle have the
same gating timings, then its lower clock tree becomes a single
gated clock tree as in Huddle 1 in Fig. 3. We prepare a clock tree
for each of the supply voltages.

2.3 Problem Formulation
An input behavioral description is represented by a CDFG

(Control-Data Flow Graph). Tclk refers to a clock period con-
straint and S max refers to a latency constraint. S max shows the
maximum allowable number of control steps to execute a given
CDFG.

Let F = { f1, · · · , fp} be a set of p functional units and Df (fi) be
a delay of the functional unit fi in F. S f (fi) shows the number of
control steps required to execute the functional unit fi and S f (fi)
is defined by S f (fi) = �Df (fi)/Tclk�. Let E(fi) be the energy con-
sumed by the functional unit fi.

Let H = {h1, · · · , hq} be a set of q huddles (q ≤ p). Hud(fi) is
the huddle to which the functional unit fi is bound. F(h j) is a set
of functional units which are bound to the huddle h j. Let R(h j) be
a set of registers which are bound to the huddle h j and Dreg(h j)
be a delay of HLR in the huddle h j.

S lack(fi) is defined by:

S lack(fi) = Tclk · S f (fi) − Df (fi) (1)

S lack(fi) shows the slack time which can be used by data transfer
for fi’s succeeding operations.

The width and height of each huddle must satisfy the following
huddle size constraint:

2 · Dw(W(h j) + H(h j)) + Dreg(h j) ≤ min
fi∈F(h j)

{S lack(fi)} (2)

where W(h j) and H(h j) are the width and height of the huddle h j,
respectively. Dw(x) is an interconnection delay when the wiring
length is x. Dw(x) is proportional to the square of x and defined by
Dw(x) = Cd x2, where Cd is the interconnection delay coefficient.

Let Dist(h j, hk) be the Manhattan distance between the hud-
dles h j and hk. Then Dw(Dist(h j, hk)) shows the interconnection
delay between them. Let V(h j) and V(hk) be supply voltages to
h j and hk and Dlc(V(h j),V(hk)) be the level convert delay from

h j to hk. Let fi be a functional unit bound to the huddle h j, i.e.,
Hud(fi) = h j. Tr(fi, hk) shows the inter-huddle data transfer de-
lay from fi to HLR in the huddle hk which is defined by:

Tr(fi, hk) = Dw(Dist(h j, hk))

+ Dlc(V(h j),V(hk)) + Dreg(hk) (3)

DT (fi, hk) shows the number of clock cycles required to transfer
data from fi to hk which is defined by:

DT (fi, hk) =

⎧⎪⎪⎨⎪⎪⎩
0 (S lack(fi) ≥ Tr(fi, hk))
�Tr(fi, hk)/Tclk� (S lack(fi) < Tr(fi, hk))

(4)

Based on the above definitions, our high-level synthesis prob-
lem is defined as follows:
Definition 1. Our high-level synthesis problem is, for a given

CDFG, a clock period constraint, a latency constraint, and a set

of functional units, to assign each operation node to a control step

and a functional unit, to bind each functional unit to each huddle,

to assign a supply voltage to each huddle, to apply a clock gating

to each huddle so that the given CDFG is executed correctly con-

sidering multi-cycle interconnect communications as in Eq. (4).
The objective is to minimize the total energy consumption.

3. Energy-efficient High-level Synthesis Algo-
rithm for HDR Architectures with Clock
Gatings

A high-level synthesis algorithm based on HDR architectures
utilizing multiple supply voltages was proposed in Ref. [1]. It
is very effective in terms of low energy optimization since it
achieves 25.8% energy reduction, but it does not deal with clock
gatings. We can expect that we have more energy savings if we
can incorporate clock gatings into Ref. [1]. Then we will extend
the original algorithm so that it can effectively utilizes clock gat-
ings.

To realize a low energy high-level synthesis by applying clock
gatings to an HDR architecture, it is necessary to increase gating

steps in each huddle, i.e., the number of control steps to cut off the
clock signal to registers in each huddle without increasing extra
functional units nor extra registers. As increasing the number of
gating steps, we can reduce the energy consumption by applying
a clock gating to each huddle.

The algorithm [1] is composed of the five processes below and
they are repeated until no further improvement is seen. When we
consider increasing the number of gating steps, we can also have
the five options, i.e., we will deal with clock gatings at each of
the five processes below:
Option 1: Initial huddling
Option 2: Scheduling/FU (Functional unit) binding
Option 3: Register binding/Controller synthesis/Floorplanning
Option 4: Huddling
Option 5: Unhuddling

In Option 1, we try to start our high-level synthesis by ini-
tially grouping the functional units having the same or similar
gating timings into a huddle and then we can increase the gating
steps. However, we cannot identify functional units to assign to

c© 2013 Information Processing Society of Japan 103

IPSJ Transactions on System LSI Design Methodology Vol.6 101–111 (Aug. 2013)

the same huddle because no timing information is available here.
It is impossible for us to apply Option 1 to Ref. [1].

In Option 2, we try to schedule as many operations as possi-
ble to the same control steps and thus make the “empty” control
steps. This leads to increasing the gating steps. Option 2 is one
of the most important options to increase the gating steps.

In Option 3, we try to minimize the number of registers to
achieve low energy consumption. In Ref. [1], it is already real-
ized.

In Option 4, we try to merge several huddles used at the same
or similar timings into a single huddle. Since we already have the
timing information in the “huddling” step, we can easily identify
huddles used at the same or similar timing. Option 4 is also one
of the most important options to increase the gating steps.

In Option 5, we try to partition the functional units in each
huddle used at the different timings into different huddles. In this
option, gating steps may increase but we may have extra unnec-
essary huddles. Option 5 is not a good option in this sense.

Based on the above discussions, Option 2 and Option 4 are
the two important options. In Option 2, we schedule as many
operations as possible to the same control steps and thus make
the “empty” control steps (which is called “Concurrency-oriented
scheduling / FU binding”). In Option 4, it is important to identify
huddles used at the same or similar timings, i.e., we first have to
determine the clock gating timings to minimize all energy con-
sumption including clock tree energy (which will be done in “CG
timing calculation considering CT” before the huddling step). Af-
ter that, we will merge the huddles with the same or similar gating
timing into a single huddle at the huddling step (which is called
“CG huddling”).

Figure 4 shows our proposed algorithm: “Initial huddling”
prepares a huddle for each input functional unit; “Concurrency-
oriented Scheduling/FU binding” determines the operation tim-
ings and assigns operations to functional units so that the number
of gating steps is increased; “Register binding” assigns variables
to registers; “Controller synthesis” synthesizes each controller
in a huddle and “floorplanning” performs huddle floorplanning;

Fig. 4 Proposed algorithm.

“CG timing calculation considering CT” calculates the clock gat-
ing timings of huddles considering clock tree energy and “CG
huddling” merges several huddles into a single huddle consider-
ing the gating timings; “Unhuddling” partitions a single huddle
into two or more huddles in order to satisfy the given timing con-
strains. By repeatedly performing these steps, we finally have an
energy-saving high-level synthesis result with floorplanning.

We can use the exactly the same algorithms as Ref. [1] other
than “Concurrency-oriented Scheduling/FU binding,” “CG tim-
ing calculation considering CT,” and “CG huddling.” Then
we propose here “Concurrency-oriented Scheduling/FU binding,”
“CG timing calculation considering CT,” and “CG huddling.”

3.1 Concurrency-oriented Scheduling/FU Binding
In “Concurrency-oriented Scheduling/FU binding,” we use

CDFG, a clock cycle constraint, a latency constraint, and a set of
functional units as input. We can also use information of place-
ment and interconnection delays obtained in the previous iteration
since we employ the iterative improvement flow as in Fig. 4. In
this step, we will assign each operation node to a control step,
bind it to a functional unit, and determine a supply voltage of
each huddle.

In order to increase control steps at which we can apply a clock
gating to registers, the active timings of registers in each hud-
dle should be aligned somehow, where active timings of registers
mean the timings at which operation or register-to-register com-
munication between huddles are performed.

Since the original algorithm in Ref. [1] effectively realizes low-
energy scheduling/FU binding utilizing multiple-supply voltages,
our proposed algorithm here is also based on it and extend it so
that it can align the active timings of registers in each huddle.
Given a scheduling/FU binding result obtained by the original
scheduling/FU binding algorithm in Ref. [1], we can have the four
strategies to align the active timings of registers:
Strategy 1: Try to re-assign an operation to an earlier control

step
Strategy 2: Try to re-assign a register-to-register communica-

tion to an earlier control step
Strategy 3: Try to re-assign an operation to a later control step
Strategy 4: Try to re-assign a register-to-register communica-

tion to a later control step
Strategies 1 and 2 re-assign some of operations and register-

to-register communications to earlier control steps. However, the
original algorithm in Ref. [1] is based on list scheduling which
tries to assign operations to the earliest possible control steps
without violating their execution order and available functional
units. If we incorporate Strategies 1 and 2 into Ref. [1], we can
easily violate operation execution order and/or will exceed avail-
able functional units/registers. In that sense, we can conclude that
Strategies 1 and 2 are not good choices.

Strategy 3 re-assigns an operation to a later control step. If it
still satisfies the operation execution order and will not exceed
available functional units, it is possible to align active timings of
registers there.

Similarly, Strategy 4 re-assigns a register-to-register commu-
nication to a later control step. If it still satisfies the operation

c© 2013 Information Processing Society of Japan 104

IPSJ Transactions on System LSI Design Methodology Vol.6 101–111 (Aug. 2013)

execution order and will not exceed available registers, it is also
possible to align active timings of registers there.

Strategies 3 and 4 must be good choices to align active timings
of registers in a huddle.
Example 1. Figure 5 shows the example of aligning the active

timings of registers in Strategy 3. In this example, we assume that

the huddle 1 has one multiplier and two adders and any opera-

tion can be performed in a single control step. We also assume

that functional units and registers have the same bit width. As

discussed in Section 2.2, we consider course-grained clock gat-

ings to huddles, i.e., we set at most one clock gating circuit per

huddle.

In Fig. 5, we first obtain a scheduling and FU binding result

by applying the original scheduling and FU binding algorithm in

Ref. [1] (Fig. 5 (b)). In Fig. 5 (b), we show the operation schedul-

ing/binding and when the register writings occur. In Fig. 5 (d), a

(a) HDR architecture in Strategy 3.

(b) A result obtained by the
original scheduling/ FU bind-
ing [1].

(c) A result obtained by our
proposed concurrency-oriented
scheduling/ FU binding.

(d) Active timings of registers
for (b).

(e) Active timings of registers
for (c).

Fig. 5 Aligning active timings of registers in Strategy 3. The check marks
“�” show register writing timings and the circle marks “◦” show gat-
ing steps where we can cut off the clock signal.

check mark “�” shows a register writing timing. If we apply a

clock gating to Register C, we can cut off the clock signal to it at

Steps 1, 2 and 4. A circle mark “◦” in Fig. 5 (d) shows each gat-

ing step. But we cannot apply further clock gatings to Registers

A nor B since their active timings are not aligned with Register C

and we can have at most one clock gating circuit per huddle. In

this case, we totally have three gating steps (Steps 1, 2 and 4).
Then, we re-assign the node 3 from Step 2 (CS = 2) to Step 3

(CS = 3) as in (Fig. 5 (c)). If we apply clock gatings to Register

B and C, we can cut off the clock signal to them at Steps 2 and

4 (Fig. 5 (e)). Though we cannot apply a clock gating to Register

A, we can totally have four gating steps in this case (Steps 2 and

4 for Register B and Steps 2 and 4 for Register C). This is due

to aligning the active timings of Registers B and C by moving the

node 3 from Step 2 to Step 3. We can expect that the total energy

consumption will be reduced by applying clock gatings to them.

Example 2. Figure 6 shows the example of aligning the active

timings of registers in Strategy 4. We consider the same assump-

(a) HDR architecture in Strategy 4.

(b) A result obtained by the
original scheduling/FU bind-
ing [1].

(c) A result obtained by our
proposed concurrency-oriented
scheduling/ FU binding.

(d) Active timings of registers
for (b) in Huddle 1.

(e) Active timings of registers
for (c) in Huddle 1.

Fig. 6 Aligning active timings of registers in Strategy 4. The check marks
“�” show register writing timings and the circle marks “◦” show gat-
ing steps where we can cut off the clock signal.

c© 2013 Information Processing Society of Japan 105

IPSJ Transactions on System LSI Design Methodology Vol.6 101–111 (Aug. 2013)

tions as the previous example.

In Fig. 6, we first obtain a scheduling and FU binding result

by applying the original scheduling and FU binding algorithm in

Ref. [1] (Fig. 6 (b)). Now let us look at registers in Huddle 1. In

Fig. 6 (d), a check mark “�” shows a register writing timing in

Huddle 1. If we apply clock gatings to Registers B and C, we can

cut off the clock signal to it at Steps 1 and 4. A circle mark “◦” in

Fig. 6 (d) shows each gating step. We cannot apply further clock

gatings to Register A since its active timings are not aligned and

we can have at most one clock gating circuit per huddle. In this

case, we totally have four gating steps (Steps 1 and 4 for Register

B and Steps 1 and 4 for Register C).
Then, we re-assign the register-to-register communication be-

tween Huddle 2 and Huddle 1 from Step 2 (CS = 2) to Step 3

(CS = 3) as in (Fig. 6 (c)). If we apply clock gatings to Registers

B and C in Huddle 1, we can cut off the clock signal to them at

Steps 1, 2 and 4 (Fig. 6 (e)). Though we cannot apply a clock gat-

ing to Register A, we can totally have six gating steps in this case

(Steps 1, 2 and 4 for Register B and Steps 1, 2 and 4 for Register

C). This is due to aligning the active timings of the register-to-

register communication by moving it from Step 2 to Step 3. We

can expect that the total energy consumption will be reduced by

applying clock gatings to registers in Huddle 1.

Based on the above discussions, we will extend the original
scheduling/FU binding [1] and propose “Concurrency-oriented
Scheduling/FU binding” incorporating Strategies 3 and 4, where
we move operations and register-to-register communications to
later control steps so as to align the active timings of registers in
huddles.

Let o be an operation or a register-to-register communication in
a scheduling/FU binding result obtained by the original schedul-
ing/FU binding algorithm [1]. Let CS S (o) and CS L(o) be the ear-
liest control step and the latest control step at which o can be as-
signed without exceeding required functional units nor registers,
respectively. Then the mobility Mob(o) is defined by:

Mob(o) = CS L(o) −CS S (o) (5)

Our “Concurrency-oriented Scheduling/FU binding” algorithm is
summarized as follows:

Initial phase:
We perform the original scheduling/FU binding [1].

Improvement phase:
(1) Let cs ← (S max − 1), where S max shows the maximum con-

trol step given as input.
(2) While (cs > 0), perform the following loop (a)–(b):

(a) Let o be an operation or a register-to-register commu-
nication assigned to cs. Let hud(o) be the huddle to
which o is assigned. Perform the following processes
to o in the ascending order of Mob(o):
(i) Try to move o to each later control step i (cs ≤ i ≤

S max) within the mobility range without changing
its FU binding and exceeding the required regis-
ters, and count how many register writings totally
occur at i. Let AllAct(i) (cs ≤ i ≤ S max) be such
total number of register writings at i in hud(o).

(ii) Move o to the control step imax giving the maxi-
mum AllAct(i).

(b) If we have tried all the operations and register-to-
register communications assigned to cs, cs ← cs − 1

and go back to (a). If not, go to (i) and try the next
operation or register-to-register communication.

By using our proposed algorithm, we can align as many op-
erations and register-to-register communications as possible and
then we can increase clock cut-off steps. Finally we can expect
that we effectively apply clock gatings to each huddle and have a
low-energy scheduling/FU binding.

3.2 CG Timing Calculation Considering CT
“CG timing calculation considering CT” assigns clock gating

timings to each huddle based on the active timings of registers
and the clock tree energy. Now let focus on a huddle h in our
HDR architecture.

Let Act(r j, i) be the active timing information of register r j in
h at the step i. Act(r j, i) is a 0-1 variable and Act(r j, i) = 1 when
the register r j is used at the step i. Otherwise, Act(r j, i) = 0. Let
R be a subset of registers in the huddle h and Act(R, i) shows the
active timing information of R = {r1, · · · , rk} of the k registers at
the step i which is defined by:

Act(R, i) =
⋃

r j∈R
Act(r j, i) (6)

CG(R, i) shows the clock gating timing of the subset R of the k

registers at the step i which is defined by:

CG(R, i) = Act(R, i) (7)

Figure 7 shows an example of Act(r j, i) and CG(R, i) for various
patterns of the subset R in the huddle.

Using the latency constraint S max, the gating step count
S tep(R) can be defined by:

S tep(R) = k ×
S max∑

i=1

CG(R, i) (8)

where k = |R|.

Fig. 7 Clock gating timing calculation in each huddle. Since Pr({r1, r2})
gives the minimum, we will apply clock gatings to both r1 and r2 in
this huddle. We will cut off the clock signal to r1 and r2 at Steps 1
and 4 and will supply the clock signal to r3 at all the steps.

c© 2013 Information Processing Society of Japan 106

IPSJ Transactions on System LSI Design Methodology Vol.6 101–111 (Aug. 2013)

Let Estep be the energy consumption of a register in one step *3.
As mentioned in Section 2.2, an upper clock tree (bold lines in
Fig. 3) is a clock tree from the clock terminal of the chip to hud-
dles and lower clock tree (normal lines in Fig. 3) is a clock tree
from a huddle edge to registers. Let Eu(R) be the energy con-
sumption of the upper clock tree for the huddle h when we apply
a clock gating to the register subset R in h. Let Ed(R) be the en-
ergy consumption of the lower clock trees in h when we apply a
clock gating to the register subset R in h. Then the cost Pr(R) can
be defined by:

Pr(R) = (Eu(R) + Ed(R)) − Estep × S tep(R), (9)

where Eu(R) and Ed(R) can be obtained by using the equations in
Ref. [12]. The second term (Estep × S tep(R)) in Eq. (9) directly
shows how much energy consumption can be reduced by cutting
off the clock signal to R. We need the first term (Eu(R) + Ed(R))
because of the following reason: The configuration of lower clock
trees in h must be changed when the subset R of clock-gating reg-
isters changes. Ed(R) is directly dependent on the lower clock
tree configuration in h and calculated mainly based on how many
lower clock trees are required inside h and how many sinks each
lower clock tree requires. Eu(R) is calculated mainly based on the
number of upper clock sinks and their positions, which are depen-
dent on lower clock tree configurations. In each huddle other than
h, we use a lower clock tree configuration determined in the pre-
vious iteration or just before at this iteration to calculate Eu(R).
In h, we use the lower clock tree configuration when we apply
a clock gating to the subset R. Since lower clock trees in h as
well as its upper clock tree can be changed when the subset R of
clock-gating registers changes in h, we have to evaluate not only
the second term but also the first term as in Eq. (9).

Let R(h) be the set of all the registers in the huddle h. For ev-
ery subset R in R(h), we can calculate Pr(R) and find out the one
which gives the minimum Pr(R) value. Let Rmin be such subset
in R(h) and Pr(Rmin) shows the minimum value. When we cut off
the clock signal to each register in Rmin at the steps i satisfying
CG(Rmin, i) = 1, it will lead to the lowest energy consumption by
applying the clock gatings to the huddle h.
Example 3. In Fig. 7, we have three registers r1, r2 and r3

in the huddle. The register writing timings and Act(r j, i) for

every register ri and Step i are also given. The check mark

“�” shows that Act(r j, i) = 1. Since we have three registers,

we can have seven register subset patterns of {r1}, · · · , {r1, r2},
{r2, r3}, · · · , {r1, r2, r3}.

Then we can calculate Act(R, i) and CG(R, i) for each subset

R and Step i. Figure 7 also shows CG({r1}, i), · · · ,CG({r1, r2}, i),
CG({r2, r3}, i), · · · ,CG({r1, r2, r3}, i). The circle mark “◦” shows

that CG(R, i) = 1.

Assume that Estep = 2 and Eu(R) = 10 for every sub-

set R. Ed(R) = 10 when we use both a gated lower

clock tree and a non-gated lower clock tree in the hud-

dle. Ed(R) = 5 when we use only a non-gated lower

*3 Here we assume that every register has the same bit width for simplicity
and then we can define ES tep to be a single value. The similar discussions
can be applied to registers with the different bit widths by assuming a dif-
ferent ES tep value for every register.

clock tree in the huddle. We can calculate gating steps

and, by using them, we can have Pr({r1}), · · · , Pr({r1, r2}),
Pr({r2, r3}), · · · , Pr({r1, r2, r3}). Note that, when we pick up

{r2, r3} or {r1, r2, r3} for gating register candidates, we have no

gating steps. In this case, we use only a non-gated lower clock

tree in the huddle (in this case Ed({r2, r3}) = Ed({r1, r2, r3}) = 5).
Finally we have that Pr({r1, r2}) gives the minimum and will

cut off the clock signal to r1 and r2 at Steps 1 and 4 in this huddle

using a clock gating circuit.

3.3 CG Huddling
In “CG huddling,” we merge several huddles into a single hud-

dle. We first calculate the merge priorities for huddles and merge
them in the descending order of them.
Merge Priority

To calculate the merge priority, we propose similarity in ad-
dition to adjacency and the number of connections proposed in
Ref. [1]. Similarity represents how close the clock gating timings
of two huddles are. By merging the two huddles used at the same
or similar timing, it is possible to cut off the clock signal to the
registers in the merged huddle at as many steps as possible.

We propose the similarity S im(h j, hk) between the huddles h j

and hk as follows:

S im(h j, hk) = S max −
S max∑

i=1

CG(h j, i) ⊕CG(hk, i) (10)

where S max is the latency constraint. CG(h j, i) and CG(hk, i) are
the clock gating timings of h j and hk calculated in the “CG tim-
ing calculation,” respectively. S im(h j, hk) shows the number of
control steps where we can cut off the clock signal if we merge h j

and hk. Figure 8 shows an example of the similarity between the
two huddles.

The merge priority Pr(h j, hk) between two huddles h j and hk is
set to be:

Pr(h j, hk) = Con(h j, hk) × Ad j(h j, hk) × S im(h j, hk), (11)

where Con(h j, hk) and Ad j(h j, hk) shows the number of connec-
tions and adjacency between the two huddles, respectively [1].

Based on the merge priority, we will merge two huddles h j

and hk into a single huddle according to the original algorithm of
Ref. [1] and apply a clock gating to the steps where we can cut off
the clock signal to both h j and hk.

Fig. 8 Similarity. The circle mark “◦” shows the gating step.

c© 2013 Information Processing Society of Japan 107

IPSJ Transactions on System LSI Design Methodology Vol.6 101–111 (Aug. 2013)

4. Experimental Results

4.1 Setup
We have implemented our algorithm in C++ and performed

experimental evaluations. We used AMD Opteron 2360SE
2.5 GHz × 2 PC with 16 GB memory. We applied our algo-
rithm to hal (11 nodes), parker (22 nodes), dct (48 nodes), jacobi
(48 nodes including condtional branches), fir filter (75 nodes),
ewf3 (102 nodes), and copy (378 nodes including conditional
branches) [1], [5], [6], [10].

In the experiments, functional units and registers are assumed
to have 16-bit width under the 90 nm technology. The clock pe-
riod constraint is given to be 2.5 ns. Each latency constraint is
just given to a round number as seen in Ref. [1]. Numbers of FUs
are given so that we can satisfy the given latency constraint with
the almost minimum possible FUs. The interconnection delays
are assumed to be proportional to square of the wiring length and
set interconnection delays to be 1ns when the wiring length is
250 µm [1]. Tables 1 and 2 show our functional unit and register
specifications. Supply voltages are assumed to be 0.8 V, 1.0 V,
and 1.2 V. We used Synopsys Design Compiler to obtain en-
ergy and power for HDR architecture components. We consider
a clock tree for each of three supply voltages and its energy is
obtained by using the equations in Ref. [12].

Energy consumption in each application program is obtained
based on the energy consumptions of (a) FUs (including their
multiplexers), (b) level converters, (c) registers (including their
multiplexers), (d) controllers, and (e) clock trees. Our energy
consumption value is then obtained by summing up those of (a)–
(e) as seen in Refs. [1], [11], where we assume that the compo-

Table 1 Functional unit specification.

Functional Area Delay Energy Leak power
unit [µm2] [ns] [pJ] [µW]

Adder (1.2 V) 386 0.75 0.092 3.9
Adder (1.0 V) 386 1.22 0.064 3.2
Adder (0.8 V) 386 2.71 0.041 2.6

Substractor (1.2 V) 417 0.78 0.097 4.2
Substractor (1.0 V) 417 1.27 0.067 3.5
Substractor (0.8 V) 417 2.82 0.043 2.8

Multiplier (1.2 V) 2,161 1.65 1.135 19.8
Multiplier (1.0 V) 2,161 2.7 0.788 16.5
Multiplier (0.8 V) 2,161 6.0 0.504 13.2

Divider (1.2 V) 6,404 5.91 1.865 670.8
Divider (1.0 V) 6,404 9.66 1.295 559.0
Divider (0.8 V) 6,404 21.47 0.829 447.2

Comparator (1.2 V) 116 0.51 0.017 0.80
Comparator (1.0 V) 116 0.83 0.012 0.67
Comparator (0.8 V) 116 1.84 0.008 0.54

Shifter (1.2 V) 294 0.54 0.075 2.5
Shifter (1.0 V) 294 0.89 0.052 2.1
Shifter (0.8 V) 294 1.98 0.033 1.7

Table 2 Register specification.

Clock Area Energy Leak power
gating [µm2] [pJ] [µW]

Register (1.2 V) Yes 272 0.546 0.0018
No 272 0.743 0.0017

Register (1.0 V) Yes 272 0.379 0.0015
No 272 0.516 0.0014

Register (0.8 V) Yes 272 0.243 0.0012
No 272 0.330 0.0011

nents which are prepared in advance can be used directly in high-
level synthesis. We obtained the energy consumptions of (a)–(d)
by using Design Compiler. They may include some errors com-
pared to actual values, but which are strongly dependent on De-
sign Compiler. Since clock tree layout is not fixed in a high-level
synthesis stage, we just cannot know the actual energy consump-
tion in this stage. We then use the equations in Ref. [12] to calcu-
late the energy consumption of (e) clock trees in our experiments.
Clock tree energy estimation in Ref. [12] may have some amount
of errors compared to an actual value but, throughout this exper-
imental evaluation, we obtained the energy consumption in each
application program as discussed above for our proposed algo-
rithm as well as for conventional algorithms, which means that
our comparisons can be quite fair. In a similar way, we obtained
the delays of (a)–(d), where we just ignore the delays of (e) clock
trees.

We have compared our algorithm with the following algo-
rithms:
(1) The original algorithm [1],
(2) The original algorithm [1] followed by the coarse-grained

clock gating (Ref. [1]+CGCG),
(3) The original algorithm [1] followed by the fine-grained clock

gating (Ref. [1]+FGCG), and
(4) Our algorithm without using concurrency-oriented schedul-

ing/FU binding but using the original scheduling/FU binding
(Ours w/o Section 3.1).

In (2) and (4) above, we applied huddle-based coarse-grained
clock gating whereas we applied fine-grained clock gating to (3).
In (2), we used the algorithm described in Section 3.2 for coarse-
grained clock gating. In (3), we constructed a lower clock tree to
every set of registers with the same active timings in each huddle,
which controls clock gating to each register. We may construct
too many lower clock trees for some huddle in this case.

4.2 Energy Evaluation
Table 3 shows our experimental results where CT energy refers

to clock tree energy including upper clock trees and lower clock
trees. All energy consumption includes energy for all the com-
ponents in HDR as well as clock tree energy. Overall, all energy
consumption of our proposed algorithm achieves the minimum
in all the cases and is reduced by a maximum of 23.8% and an
average of 14.4% compared with (1) the original algorithm [1].

Particularly, clock tree energy for fine-grained clock gating is
approximately 2–6 times more than that for course-grained clock
gating, although dynamic energy in registers for fine-grained
clock gating is the minimum in all the cases. This indicates that
high-level synthesis with huddle-based course-grained clock gat-
ing is very effective in terms of total energy reduction.

CPU time is largely dependent on the number of iterations and
there are almost no significant differences in the number of iter-
ations in each application program, through the number of iter-
ations may increase in some case (for example, Ours w/o Sec-
tion 3.1 of dct). This is because all the algorithms used in our
experiments are based on an iterative improvement flow and a so-
lution can be oscillated in some cases. In these cases, we require
several number of iterations to have a converged solution.

c© 2013 Information Processing Society of Japan 108

IPSJ Transactions on System LSI Design Methodology Vol.6 101–111 (Aug. 2013)

Table 3 Experimental results.

App. FUs S max Algorithm All dynamic Dynamic energy Leak energy CT energy All energy Iterations CPU time (ratio)
energy [pJ] in registers [pJ] [pJ] [pJ] [pJ] [sec]

hal Add × 1 5 Ref. [1] 119.049 108.218 28.3314 2.31617 147.380 2 382.32 (1.000)
Sub × 1 Ref. [1] + CGCG 102.458 92.1862 28.3354 1.75765 130.793 2 394.70 (1.032)
Mul × 2 Ref. [1] + FGCG 101.264 88.7507 28.3354 3.99872 129.599 2 394.70 (1.032)
Com × 1 Ours w/o Section 3.1 86.4418 77.1209 29.6253 1.56093 116.067 2 419.99 (1.099)

Ours 86.3667 77.1209 29.6253 1.48581 115.992 2 381.64 (0.998)

parker Add × 2 10 Ref. [1] 28.3833 23.7773 68.0913 1.75087 96.4746 2 259.48 (1.000)
Sub × 2 Ref. [1] + CGCG 26.2352 21.8553 68.0945 1.52478 94.3297 2 260.21 (1.003)
Com × 1 Ref. [1] + FGCG 26.7604 18.0112 68.0945 5.89398 94.8549 2 260.21 (1.003)

Ours w/o Section 3.1 21.7289 17.3088 67.9547 1.32697 89.6836 2 197.68 (0.762)
Ours 21.7289 17.3088 67.9547 1.32697 89.6836 2 197.45 (0.761)

dct Add × 4 10 Ref. [1] 199.459 132.922 24.4439 8.76961 223.903 3 868.33 (1.000)
Mul × 4 Ref. [1] + CGCG 187.691 122.028 24.4554 7.89428 212.146 3 913.90 (1.052)

Ref. [1] + FGCG 203.816 106.734 24.4554 39.3136 228.271 3 913.90 (1.052)
Ours w/o Section 3.1 184.775 121.619 24.7141 8.18148 209.489 3 1,133.40 (1.305)

Ours 174.917 113.327 26.2647 8.19640 201.182 3 1,167.48 (1.345)

dct Add × 3 15 Ref. [1] 217.622 153.727 21.1666 10.0075 238.789 4 997.75 (1.000)
Mul × 3 Ref. [1]+CGCG 207.997 146.126 21.1816 7.98265 229.179 4 999.68 (1.002)

Ref. [1]+FGCG 219.559 121.599 21.1816 44.0723 240.741 4 999.68 (1.002)
Ours w/o Section 3.1 200.278 136.085 22.0748 10.3092 222.353 10 2,300.39 (2.306)

Ours 199.222 136.085 22.0748 9.25228 221.297 2 488.06 (0.489)

jacobi Add × 2 15 Ref. [1] 202.975 112.942 77.3490 12.5441 280.324 2 293.82 (1.000)
Sub × 1 Ref. [1] + CGCG 195.489 105.669 77.3591 12.3310 272.848 2 295.23 (1.005)
Mul × 2 Ref. [1] + FGCG 209.365 91.7126 77.3591 40.1635 286.724 2 295.23 (1.005)
Div × 2 Ours w/o Section 3.1 169.212 89.9171 79.1092 11.1721 248.321 2 308.09 (1.049)

Ours 169.174 89.9171 79.0343 11.1586 248.208 2 273.61 (0.931)

fir Add × 3 35 Ref. [1] 371.618 276.493 55.4682 19.6739 427.086 2 510.75 (1.000)
Mul × 3 Ref. [1]+CGCG 344.971 249.569 55.5030 19.9510 400.474 2 554.51 (1.086)

Ref. [1]+FGCG 364.275 214.678 55.5030 74.1458 419.778 2 554.51 (1.086)
Ours w/o Section 3.1 332.851 239.651 55.8564 17.8229 388.707 2 531.03 (1.040)

Ours 315.835 225.548 52.8838 13.7516 368.719 2 437.90 (0.857)

ewf3 Add × 4 45 Ref. [1] 590.185 396.598 111.197 34.3950 701.382 10 2,213.18 (1.000)
Mul × 2 Ref. [1]+CGCG 549.058 358.927 111.257 30.9392 660.315 10 2,931.81 (1.325)

Ref. [1]+FGCG 593.152 314.492 111.257 119.469 704.409 10 2,931.81 (1.325)
Ours w/o Section 3.1 532.793 341.031 112.891 31.0000 645.684 10 2,519.56 (1.138)

Ours 483.411 303.290 71.9863 25.6333 555.397 10 1,968.53 (0.889)

copy Add × 3 165 Ref. [1] 69,469.4 67,816.4 3,107.74 1,106.34 72,577.1 10 4,980.24 (1.000)
Sub × 1 Ref. [1] + CGCG 63,840.1 62,206.7 3,108.09 1,086.75 66,948.2 10 5,011.44 (1.006)
Mul × 5 Ref. [1] + FGCG 77,119.8 51,606.0 3,108.09 2,4967.1 80,227.9 10 5,011.44 (1.006)
Com × 1 Ours w/o Section 3.1 57,544.1 56,613.7 1,940.83 1,940.83 59,484.9 10 4,693.30 (0.942)
Shi × 2 Ours 53,316.1 52,389.6 1,989.39 1,989.39 55,305.5 10 5,829.51 (1.171)

4.3 Optimality Evaluation
In order to evaluate optimality of our proposed concurrency-

oriented scheduling algorithm, we picked up a scheduling/FU
binding result from the output of our proposed algorithm on each
application program and evaluated their optimality.

An optimal solution in our concurrency-oriented scheduling is
that, as many registers as possible are active at the same time
between control steps, so that we can apply a clock gating to
non-active registers. We consider S tep(R) given by Eq. (8) in
each huddle. Let Max S tep(R) be a maximum S tep(R) value
when we consider a various subset R of the registers in the hud-
dle. The larger the sum of Max S tep(R) over all the huddles
is, the more registers are active at the same time. It leads to
“better concurrency-oriented scheduling/FU binding.” We can
consider that our optimal solution is the one when the sum of
Max S tep(R) over all the huddles is the largest.

Table 4 shows Max S tep(R) comparisons between our
concurrency-oriented scheduling results and optimal results. Op-
timal results here were obtained by an exhaustive search. “Opti-
mal ratio” is the ratio of the sum of Max S tep(R) in our proposed
algorithm to the sum of Max S tep(R) in the optimal solution. It
achieves an average of 92.2%. Roughly saying, the solutions of

our proposed algorithm are close to optimal ones in small-sized
and middle-sized application programs and we can say that our
proposed algorithm is good enough to have concurrency-oriented
scheduling/FU binding there. As one of our future challenges,
we will develop a globally better concurrency-oriented schedul-
ing algorithm including all the Strategies 1 to 4 discussed in Sec-
tion 3.1 to have optimal solutions, even for large-sized application
programs.

5. Conclusion

In this paper, we have proposed a high-level synthesis al-
gorithm based on HDR architecture utilizing the huddle-based
coarse-grain clock gatings considering concurrency-oriented
scheduling/FU binding. Our proposed algorithm reduces all en-
ergy consumption by a maximum of 23.8% and an average of
14.4% compared with Ref. [1].

In the future, we not only apply clock gatings to HDR architec-
tures but consider dynamic frequency control for them and pro-
pose its high-level synthesis algorithm. Moreover, setting at most
one clock gating circuit per huddle is the first step in considering
the clock gating in HDR architecture. In the future, we will de-
velop a high-level synthesis algorithm that optimizes the numbers

c© 2013 Information Processing Society of Japan 109

IPSJ Transactions on System LSI Design Methodology Vol.6 101–111 (Aug. 2013)

Table 4 Max S tep(R) comparison between ours and optimal results.

App. S max Algorithm Max S tep(R) Sum of Optimal
Hud.1 Hud.2 Hud.3 Hud.4 Hud.5 Hud.6 Hud.7 Hud.8 Hud.9 Hud.10 Hud.11 Max S tep(R) ratio

hal 5 Ours 3 4 8 4 19 1.000
Optimal result 3 4 8 4 19

parker 10 Ours 6 6 1.000
Optimal result 6 6

dct 10 Ours 15 18 9 3 3 14 62 0.912
(+4*4) Optimal result 18 18 12 3 3 14 68

dct 15 Ours 12 24 20 13 12 81 1.000
(+3*3) Optimal result 12 24 20 13 12 81

jacobi 20 Ours 32 10 42 0.913
Optimal result 32 14 46

fir 35 Ours 84 44 54 27 209 0.897
Optimal result 96 50 54 33 233

ewf3 45 Ours 40 46 50 23 159 0.909
Optimal result 40 60 52 23 175

copy 165 Ours 1,156 945 134 1,122 256 984 580 536 584 544 432 7,273 0.743
Optimal result 1,972 1,755 134 1,972 256 1,008 580 536 584 552 438 9,787

and the types of clock gatings in huddles.
Acknowledgments This work was supported partially by

“Grant for Advanced Industrial Technology Development” from
the New Energy and Industrial Technology Development Organi-
zation (NEDO) of Japan.

References

[1] Abe, S., Yanagisawa, M. and Togawa, N.: Energy-efficient high-
level synthesis for HDR architectures, IPSJ Trans. System LSI Design
Methodologies, Vol.5 (August Issue), pp.106–117 (2012).

[2] Akasaka, H., Yanagisawa, M. and Togawa, N.: Energy-efficient high-
level synthesis for HDR architectures with clock gating, Proc. IEEE
International SoC Design Conference 2012, pp.135–138 (2012).

[3] Cong, J., Fan, Y., Han, G., Yang, X. and Zhang, Z.: Architec-
ture and synthesis for onchip multicycle communication, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, Vol.23,
No.4, pp.550–564 (2004).

[4] Emnett, F. and Biegel, M.: Power reduction through rtl clock gating,
Proc. Synopsys User Group Conference, Citeseer (2000).

[5] Ohchi, A., Togawa, N., Yanagisawa, M. and Ohtsuki, T.: Floorplan-
aware high-level synthesis for generalized distributed-register archi-
tectures, IEICE Trans. Fundamentals of Electronics, Communications
and Computer Sciences, Vol.92, No.12, pp.3169–3179 (2009).

[6] Ohchi, A., Togawa, N., Yanagisawa, M. and Ohtsuki, T.:
Performance-driven high-level synthesis with floorplan for GDR ar-
chitectures and its evaluation, Proc. IEEE International Symposium
on Circuits and Systems, pp.921–924 (2010).

[7] Ozaki, N., Amano, H., Nakamura, H., Usami, K., Namiki, M. and
Kondo, M.: SLD-1 (Silent Large Datapath): A ultra low power recon-
figurable accelerator, Proc. IEEE Cool Chips XIV, pp.9–17 (2011).

[8] Qurechi, S. and Sanjeev, K.: Power and performance optimization us-
ing multi-voltage, multi-threshold and clock gating for lowend micro-
processors, Proc. 1995 International Symposium on Low Power De-
sign, pp.9–14 (1995).

[9] Shin, J., Dawei, H., Petrick, B., Changku, H. and Leon, A.: A 40nm
16-core 128-thread SPARC SoC processor, Proc. IEEE 2011 Solid
State Circuits Conference, pp.1–4 (2010).

[10] Singh, H. and Gajski, D.D.: A Design Methodology for Behavioral
Level Power Exploration, Master’s thesis, University of California,
Irvine (1997).

[11] Yang, H. and Dung, L.: On multiple-voltage high-level synthesis us-
ing algorithmic transformations, Proc. IEEE ASP-DAC, pp.872–876
(Jan. 2005).

[12] Vittal, A. and Marek-Sadowska, M.: Low-power buffered clock tree
design, IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, Vol.16, No.9, pp.965–974 (1997).

Hiroyuki Akasaka was born in 1989. He
received his B.E. degree from Waseda
University in 2012 in Computer Science.
He is presently working toward a M.E. de-
gree there. His research interest is high-
level synthesis of LSIs.

Shin-ya Abe was born in 1988. He re-
ceived his B.E. and M.E. degrees from
Waseda University in 2011 and 2012, re-
spectively, all in Computer Science. He
is presently working toward a Dr.E. de-
gree there. His research interests are de-
sign and verification of VLSI, especially
high-level synthesis and energy efficiency

design. He is a student member of IEICE.

Masao Yanagisawa was born in 1959.
He received his B.E., M.E., and Dr.E. de-
grees from Waseda University in 1981,
1983, and 1986, respectively, all in Elec-
trical Engineering. He was with Univer-
sity of California, Berkeley from 1986
through 1987. In 1987, he joined
Takushoku University. In 1991, he left

Takushoku University and joined Waseda University, where he
is presently a Professor in the Department of Electronic and Pho-
tonic Systems. His research interests are combinatorics and graph
theory, computational geometry, VLSI design and verification,
and network analysis and design. He is a member of IEEE and
ACM and a fellow of IEICE.

c© 2013 Information Processing Society of Japan 110

IPSJ Transactions on System LSI Design Methodology Vol.6 101–111 (Aug. 2013)

Nozomu Togawa was born in 1970. He
received his B.E., M.E., and Dr.E. degrees
from Waseda University in 1992, 1994,
and 1997, respectively, all in Electrical
Engineering. He is presently a Professor
in the Department of Computer Science
and Engineering, Waseda University. His
research interests are LSI design, graph

theory, and computational geometry. He is a member of IEEE
and IEICE.

(Recommended by Associate Editor: Takashi Takenaka)

c© 2013 Information Processing Society of Japan 111

