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Abstract: This paper discusses about object detection based on spatio-temporal light field sensing. Our proposed
method generates an arbitrary in-focus plane in the surveillance scene, and the background region can be filtered out
by out-focusing. A new feature representation, called Local Ray Pattern (LRP), is introduced to evaluate the spatial
consistency of light rays. The combination of LRP and GMM-based background modeling realizes object detection
on the in-focus plane. Experimental results demonstrate the effectiveness and applicability for video surveillance.
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1. Introduction

Object detection based on background modeling has often been
used for visual surveillance applications. It detects a change of
image signal by making a statistical model of observed pixel val-
ues. A change should be caused by detection targets such as walk-
ing people, moving cars and so on, however, background changes
including waving trees, cast shadows, etc. also become a factor
for false positive detection. Although traditional studies have
been discussed about an effective background modeling [1], [3],
there is no radical solution to overcome the problem.

Our study proposes a new sensing strategy, which enables a
system to exclude background region from a space of interest
at the stage of imaging *1. In the following of this paper, we
call “space of interest” an in-focus area, where target detection
is performed. Against the in-focus area, the background region
is called out-focus area. Our sensing strategy can make an in-
focus area with an arbitrary shape like Fig. 1. Therefore, the back-
ground region (a tree in Fig. 1) will be captured with a blur. To
realize such an imaging strategy, we introduce a light field cam-
era to capture light rays from a scene, and apply a technique of

Fig. 1 The proposed in-focus area. An area in which target objects will
appear is only focused. Other areas are captured with a blur.
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*1 We intentionally use the words of “space of interest” instead of “region

of interest (ROI)” since ROI has a 2D-like meaning.

digital refocusing for the generation of in-focus/out-focus areas.
Object detection is also performed by processing the light rays
from the viewpoint of spatio-temporal light field consistency.

2. Related Work

A light field camera was originally proposed for image-based
rendering for use in the graphics community, and has been used
for a variety of different visualization applications, such as com-
puter imaging through a virtual aperture, 3D graphics, and digital
refocusing [6]. In recent years, the light field camera has been ap-
plied to solve a difficult computer vision and pattern recognition
problem, such as transparent object recognition [5].

A single-view camera has mainly been used for visual surveil-
lance applications. Background modeling based object detection
is one of the fundamental techniques [1], [3]. Object detection is
performed on a 2D image plane, therefore, traditional approaches
often suffer from background changes. Our proposed method uti-
lizes a light field camera, and represents a detection field as a 3D
space, which enables to filter out the background region from the
detection field.

A 3D intrusion detection system with multiple cameras is pro-
posed [4]. An arbitrary 3D volumetric restricted area is generated
by multiple cameras surrounding the target area. Intrusion de-
tection is achieved by computing intersections of an object and
a sensitive plane, which is the boundary of the restricted area.
Our proposed method also generates such a restricted area for
object detection, but the camera arrangement and the detection
algorithm is a lot different from the related work. The proposed
method introduces a digital refocusing technique to generate a
restricted area, and object detection is achieved by light ray pro-
cessing.

3. Overview of the Proposed Idea

Firstly, we set up an in-focus area where object detection is
performed. As shown in Fig. 1, the in-focus area does not have
to be a 2D plane. For example, it is possible to intentionally set
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Fig. 2 Distribution of light ray colors. The distribution will have a small
variance if the light rays come from an in-focus area, otherwise the
variance will become larger.

up some “out-focus area,” in which the background changes often
occur (refer to Section 6 for an actual situation). To configure in-
focus/out-focus areas, we use a digital refocusing technique with
a light field camera.

Secondly, we evaluate two factors; spatial consistency and
temporal consistency of observed light rays. If we assume
Lambertian reflectance, the same colored rays are recorded by
a light field camera. In other words, the color distribution of light
rays has a small variance if they come from the same point in the
in-focus area as shown in Fig. 2. We use this characteristic for
evaluation of the spatial consistency. On the other hand, the tem-
poral consistency of the light rays is modeled by the Gaussian
Mixture background model, which is often utilized for change
detection.

Finally, two evaluation results (i.e., spatial consistency and
temporal consistency) are integrated to determine foreground
masks which denote the object detection result. A Markov
random field based approach is introduced to assign fore-
ground/background labels for all the light rays.

4. In-focus Area Configuration

We use 4D-ray representation of a light field image L(s, t, u, v)
determined by the intersection of a camera plane (s, t) and a
slant of ray (u, v). We use a commercial light field camera,
ProFUSION 25, which has 25 VGA resolution (640× 480 pixels)
cameras and can simultaneously capture images from 25 view-
points. Each image is independently recorded as a 2D image
p(x, y) from the respective camera located at a 2D coordinate
(s, t). We obtain a light field image L(s, t, u, v) by projecting these
images to the parallel image coordinates prescribed by the slant
(u, v). The projection from the ray images p(x, y) to the slant of
the light field ps,t(u, v) can be calculated from:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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where Ks,t is a matrix dependent on intrinsic parameters of each
camera at (s, t). dHs,t is a matrix describing the homography be-
tween two views:

dHs,t = R0,0 · R−1
s,t −

Ts,tnT

d
(2)

where Rs,t and Ts,t are the rotation matrix and translation vector
of the camera located at (s, t). We assume that the normal vector
n is parallel to the optical axis. The notation d denotes the dis-
tance from the camera. Actually, the d is parameterized by (x, y)
as d(x, y) so that the homography can be independently config-
ured on each pixel (x, y). In the following experiments, we set up

Fig. 3 In-focus/out-focus assignment based on LRP. (a) Input image,
(b) Ground truth, (c) Color based LRP, (d) LBP based LRP.

the homography of each pixel semi-automatically *2.

5. Object Detection Based on Local Ray Pat-
tern

5.1 Local Ray Pattern (LRP)
In this section, a new representation of lay feature is defined. A

light field camera captures light rays from many different direc-
tions of a sensing space. If an object has a Lambertian surface,
the same colored rays from the object are imaged on the array
of cameras. The relationship of the color rays of the same coor-
dinate (u, v) is evaluated between the basis camera (0, 0) and the
other cameras (s, t) as follows.

LRPu,v =
∑

s,t

| fs,t(u, v) − f0,0(u, v)| (3)

where the fs,t(u, v) denotes a feature of light ray (u, v) captured
by the camera (s, t). The above formula calculates the similarity
of the light rays. We call this light ray relationship “Local Ray
Pattern (LRP).” Note that the correspondence between the light
rays is well calibrated according to the strategy mentioned in Sec-
tion 4. Therefore, the value of LRPu,v ideally becomes zero if the
light rays come from the same point on the in-focus area.

5.2 Light Ray Feature
One of the simple ways to represent a light ray feature is to use

the color information of light ray of (u, v). Figure 3 (c) shows an
example of in-focus/out-focus assignment based on thresholding
the LRPu,v. The pixel whose LRPu,v is smaller than the threshold
is painted in white color. Compared with Fig. 3 (b), which rep-
resents the ideal output of the scene, we can see that the object
(human) region can be detected. Meanwhile, some pixels on the
out-focus area are also detected. The simple feature such as color
information sometimes make LRPu,v smaller even if the light rays
do not come from the same point. For example, a uniformly col-
ored plane such as a wall, a floor and so on would be misdetected
as shown in Fig. 3 (c).

The proposed method utilizes the light ray texture, whose idea
is inspired by the Local Binary Pattern (LBP) [7]. The original
LBP operator labels the pixels of an image block by thresholding
the neighborhood of each pixel with the center value and consid-
ering the result as a binary number of LBP code (see Fig. 4). The
proposed method takes the similar calculation to acquire LBPP,R

s,t,u,v

by

LBPP,R
s,t,u,v =

P−1∑

p=0

f (gp − gc)2p (4)

*2 Homography is calculated for all the range of d in advance, then we
manually set up the distance from the camera to generate the in-focus
area.
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Fig. 4 An example of Local Binary Pattern.

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 x ≥ 0

0 x < 0
(5)

where gc and gp correspond to the brightness of the center light
ray (u, v) and its surrounding P light rays which are captured in
the same camera (s, t) *3. This kind of rich information is helpful
to reduce the false positive detection (compare Fig. 3 (c) and (d)).

5.3 Light Field Background Modeling
To detect changes on the in-focus area, a background model-

ing based approach is introduced. A light field camera captures
multiple light rays from the same point in the scene, and the cal-
ibration among them is well done to focus on the sensing area
only as mentioned above. Therefore, a background model can be
created for each light ray in principle at the expense of computa-
tional time. The proposed method implicitly utilizes all the rays
to reduce the computational cost for model update, etc. A syn-
thetic aperture image is generated from all the light rays, and the
background modeling is performed by using the pixel value of Xt

of the synthetic aperture image.

P(Xt) =
K∑

k=1

wt
kη(X

t |μt
k,Σ

t
k), (6)

where K is the number of distributions. The variables wt
k, μt

k and
Σt

k are an estimate of the weight, mean value and covariance ma-
trix of the k-th Gaussian in the mixture for frame t, respectively,
while η is the Gaussian probability density function. Each pa-
rameter is updated to adapt to an observed pixel value frame by
frame. According to the change in pixel value, the number of
distributions changes dynamically. For further details of the al-
gorithm, refer to Ref. [8].

5.4 Object Detection in In-focus Area
The proposed object detection integrates two evaluation results

acquired by LRP and background modeling. Light rays from the
object region should have a smaller value of LRPu,v and a smaller
probability of P(Xu,v) (a larger probability of 1−P(Xu,v)). To eval-
uate these conditions, an energy function is defined according to a
Markov random field and a light ray on the basis camera (0, 0) *4

is given a proper label (foreground or background) by minimizing
the energy function. The energy function is defined as follows. To
simplify the notation, the subscripts u, v are replaced by i, and the
notation of time t is ignored.

*3 Note that LBP is calculated in each camera (s, t) independently. Mean-
while, LRP is calculated by integrating the LBPs among the cameras.

*4 The following formula omits s, t to simplify the notation.

Fig. 5 Captured scenes and their overhead views.

E(L) = λ
∑

(i)∈V
G(li|LRPi, Xi) +

∑

(i, j)∈E
H(li, l j|Xi, Xj) (7)

where L = (l1, . . . , l|V|) is a binary label vector, li = 0 and li = 1
denote the background label and the foreground label respec-
tively. V and E represent a set of all rays and a set of four adja-
cent rays respectively. The penalty term G(li|LRPi, Xi) is actually
calculated as

G(li = 0|LRPi, Xi) = f (gi − Th) (8)

G(li = 1|LRPi, Xi) = 1 −G(li = 0|LRPi, Xi) (9)

where Th is a predefined threshold, and

gi =
1 − P(Xi)

LRPi
. (10)

The f (·) is a step function represented by Eq. (5).
On the other hand, the smoothing term H(li, l j|Xi, Xj) is calcu-

lated by

H(li, l j|Xi, Xj) =
1

ln(|Xi − Xj| + 1 + ε)
. (11)

The smoothing term evaluates the similarity of adjacent light rays
to assign the same label if they have a similar feature. The energy
is minimized using a graph-cut algorithm [2].

6. Experimental Results

6.1 Outline
We captured two scenes by ourselves since there is no open

dataset captured by a light field camera. The scenes were cap-
tured by ProFUSION 25 camera at 5 fps. The description of each
scene is as follows (also see Fig. 5 which shows an example shot
and an overhead view of the scene.).
Scene 1 “Entrance of building” includes people moving in-

side/outside of an automatic door. The target is a human
who comes into the building. A human walking outside, a
moving door, etc. are not the detection target.

Scene 2 “Lobby of building” captures the scene from the up-
per floor of the lobby. Moving people appear not only in the
lobby but also in the near distance from the camera. The
target is a human who is walking on the lobby. A human
walking on the upper floor is not the detection target.
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The in-focus area of each scene was manually set up according to
the method in Section 4.

Object detection results of the proposed method were com-
pared with the following two methods.
LRP Foreground/Background is judged by thresholding

LRPu,v.
BM (Background Model) Foreground/Background is judged

by background modeling with a synthetic aperture image.

6.2 Results and Discussion
Figures 6 and 7 show foreground masks for each scene and

Table 1 gives the evaluation results based on precision, recall
and F-measure manner. A value given in bold type is the best
F-measure among the three methods.

With regard to the Scene 1, the proposed method could detect
target regions accurately, which was supported by the fact of a
high precision, recall and F-measure as shown in Table 1. LRP
also detected the target region as well as the proposed method,
meanwhile the wall and floor region were mistakenly detected
because of the same reason mentioned in Section 5.2. Uniformed
texture regions were detected by LRP even using texture informa-
tion. Besides the silhouette of the target was shrunk since the tex-
ture of the target contour involved not only the target region but
also the background region. Such low consistency made LRPu,v

larger, it resulted in the false negative problem. These problems

Fig. 6 Object detection result in Scene 1.

Fig. 7 Object detection result in Scene 2.

Table 1 Object detection accuracy.

Scene 1 Scene 2

Proposed
Precision 0.83 0.17
Recall 0.83 0.78
F-Measure 0.83 0.28

LRP
Precision 0.23 0.01
Recall 0.40 0.54
F-Measure 0.29 0.03

BM
Precision 0.26 0.03
Recall 0.91 0.87
F-Measure 0.41 0.05

were solved in the proposed method by introducing light field
background modeling and MRF based smoothing. The results of
BM were much worse. The biggest factor of low accuracy was
detection of the automatic door. Most of background modeling
approaches have suffered from this problem.

In Scene 2, a person moving in the near distance from the cam-
era was out of target (see the column of ground truth in Fig. 7).
The BM could not regard such a near distance person as out of
target since it just handled temporal changes in the field of view.
Evaluation of the consistency of light rays from the in-focus area
solved the problem in the methods with LRP. The proposed
method furthermore improved the accuracy with the combination
of LRP and BM. The score of precision in Scene 2 was much
worse than in Scene 1 in Table 1. The size of non-target was
much bigger than the target in Scene 2. If each method mistak-
enly detected the non-target region (i.e., a person walking in the
near distance), the precision was drastically reduced eventhough
the target region was correctly detected.

Finally, the current algorithm works at about 3 fps with Intel
Core i7 2.1 GHz processor. There is room for improvement of
the computational strategy, e.g., calculating LRP and LBP by in-
troducing a speed-up technique.

7. Conclusion

This paper discussed object detection based on statio-temporal
light field sensing. Through the experiments, we confirmed that
the proposed method had a new possibility of using light field
sensing for visual surveillance. It easily solves the problems most
traditional methods have suffered from, such as false positive de-
tection of automatic doors.

In future work, further scenes need to be used in evaluating
the proposed method. Besides, some supporting system to make
in-focus area more easily should be considered since the current
system takes much time and energy for the in-focus area setting.
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