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Abstract: In this work we propose a novel method for modeling and synthesizing objects appearance based on
planned sampling. The proposed method can efficiently model the BRDF of an object with uniform and isotropic
reflectance using a small number of light source directions. This is achieved by utilizing together the knowledge of
the object’s shape along with the statistics of various BRDFs. The method considers the shape of the object, compact
basis representing variations in a reflectance dataset, a fixed view direction and all possible light source directions
around the object. Then using an iterative optimization process which simulates the contribution of each light source
in modeling the object appearance, our method identifies the most suitable set of light source directions for efficiently
modeling the BRDF of the object’s material. The selected light sources are then used to acquire actual images of the
object for recovering its reflectance properties. Experiments conducted using several objects with varying shapes and
a small number of light sources optimally selected by the method validate the effectiveness of the proposed approach
in modeling object appearance.
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1. Introduction

Modeling object shape and reflectance is essential for synthe-
sizing the realistic appearance of real world objects. While there
exist several solutions for recovering the shape of the object very
few methods make effective use of it for planned sampling of re-
flectance.

It is well known that the Bidirectional Reflectance Distribution
Function (BRDF) f (θi, φi, θv, φv) can fully characterize the optical
properties of materials effectively. However capturing the BRDF
tends to require dense measurement of objects appearance, and it
is still a challenging task to use a sparse set of images of a given
object with an arbitrary shape for modeling its appearance. In
this work we propose a method for planned sampling of objects
for BRDF modeling using very few images.

Some researchers have proposed efficient measurement meth-
ods by taking objects shape into consideration [6], [7]. However
most real world objects exhibit significant variations in object
shape and reflectance which motivates the need of adaptive sam-
pling strategies for modeling the BRDF of materials comprising
the object using a small number of observations.

In this work our contributions include a new method which
can find the most suitable light source directions for modeling
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the BRDF of materials comprising the object from a fixed view
position thus significantly reducing the effort required for such
measurements. We introduce the idea of using knowledge of ob-
ject shape with the statistics of BRDF dataset for efficient mod-
eling. Besides we present a complete framework for sufficiently
sampling the uniform material comprising the object using as few
light sources as possible in a planned manner.

2. Related Work

Lensch et al. [5] developed an approach for modeling the ob-
ject appearance by clustering various materials comprising the
object and then used the lafortune BRDF model as a fit to the ob-
served samples. Later in Ref. [6] they extended this approach and
developed a method for planned sampling of object appearance
by finding a set of advantageous measurement directions. They
used an uncertainty measure for quantifying suitable directions
based on estimated parameters of lafortune model from observa-
tions which results in incremental learning of the reflectance as
more views become available.

Zickler et al. [7] developed an approach using radial basis func-
tions (RBFs) and reflectance sharing. Their method performs
scattered data interpolation in mixed spatial and angular domain
using RBFs for modeling a nonparametric reflectance function
from a sparse set of images of an object with known shape. They
were able to reduce the desired number of images in case of
objects with uniform materials but stopped short of describing
any principled approach for selecting suitable measurement di-
rections.

Lawrence et al. [10] developed an inverse shade tree framework
for representing and editing non-parametric material BRDFs.
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This framework allowed them to reduce the high dimensional
datasets into a compact representation that can be edited easily.
However their method requires building a regularly sampled data
matrix before factorization can be applied which eventually re-
quires dense sampling of materials under consideration.

More recently Chandraker et al. [8] described a semi paramet-
ric regression based approach for BRDF estimation of objects
composed of uniform materials and showed that BRDF estima-
tion is possible under the limiting case of a single input im-
age. Based on these insights Lombardi et al. [9] developed an
approach for estimating the BRDF for objects with multiple ma-
terials using a parametric reflectance model and Markov Random
Fields (MRFs). Although both of these approaches are fairly at-
tractive however using very few observations often leads to in-
accuracies specially at grazing angles where the behavior of the
observed reflectance changes significantly and too few observa-
tions are often insufficient for modeling a diverse set of materials
accurately.

Ali et al. [11] proposed an optimization method for sampling
the BRDF at a single point on the surface and here we build upon
their work and couple the knowledge of object geometry with
BRDF statistics from a fixed view position for recovering the
BRDF of the materials comprising the object. We propose a prin-
cipled approach for finding the most suitable set of light source
directions and show that by using a small number of images cap-
tured using light source directions suggested by our method it
is possible to recover the bivariate BRDF of the materials, thus
modeling the objects appearance efficiently.

3. Proposed Method

3.1 Reflectance Modeling of Objects
We propose an optimization method for the planned sampling

of objects composed of uniform materials which enables the se-
lection of most suitable set of light source directions for modeling
BRDFs of the unknown materials comprising the object appear-
ance. In our approach, we assume a fixed view direction and a
known object geometry, besides we capture images of an object
by rotating a point light source around it. We propose to consider
the statistics of real-world BRDFs for efficient selection of light
source directions.

3.2 BRDF Statistics
We make use of the MERL BRDF dataset [1], [2] for learn-

ing the statistics of real world BRDFs. There are 100 materials in
this dataset and the measurements were made using Rusinkiewicz
half vector parameterization [4] of the BRDF. In this parameter-
ization four angles are used to describe the BRDF namely: theta
half (θh), theta difference (θd), phi difference (φd) where as phi
half (φh) is not considered for isotropic BRDFs. However it has
been shown previously by Romeiro et al. [3] that the 2D bivariate
approximation of the 3D BRDF is sufficient for modeling vari-
ations in materials as long as the observed radiance shows little
change when the light and view vectors are rotated about the half
vector. This minimization reduces the dimensions of the BRDF
significantly as (θh) and (θd) are only used to describe the BRDF.
The parameterizations are visualized in Fig. 1.

(a) (b)

Fig. 1 (a) Rusinkiewicz, (b) 2D Bivariate parameterization.

Using this representation, the BRDF data corresponding to
all materials is organized in a matrix H preserving the corre-
spondence of angles in bivariate space such that each material is
placed in a different column. The dimensions of H after all mate-
rials are placed in it is X × Y , where X is the number of sampling
directions and Y is the number of materials. Normally BRDF
values of specular and matt surfaces are scaled differently (high
dynamic range). If these values are used with the original scaling
then future analysis will associate more importance to the noise
in specular highlight as compared to non-specular components.
To address this issue, the natural logarithm of all observations in
H is computed.

Then to model the statistics of these existing BRDFs of uni-
form materials we perform Principal Component Analysis (PCA)
of HTH and obtain a compact representation in the form of basis.
Let us represent this compact basis with VK , with K being the
number of basis.

3.3 Optimal Selection of Light Sources
Notations: Let us represent the set of M light sources around

the object with Q = {Q1,Q2, ...,Qm, ...,QM} while set P =

{P1, P2, ..., Pw, ..., PW } contains optimally selected light sources
(empty initially). N represents all surface points of the object
while Sm = {sm,1, sm,2, ..., sm,r, ..., sm,R} represents the visible and
illuminated points of the object for the light source Qm. The ma-
trix GP contains statistics of existing BRDFs collected for the
selected set of light sources in set P.

Next we describe an optimization procedure whose objective
is to find a small set of light source directions around the object
which will then be used for reconstructing complete BRDFs. The
procedure described here will achieve this by simulating the con-
tribution made by each light source in modeling the appearance
of the object using the statistics of existing BRDFs.

Using this procedure we want to build a matrix GP which is a
subset of VK . However unlike VK which contains all sampling
directions (θh, θd) matrix GP only contains samples Sm ⊂ N for
selected light sources. For instance, if an object consists of 100
surface normals then this results in providing 100 different sam-
pling directions for a given light source. The matrix GP will be
used later for linearly reconstructing the BRDF of the unknown
material using a small set of observations which requires that we
build the matrix such that its condition number is minimal.

We intend to select sampling directions from VK for a partic-
ular light source into GP if they decrease the condition number
of the matrix. The condition number is used here as a measure
of uncertainty in modeling the object appearance with a given
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Fig. 2 The overview of the proposed method. Matrix GP is built using a
subset of unique sampling directions from VK by evaluating all light
sources in Q. At the end of the optimization process of Section 3.3
GP contains samples corresponding to the selected light sources in
set P.

light source. It tells us how inaccurate the resulting solution will
be after an approximation using the selected light source and its
corresponding samples in GP is obtained.

The stepwise iterative procedure for selecting light sources is
described below and summarized in Fig. 2.
( 1 ) Choose a light source direction from Q and obtain object

surface points Sm ⊂ N.
( 2 ) Then ∀smr ∈ Sm the local surface angles (θi, φi, θv, φv) are

reparameterized to half angle representation (θh, θd) which
serves as an index into the rows of matrix VK .

( 3 ) Select samples (θh, θd) from VK ∀smr ∈ Sm. These samples
are then placed in matrix GP. The samples from VK for dif-
ferent color channels are grouped one after the other in GP.

( 4 ) Calculate the condition number of GP. The condition num-
ber can be obtained by calculating the ratio of maximum and
minimum Eigen values of GT

PGP.
( 5 ) Repeat steps 1 to 4 for all light sources in Q one at a time.
( 6 ) Select the light source direction which gives the lowest con-

dition number for matrix Gp. Add the light source to the
selected set P.

( 7 ) Update GP to contain unique samples from VK ∀smr ∈ Sm of
the selected set of light sources in P.

( 8 ) Repeat steps 1 to 7 until the condition number of GP can no
longer be minimized after the addition of a new light source
to set P.

This method provides a principled approach for evaluating the
contribution of each light source in modeling the appearance of
objects. At the end of this optimization process a set of most suit-
able light source directions for sampling the appearance of the
object will be obtained in set P and matrix GP will contain the
corresponding samples from VK with a sufficient and optimized
set of constraints for reconstructing the unknown material effec-
tively. Figure 3 shows a plot of condition number for several
objects as it decreases with the selection of more light sources.

3.4 Discussion
In Section 3.5 matrix GP will be used for the reconstruction of

the BRDF of materials comprising the object and is involved in
inversion in a linear system. Therefore the choice of condition
number for obtaining an optimized set of samples in GP emerges

Fig. 3 The decrease in condition number for several objects used in the
experiments is shown as more light sources are selected. It can be
observed that no change in condition number occurs after a small
number of light sources ranging from 5-9 are selected.

to minimize the uncertainty in modeling the object appearance for
a given light source. It provides a metric which without making
any new measurements can tell when the linear system is stable
enough to be solvable reliably. Besides, it estimates the sensitiv-
ity of the output to a small change in input which is essential to
the minimization of modeling error of the BRDF of an unknown
material using the light sources in set P.

Moreover the light source directions selected by this procedure
are based on the statistics of a diverse set of materials including
numerous commonly found materials therefore it can generalize
well for modeling the appearance of the same object even when
it is composed of different types of materials.

Further, a light source is selected based on the criteria of the
minimum condition number of GP. Given a fixed view, a light
source direction and an object shape the resulting samples (θh, θd)
selected from VK will always be the same. Based on this when
the first light source in selected into P the corresponding matrix
GP will give some condition number for samples of every eval-
uated light source direction. Among them the minimum value
will be the same and will result in the selection of the same light
source direction irrespective of how many times this procedure is
repeated.

This same principle applies to the selection of other light
sources. Repetitive selection and addition of samples for differ-
ent light sources based on minimum condition number than the
previous iteration leads to a continuous decrease in the condtion
number of matrix GP. This condition number eventually comes
closer to one as indicated in Fig. 3 thereby guaranteeing the con-
vergence of GP to an optimized set.

Besides it must be mentioned explicitly that the procedure de-
scribed above is a simulated run and does not need actual mea-
surements to be made as it evaluates light sources using existing
BRDF measurements.

3.5 Reconstruction of BRDF Using Selected Light Sources
We capture the images of the object using selected light source

directions and then reconstruct the BRDF of the material. For
reconstruction, the linear system of equations needs to be estab-
lished appropriately and the simplistic formulation using basis
can be expressed as:
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VKc +m = b (1)

where c represents the coefficients vector, b is the newly acquired
material sample and m is the mean vector of H.

However while selecting the light sources we simultaneously
built the matrix GP containing sample from VK for all light
sources in set P. Let us update our linear system to reflect this
as:

GPc +mP = bP (2)

where bP contains actual measured pixel values of the object ac-
quired using selected light sources in set P, mP contains the mean
of H corresponding to the selected sampling directions of GP.

The organization of samples in bP follows a similar arrange-
ment to that of GP. The only unknown in Eq. (2) is c and solving
for it involves taking the pseudo inverse of matrix GP. The system
of equations with this modification can be expressed as:

c = (GT
PGP)-1GT

P(bP −mP) (3)

After calculating the coefficient c the BRDF of the material com-
prising the object can be reconstructed using Eq. (1) treating vec-
tor b to be the only unknown. While performing the reconstruc-
tion, all color channels are treated independently and separate re-
construction is performed for each of them.

4. Experimental Results

In order to evaluate the effectiveness of the proposed method,
experiments are conducted using several objects such as: Bud-
dha, Bunny, Dragon, Person Head, Teapot and Sphere. Some of
these objects are shown in Fig. 4. MERL dataset [2] is used in
these experiments which covers numerous commonly found ma-
terials i.e., plastic, metals, fabrics, wood and rubber. We calculate
the percentage error (RMS/L2 Norm) metric between the actual
measured BRDF and the reconstructed BRDF using the selected
light sources.

We use 1,000 light sources distributed randomly around the
object for analysis and a value of K = 45 is used as these basis
capture more than 99% of the variance in the dataset thus rep-
resenting the diverse materials compactly. Using a very small
value of K can adversely affect the reconstruction of matt surfaces
which have a smaller magnitude as the basis representation will
treat such values as insignificant components. Further, in order
to perform an unbiased evaluation, the dataset is divided into two
groups i.e., a basis set and a test set of materials. The basis set has
80 materials while the test set contains 20 materials. All materi-
als are randomly distributed among the two sets. Further 10 such
random configurations are constructed and the results presented
in Table 1 are averaged for all such groupings.

(a) (b) (c) (d) (e)

Fig. 4 Some of the objects used for experiments (a) Buddha (b) Bunny (c)
Human Head (d) Dragon (e) Teapot.

Table 1 summarizes the results for several objects. For each
model we evaluate the performance using two sets of selected
light sources. We also compare the performance of informed se-
lection using the method of Section 3.3 with that of the random
selection. Since random results vary over multiple runs we re-
port the mean and standard deviation obtained over several runs.
For the Buddha and Bunny models, 7 light sources are selected
and it can be seen that no significant change in error occurs for
informed selection as the number of light sources is increased to
9. Likewise for the Dragon, Teapot and Sphere objects no sig-
nificant change in error is observed with the addition of 2 more
lights sources. However in case of the Head object we do observe
an improvement when the number of light sources is increased
from 5 to 7.

It must be mentioned explicitly that the second set of light
sources for all objects in Table 1 is deemed most suitable by the
method of Section 3.3. However we select even fewer sources
taking into account a relatively small change in the condition
number with increasing light sources. This effect is also quite
evident in Fig. 3. We need more light sources for modeling the
BRDF of teapot model because its 3D model has only 1,195 ver-
tices compared to 32,458 for buddha and 35,432 for the bunny
models. The human head model is also relatively sparse with
4,540 vertices. The results for random selection for the sphere
object are closer to informed selection because this shape does
not exhibit directionality and the smoothly varying surface cre-
ates enough distinct normals and is less dependent on the direc-
tionality of light sources due to its similar curvature at all angles.

Besides, the object geometry does influence the required num-
ber of light sources for an object. However for a given light
source, the variations in surface normals provide different (θh)
values while different light source directions provide variations
in (θd). If an object exhibits fewer variations in surface normals
i.e., (θh) then it will require more observations for reliable recon-
struction. Considering this the difference in the number of light
sources which define (θd) should not be significantly large for dif-
ferent shapes and the same phenomenon is exhibited in the results
in Table 1.

Finally we provide detailed results in Fig. 5 for all 100 mate-
rials from the MERL dataset and compare it with bivariate ap-

Table 1 Detailed experimental results for several objects.

Model
Name

Selected
Light

Sources

Percentage
Error

Informed
Selection

Percentage
Error

Random
Selection

Std. Dev.
Random

Sel.

Buddha 7 4.47 9.1 1.8
9 4.31 8.17 1.73

Bunny 7 4.67 9.36 1.92
9 4.27 7.65 1.73

Dragon 5 4.95 10.1 2.3
7 4.45 8.81 2.12

Head 5 5.62 11.2 2.7
7 4.83 9.8 2.25

Teapot 9 4.91 11.5 2.98
11 4.72 9.2 2.43

Sphere 5 4.97 7.95 1.63
7 4.48 7.26 1.1
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Fig. 5 Reconstructed BRDF using different models is compared with bivari-
ate approximation and all samples and 45 basis for all 100 materials.
The number in brackets indicates the number of light sources used
for the reconstructions.

(a) (b)

Fig. 6 (a) Original Measured BRDF (yellow phenolic) (b) Reconstruction
using 7 light sources for the bunny model.

proximation and all samples. As we select light sources based
on the properties of various materials and not for a specfic mate-
rial, the estimated BRDF and bivariate results appear correlated.
Besides, visual renderings for the reconstructed BRDF using the
bunny model and an environment map are shown in Fig. 6. The
environment map for this rendering is used from Debevec [12].
This demonstrates that a small number of light source directions
selected in an appropriate manner can yield fairly good recon-
structions of the BRDF from diverse object shapes.

5. Conclusion

In this paper we proposed a new method for modeling the
BRDF of the uniform materials comprising the objects appear-
ance using a small number of light sources with a fixed view di-
rection. Our method achieved this by evaluating the contributions
made by different light sources in modeling the object appearance
using statistics of existing BRDFs. The detailed experimental re-
sults conducted on several objects with diverse shapes using the
MERL BRDF dataset validate the effectiveness of the proposed
method compared to random selection. In future we plan to ex-
tend this to objects with spatially varying BRDFs in an appropri-
ate manner.
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