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Abstract: In this paper, we propose a novel local image descriptor DoP which is termed as the difference of images
represented by polynomials in different degrees. Once an interest point/region is extracted by a common image detec-
tor such as Harris corner, our DoP descriptor is able to characterize the interest point/region with high distinctiveness,
compactness, and robustness to viewpoint change, image blur, and illumination variation. To efficiently build DoP
descriptor, we propose to numerically reduce the computational cost by jumping over the repeatedly calculating poly-
nomial representation. Our experimental results demonstrate a better performance compared to several state-of-art

candidates.
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1. Introduction

1.1 Motivation and Related Work

Local image feature extraction, including the techniques on
detection and description, has attracted the attention of vision
researchers, since it often plays an essential role in various ap-
plications such as object recognition, 3D reconstruction, image
retrieval, robot localization, and video data mining.

Many modern detectors have been developed for extracting in-
terest points or regions of an image, e.g., the popular ones be-
ing Harris corner [6], Harris-affine, Hessian, Hessian-affine [15],
SIFT[11], SURF[1], MSER (Maximally stable extremal re-
gions) [13], salient region detector[8] and Critical Nets fea-
tures [5].

Descriptors are developed for the remaining question how
to characterize interest points or regions distinctively and ro-
bustly. Four types of descriptors have been described in the liter-
ature [2], [9]: 1) Distribution-based descriptor: spin image John-
son and Hebert [7], SIFT descriptor [11], Shape context[2]. ii)
Differential-based descriptor: Gaussian derivatives and complex
filters [4], steerable filters [4], SURF descriptor [1]. iii) Learning-
based descriptor: one-shot approach [3], Randomized Trees [10].
iv) Others: Generalized moment invariants [18].

Polynomial representation has the potential for describing lo-
cal images, which has been previously validated by Savitzky-
Golay Filters [16] for 1D/2D signals. However, this technique
often faces problems such as image smoothing, but has not been
designed for feature description. On the other hand, beyond the
explicit representation of polynomials, various properties of im-
plicit polynomial have been explored in literals [17], [19]. The ar-
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eas include fast linear fitting, few coefficients, robustness against
noise, etc, but the implicit representation seems only designed for
shape description.

1.2 Contribution

In this paper, we present a novel differential based descriptor
by taking advantages of the difference of polynomial representa-
tion for local images. To achieve that, we first explore the theory
that explicitly represents local image patches using polynomials
with various degrees. Then we propose a fast method to calculate
the differences of these polynomial representations for character-
izing the features of local images.

Over the state-of-the-art descriptors, the main contributions of
our method are: 1) it is more robust for repetitive regions, image
blur, illumination change, and view variation; 2) it is computa-
tionally efficient due to the avoidance of a strict polynomial fit-
ting process and it is independent of the image data; 3) our feature
vector is relatively in low dimension, which would be helpful for
real-time applications.

2. Difference of Polynomial Representation

As shown in Fig. 1, our method characterizes a local interest
region of an image with differences of polynomial representation
(DoP) in three levels: 1) representing the region with polynomi-
als in different degrees, 2) calculating the representation errors
by subtracting the original region from the polynomial represen-
tation, and 3) successively subtracting the representation errors in
a degree-increment manner.

2.1 Polynomial Representation

Given an interest region € detected by detectors, a point set of
2D pixels in the region: {X, I(xk)},’f:l, x; € Q, where I(xy) is the
image intensity at location X;. Then, a polynomial can be used to
approximate this point set as:
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where f is a polynomial of n degree, x; = (xz,yx)" is 2D lo-
cation, and my(x) = x'y/ is called monomial function accom-
panying with coeflicient a;. The relationship between indices
[ and {i, j} are determined by the inverse lexicographical order:
(i+j+é)(i+j)

l=j+ + 1, and thus for an n-degree polynomial there

are n + w + 1 monomial terms in Eq. (1).
Then the representation accuracy can be evaluated by formu-

lating the approximation errors with mean squares errors (MSE):
1 &
- N )2
E=+ ’E:l(l(xz) F&x)). @)

Figure 1 shows an example that an interest region can be approx-
imated by several polynomials and where the operation of & is
defined in Eq. (2).

2.2 Least-square Solution
In general, building this representation for a local region can
be regarded as a linear least-square problem formulated as

a=M"M)"'M"1, (3)

where a is the unknown coeflicient vector; M is a d X N matrix
whose I-th column my is (m;(x;), mi(X2), . .., my(x,))"; and I is a
vector whose k-th entry is 1(xy).

After solving out coefficient vector a, we obtain the approxi-
mated representation for a local image: Ma ~ I. Thus, the repre-
sentation error Eq. (2) can be rewritten as:

1
E@@) = — || Ma-T1|P
(a) 7 [ Ma-T1]|
1
= E(aTMTMa —2a"TMTT +I'D). 4)

2.3 Difference of Polynomial (DoP)

We define the Difference of polynomial (DoP) as the subtrac-
tion between the representation errors under different polynomi-
als of different degrees, i.e.,

ds— = |E(ay) — E(ay)l, &)

where a; and a, are the optimized coefficient vectors of the poly-
nomials of the s-th and 7-th degrees respectively. Note, in this
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paper, as shown in Fig. 1, we adopt a successive way to calculate
DoP, i.e., |E(ag-1)) — E(a,)|.

3. Efficient Calculation of DoP

The problem of calculating DoP with Eq. (5) is that coefficient
vectors a, and a, are necessary to be solved out in advance. How-
ever huge computational costs arise here, if the linear equations
of Eq. (3) need to be solved many times for obtaining polynomi-
als of different degrees. In this section, we present an efficient
method which can ignore the strict calculation of polynomial co-
efficient vectors.

3.1 Representation Error by N-O-subspace

First before we calculate representation error using Eq. (4), we
carry out QR decomposition on matrix M: M = QR, where Q is
an orthonormal matrix and R is an upper-triangular matrix.

Suppose the i-th columns of M and Q are m; and q;
respectively, QR decomposition can be interpreted as that
the original image patch represented by polynomial subspace
{m;,my, -+ ,my} can be transformed by a orthogonal projec-
tion to be represented by a orthonormal subspace {q;, q,, - - , qy}
termed as N-O-subspace. Thatis, I = Ma — I = Qa, where
a=Raandalsoa = Q'L

Now we can re-calculate the MSE in Eq.(4) by subsisting
M =QR,a=Q"Tand 4 as:

1 1
E@=—|Ma-1|P=— | Qa—1|>
@ =2 IMa-T|"= [l Q4 -1
1
=—@" Q"0 a-2a" Q' +I'D
K° == =~
=I(Identity) =a
1
=—(ITIP-1alP. 6
UL = 1T (©)

3.2 DoP by N-O-subspace
Then to calculate Eq. (5), it can be simplified to

1
di-e = E(a;) — E@a)l = Il & I? =114, 1), N

where 4; and 4, are the coefficients according to s-O-subspaces
and t-O-subspaces respectively. Suppose s < f, then
s-O-subspaces is span{q;, (s, ..

span{q;,qy,-..,q;, - --

S S < LS oty
dyy = K(;m,- n ;mi D=2 D@y ®

i=s+1

.,q ), and -O-subspaces is
,q,}. Therefore,

3.3 Feature Vector

In this paper, we choose a successive way for obtaining feature
vector by DoP, that is, the feature vector v can be taken as the
square root defined as:

F = (dg-yrdig e ndiy_ ) )"

= (@ LgL....qyD" ©)

Thus our DoP feature vector can be simply calculated using

Algorithm 1.

3.4 Fast Implementation
Given an image, there are multiple interest regions extracted.
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(a)

Fig. 2 Image matching results. 1st row: Wall scene with view angle changes and highly repeatable re-
gions. 2nd row: Wall scene with view angle changes. 3rd row: trees scene with image blur. 4th
row: building with illumination changes. 5th row: images with JPEG compression noise. 6th row:
Google earth scene by view angle changes. Column (a) DoP, (b) SIFT, (c) SURF descriptor.

Algorithm 1: DoP feature extraction
1 Input: alocal image patch {x;, I}y,
2 Output: feature vector ¥

3 Calculate matrix M from coordinates {x;};
4 Carry out QR decomposition on matrix M: (Q,R) « M,
5 Calculate F with {/;} by Eq. (9);

Algorithm 2: Accelerated Implementation
1 Input: fixed-size image patches {P;}Y,, each P; = {xi, I{}
2 Output: feature vectors {?}}fi .
3 Initialization: Carry out QR decomposition on matrix M,
(Q,R) « M, using fixed point coordinates
4 fori=1,2,...,.Ndo
5 Calculate 7; with {I{} by Eq. (9)
6 end

The number are according to the feature detector and input data.
However, according to Algorithm 1 (in line 4), for each region,
it is required to carry out QR decomposition on each matrix M,
which is too time-consuming. Fortunately, we observe that OR
decomposition is independent to image information, since it is
only related to coordinate information of region data points and
each local coordinate can be centered by the center of region.
Therefore, we derive an accelerated method in Algorithm 2 (with
fixed region size). Compared to Algorithm 1, Algorithm 2 re-
duces the computation of QR decomposition in each loop.

4. Experimental Results

We qualitatively evaluate our method in terms of image match-
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ing robustness to 1) view change, 2) image blur, 3) illumination
change, and 4) noise caused by JPEG compression. All these
evaluations are based on two real image datasets: 1) Oxford affine
covariant regions datasets and 2) synthesized image dataset by
Google earth. We evaluate the descriptors on real images with
different geometric and photometric transformations and for dif-
ferent scene types. The pairs of images shown in Fig. 2 are some
examples of the datasets with different view angle change, blur,
illumination change and noise.

In all of our experiments, without loss of generality we choose
one of the simplest feature detectors, Harris Corner detector [6].
And the interest region is defined as a fixed size neighborhood of
61 x 61 pixels centered at a Harris corner point. For comparison,
we compare our method to the descriptors employed in SIFT [12]
and SURF [1] which are most commonly used and have become a
standard of comparison. We select five versions of our descriptor
termed 4-degree EP, 8-degree EP, 12-degree EP, 0-2 degree EP
and 0-4 degree EP with the vector dimension of 80, 144, 208, 96
and 240 respectively (compared to SIFT: 128 and SURF: 64).

In our experiments, we use nearest neighbor distance ratio
matching [14] and our criterion is based on recall vs. (1-precision)
evaluation. Recall is defined as:

#correct matches

recall = —M8M8MMM
#correspondences

Then the number of false matches relative to the total number of
matches is represented by 1-precision:
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Fig.3 Graph of recall vs. 1—precision: (a)-(e) are corresponding to the image pairs in the 1st-5th rows of

Fig. 2.
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Fig. 4 Evaluation using Google Earth sequence (example shown in bottom
of Fig. 2) with viewpoint from —60 degree to 60 degree.

#false matches

1 — precision =
p #correct matches + #false matches

Also we design recognition rate vs. viewpoint graph on Google
earth image dataset by let

recognition rate = recall||7=;.

We evaluate our method based on the following aspects:

Affine Transformation The top two rows of Fig. 2 and Fig. 3 (a)
and (b) show the result on images with view angle changes from
30 to 50 degree. The top row of Fig.2 is one of the scene in
“Wall sequence” with repetitive textures; and the second row is a
structured scene selected from “Graf sequence.” In each of them,
the left image is with viewpoint of 30 degree, and the right is 50
degree. The results in Fig. 3 (a) and (b) show that 8-degree and
4-degree descriptors perform better than others.

And the results of another evaluation, comparing the recogni-
tion rate on images with different viewpoint on Google Earth im-
ages, is showed in the bottom row of Fig.2. The view angles of
Google Earth images vary from —60 to 60 degree. In this case, we
employed 4-degree descriptor to compare with SIFT and SURF.
As shown in Fig. 4, our descriptor performs better than others and
SURF shows a little better than SIFT.

Image Blur In this experiment, we test the performance on image
blur which is caused by variation of camera focus. The third row
of Fig.2 shows the example selected from “tree” sequence, and
Fig. 3 (c) shows the corresponding recall vs. 1-precision graph.
It shows the result that all the versions of DoP descriptors show
much better performance than SIFT and SURF.

Ilumination Changes Illumination change is a common image
degradation, which can be introduced by variation on weather,
light source or camera shutter. The forth row in Fig. 2 shows the
results for some images taken with different camera settings. In
Fig.3(d), 12-degree and 8-degree descriptor shows the best per-
formance. This implies that illumination change might just cause
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Fig.5 Other matching results. DoP result: (a), (), (¢) and (g). SURF result:
(b), (d) and (f).

the signals with low frequency, but which might not be sensitive
to high-degree polynomial descriptors.

JPEG Compression We evaluate the influence of JPEG com-
pression by a building sequence, as shown in the fifth row of
Fig.2 and Fig.3 (e). In this case SIFT performs best, and our
descriptor of 0-4 degree performs as second best, and it seems
that the higher degree, the lower the performance is. The rea-
son might be that the most influenced by JPEG compression are
some high frequency signals which are sensitive to high degree
descriptors.

Other comparable examples We show some other comparable
results in Fig. 5, in which image data are collected from Internet
and omni-camera. Our method shows better performance than
SUREF descriptor in these cases.

5. Discussion

We have presented a novel local image feature descriptor using
DoP which shows better performance in various image matching
cases except JPEG compression. Under Harris corner detection,
our descriptor seems more robust against low-frequency signal
variation such as the viewpoint, blur and illumination changes,
compared to SIFT and SURF. In future direction, we will evalu-
ate the performance under different detectors, e.g., DoG, MSER,
etc. Our method also shows the potential capability for appli-
cations such as image retrieval, 3D reconstruction, or panoramic
image matching as shown in Fig.5. The convenience of GPU
implementation should be also attractive in our future direction.
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