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Abstract: We propose a new method that efficiently and accurately estimates the parameters of the Gaussian function
that describes the given local image profiles. The Gaussian function is non-linear with respect to the parameters to be
estimated, and this non-linearity makes their efficient and accurate estimation difficult. In our proposed method, the
weighted integral method is introduced to linearize the parameter estimation problem: A system of differential equa-
tions is firstly derived that is satisfied by the Gaussian function and that is linear with respect to the parameters. The
system is then converted to that of integral equations. Given a local sub-window of the image, one can obtain the sys-
tem of integral equations and estimate the parameters of the Gaussian that describe the appearance in the sub-window
by solving the linear system of the parameters. Experimental results showed that our proposed method estimates the
parameters more efficiently and accurately than existing state-of-the-art methods.
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1. Introduction

1.1 Background
Edges are classical but still important primitives for describ-

ing local image appearance [4], [9]. In the framework proposed
by Zhu et al. [12], local image appearances are divided into two
classes: primitives and textures. The former ones are defined as
the local appearances that can be represented by explicit model
functions, e.g., the Gabor functions or the Gaussian ones. An ex-
plicit model function has a set of parameters, and the given local
appearances can be described by estimating the values of these
parameters. The objective of this study was to develop an accu-
rate and efficient method for describing local image appearances
with the Gaussian model function.

The Gaussian function is widely used as the explicit model
function. It has a scale parameter, of which the value can be es-
timated to describe the blurring scale at each location in given
images. Such descriptions of the blurring scales are required
for many applications, e.g., image matting [11], moving object
detection [5], image enhancement [3], and 3D-shape reconstruc-
tion from defocus [6], [10]. Many methods, hence, have been
proposed for estimating the blurring scale at each location in
the given images. One of the main difficulties of the estimation
comes from the non-linearity of the Gaussian: It is a non-linear
function of the parameters.

1.2 Parameter Estimation Problem
Let G(m) denote a model function, where m is a vector, of

which the components are the parameters to be estimated. Let d
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denote measurements. The model function represents the obser-
vation as follows [2]:

G(m) + ε = d, (1)

where ε denotes the measurement noises. When ε obeys the
i.i.d. Gaussian, the ML estimate, m̂, can be obtained by mini-
mizing the squared errors:

m̂ = arg min
m

E(m), (2)

where E(m) = ‖G(m) − d‖2. It is not easy to accurately and
efficiently solve the above problem, when G(m) is non-linear:
The iterative minimization process is required for computing
m̂. Many parameter estimation methods, including the Fourier
analysis for frequency estimation, prepare a set of paramters,
M = {mi|i = 1, 2, . . . ,M}, computes E(mi) for each mi ∈ M,
and selects the minimizer, m̂ = arg minmi∈M E(mi). It is easier,
on the other hand, to solve the problem, when G(m) is linear:
G(m) = Am. The minimizer can then be computed as m̂ = A−d.

In this study, in order to linearize the parameter estimation
problem, we introduce a weighted integral method proposed by
Ando et al. [1], which was developed for accurately and effi-
ciently estimating the frequencies of temporal signals. Let m and
φ denote the angular frequency and the phase of a signal. The
model function of time, f (t|m) = A cos(mt+φ), is non-linear with
respect to m, which is the parameter to be estimated. The Fourier
analysis or the wavelet one estimates m as described above: The
frequency, mi ∈ M, that minimizes the squared errors, E(mi), is
searched. In the weighted integral method, on the other hand, a
linear equation of m is derived from a differential equation that
is satisfied by f (t|m), and the frequency is efficiently and accu-
rately estimated by solving the equation. The details of the frame-
work will be shown in the following sections. In this paper, the
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weighted integral method is expanded for 2D image signals, and
is applied for the parametric edge description.

2. Weighted Integral Method

Let I(x, y) denote a given image, and let f (x, y) = ‖∇I(x, y)‖.
LetΩ(x, y) denote a small L×L window, of which the center is lo-
cated at (x, y) in the image, and let (u, v) be the local coordinates
in Ω(x, y). Given f (u, v) where (u, v) ∈ Ω(x, y), the proposed
method estimates the values of the parameters in the following
Gaussian function (see also Fig. 1):

N(u, v|m) = A exp{−(u cos θ + v sin θ − μ)2/2σ2}, (3)

where the parameters to be estimated are m = [θ, σ2, μ]T . The
function, N(u, v|m), is non-linear with respect to m.

Using the weighted integral method, one can linearize the prob-
lem. If f (u, v) can be described by the model function shown in
Eq. (3), the following differential equations are satisfied at all lo-
cations in Ω:

∂ f (u, v)
∂u

= (q10u + q01v + q00) f (u, v), (4)

∂ f (u, v)
∂v

= (r10u + r01v + r00) f (u, v), (5)

where q10 = − cos2 θ/σ2, q01 = r10 = − cos θ sin θ/σ2, r01 =

− sin2 θ/σ2, q00 = μ cos θ/σ2, and r00 = μ sin θ/σ2. It should be
noted that the above equations are linear with respect to qst and
rst, which are the functions of the parameters. The values of u, v,
∂ f /∂u, ∂ f /∂v, and f (u, v), are directly determined at each loca-
tion in Ω from the input signal, f (u, v). The objective here is to
estimate the values of the five unknowns, qst and rst (it should be
noted that q01 = r10). Once those values are estimated, then, one
can easily compute the values of m.

One can obtain two equations at each pixel, (u, v) ∈ Ω. Solv-
ing the system of 2 × L × L equations obtained from all of the
pixels in Ω, one would be able to obtain the estimates of qst and
rst. The resultant estimates, though, are not accurate, because the
values of the coefficients, ∂ f /∂u, ∂ f /∂v, and f (u, v), are perturbed
by measurement noises. The weighted integral method converts
those differential equations into integral ones, in order to improve
the accuracy. From Eqs. (4) and (5), one can obtain the following
equations:
∫
Ω

{
∂ f
∂u
−(q10u+q01v+q00) f (u, v)

}
w(u, v)dudv=0, (6)

∫
Ω

{
∂ f
∂v
−(r10u+r01v+r00) f (u, v)

}
w(u, v)dudv=0, (7)

Fig. 1 A window, Ω, indicated by a blue rectangle, and the parameters to be
estimated.

where w(u, v) is a weight function defined on Ω. The above equa-
tions are satisfied for any weight function, w(u, v), if and only if
Eqs. (4) and (5) are satisfied at all locations in Ω.

Let

w(u, v) = p(u)p(v)e− j(ωuu+ωvv), (8)

where p(·) is a smooth window function that satisfies p(·) = 0
at the boundary of Ω (e.g., you can use the Hann window func-
tion for p(·)), and ωu = 2πNu/L and ωv = 2πNv/L (Nu and Nv
are integers). It is necessary that the equations in Eqs. (6) and (7)
are satisfied when the weight function in Eq. (8) is substituted, if
Eqs. (4) and (5) are satisfied at all locations inΩ. Integrating each
term in Eqs. (6) and (7) by parts, one can obtain the following lin-
ear equations:

g10q10 + g
01q01 + g

00q00 = hu − jωug
00, (9)

g10q01 + g
01r01 + g

00r00 = hv − jωvg
00, (10)

where

gst ≡
∫
Ω

usvt f (u, v)w(u, v)dudv, (11)

hu ≡
∫
Ω

f (u, v)
∂p(u)
∂u

p(v)e− j(ωuu+ωvv)dudv, (12)

hv ≡
∫
Ω

f (u, v)p(u)
∂p(v)
∂v

e− j(ωuu+ωvv)dudv. (13)

The coefficients, gst, hu, and hv, are complex numbers, and the
system of the linear equations shown in Eqs. (9) and (10) consists
of four equations with real number coefficients. Let the real part
and the imaginary part of a variable y be denoted by yR and by
yI, respectively. Then, the equations shown in Eqs. (9) and (10)
can be represented as follows:

Aq = b, (14)

where q = [q10, q01, r01, q00, r00]T ,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g10
R g01

R 0 g00
R 0

g10
I g01

I 0 g00
I 0

0 g10
R g01

R 0 g00
R

0 g10
I g01

I 0 g00
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hu
R + ωug

00
I

hu
I − ωug

00
R

hvR + ωvg
00
I

hvI − ωvg00
R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(15)

The accurate values of these coefficients, A and b, can be obtained
stably, because the weighted integration suppresses the effects
of the measurement noises. One can vary the weight function,
w(u, v), by changing the values of ωu and ωv, and can obtain the
system of four linear equations shown in Eq. (14) for each weight
function. We need more than one weight function for determin-
ing the values of the five unknowns, q, uniquely. Let Ai and bi

denote the matrix and the vector obtained by using the i-th weight
function, wi(u, v) (i = 1, 2). Let

A =

⎡⎢⎢⎢⎢⎣A1

A2

⎤⎥⎥⎥⎥⎦ and b =

⎡⎢⎢⎢⎢⎣b1

b2

⎤⎥⎥⎥⎥⎦ . (16)

Then, the values of q can be computed by solving the linear sys-
tem, Aq = b for each window, Ω(x, y).
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3. Experimental Results

3.1 Experiments with Artificial Images
The performance of the proposed method was evaluated by us-

ing artificial images. Fixing the scale as σ = 5, we generated
artificial Gaussian input signals, f (x, y), with various directions,
θ. Some examples of the generated images are shown in Fig. 2.

The window size for the proposed method was fixed at L = 10.
Two weight functions, w1(u, v) and w2(u, v), were used for ob-
taining the values of the parameters for each window. We set
(Nu,Nv) = (1, 1) for w1(u, v) and (Nu,Nv) = (1,−1) for w2(u, v).
Figure 3 shows the appearances of the weight functions. As
shown in the figures, the directions of the waves are orthogonal
to each other. We computed the estimates as q̂ = A−b, where A−

is the generalized inverse matrix of A.
The graph shown in Fig. 4 shows the result. In the graph, the

x-axis indicates the true values of θ, and the y-axis indicates the
estimated values, θ̂. The colors, red, green, and blue, correspond
to the SN ratios,∞ dB, 60 dB, and 40 dB, respectively. As can be
seen in the graph, the estimates were almost unbiased, though the
variances of the estimates increased as the SN ratio decreased.

The performance of the estimation of σ2 was then evaluated.
Fixing the direction as θ = 0 and the window size as L = 10, we
generated a set of test images as shown in Fig. 5 and estimated
the scale, σ, for each of the test images. The performance was
compared with a multi-scale analysis [8], which is not new but
is one of the most reliable methods for the blurring scale esti-
mation. In the multi-scale analysis, the input signal is iteratively

θ = 0 θ = π/16 θ = π/8 θ = 3π/16 θ = π/4

Fig. 2 Examples of artificial images for evaluating the performance of the
estimation of θ.

Real part Imaginary part Real part Imaginary part
w1(u, v) w2(u, v)

Fig. 3 Two complex weight functions used in the experiments reported in
this article.

Table 1 Performance comparison between the proposed method and the multi-scale analysis [8]. In the
experiments, SNRs of the input images were∞ dB and 40 dB, and the window size was L = 10.
In each cell, Percent Bias (PB) [%] and Relative Standard Deviation (RSD) [%] are indicated.

L/σ̄ = 15 L/σ̄ = 10 L/σ̄ = 15/2 L/σ̄ = 6 L/σ̄ = 5 L/σ̄ = 30/7
PB RSD PB RSD PB RSD PB RSD PB RSD PB RSD

Multi-scale ∞ dB 6.07 0.00 0.00 0.00 1.55 0.00 1.00 0.00 0.00 0.00 0.51 0.00
analysis [8] 40 dB 3.68 10.80 1.65 6.35 1.03 5.05 0.52 4.39 0.37 3.97 0.25 3.59

Proposed ∞ dB −14.35 0.00 −3.52 0.00 −0.78 0.00 −0.36 0.00 −0.11 0.00 −0.32 0.00
method 40 dB −8.85 2.74 −2.10 1.39 −0.35 1.10 −0.24 1.06 −0.06 1.14 −0.32 1.31

L/σ̄ = 15/4 L/σ̄ = 10/3 L/σ̄ = 3 L/σ̄ = 30/11 L/σ̄ = 5/2 L/σ̄ = 30/13 L/σ̄ = 15/7 L/σ̄ = 2
PB RSD PB RSD PB RSD PB RSD PB RSD PB RSD PB RSD PB RSD

∞ dB 0.39 0.00 0.00 0.00 0.25 0.00 0.21 0.00 0.00 0.00 0.15 0.00 0.13 0.00 0.00 0.00
40 dB 0.22 3.41 0.21 3.24 0.23 2.99 0.18 2.81 0.08 2.71 0.12 2.66 0.15 2.48 0.07 2.34

∞ dB −0.54 0.00 −0.27 0.00 −0.48 0.00 −0.48 0.00 −0.66 0.00 −0.68 0.00 −1.08 0.00 −0.80 0.00
40 dB −0.51 1.54 −0.23 1.80 −0.43 2.14 −0.39 2.55 −0.57 2.30 −0.52 3.49 −0.87 3.98 −0.42 4.66

blurred by the Gaussian function with a small scale for blurring
the input signal with various scales, t. Then, the scale-normalized
curvature, κ(x, y; t), of the image profile is computed at each pixel
at each blurring scale, and the scale, t̂(x, y), at which |κ(x, y; t)| is
local maximum with respect to the scale change is selected for es-
timating the blurring scale, σ̂2(x, y) = t̂(x, y). For computing the
scale-space in the experiments, we employed the algorithm de-
scribed in Ref. [8]: The solution of the heat equation for a given
image is computed by convolving a 3 × 3 isotropic filter, itera-
tively. It is known that this computation method is time consum-
ing but generates no false critical points [8].

Table 1 presents the results. As shown in Table 1, the per-
formances of two methods were comparable. Though, as shown
in Table 2, the computation times of the proposed method were
much faster than those of the multi-scale analysis, which is very
time-consuming because of the iterative convolution of the filter.

Fig. 4 Estimation accuracy of θ with respect to SN ratio of input images.
Red: ∞ dB, Green: 60 dB, and Blue: 40 dB.

σ = 2/3 σ = 1 σ = 4/3 σ = 5/3 σ = 5

Fig. 5 Examples of artificial images for evaluating the performance of the
estimation of σ.

Table 2 Comparision of computation time for processing 1,000 images.

Computation Time

Multi-scale analysis [8] 137 min. 34.0 sec.
Proposed method 8 min. 43.2 sec.

c© 2013 Information Processing Society of Japan 72



IPSJ Transactions on Computer Vision and Applications Vol.5 70–74 (July 2013)

Fig. 6 Relationship between the estimaes of σ and the ratio, L/σ̄ (σ̄ = 5.0
in the experiments). Red: ∞ dB, Green: 60 dB, and Blue: 40 dB.

(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J)

Fig. 7 Examples of I(x, y) and the input signal, f (x, y).

Fig. 8 Examples of f (u, v) and the reconstructed signals. Top and bottom
are the results obtained at the red and the green rectangles shown in
Fig. 7 (B), respectively.

When the SN ratio of a given image is low, one can improve the
accuracy of the estimates by applying the Gaussian smoothing fil-
ter with some scale σ̃2 before the estimation. One can correct the
resulting estimate, σ̂, as σ̂← (σ̂2 − σ̃2)1/2.

The proposed method estimates the values of the parameters
for f (u, v) in the L× L window, Ω. We evaluated the performance
of the scale estimation with respect to the window size, L. Fixing
the scale of the input signals as σ̄ = 5.0, we evaluated the accu-
racies of the estimated scale, σ̂, for each value of L. The graph
shown in Fig. 6 shows the results. The x-axis indicates the ratio,
L/σ̄, and the y-axis shows the estimated value of σ. As shown
in the graph, the estimated scales were biased, when the window
width, L, was comparable with the scale of the signal. The biases
of the estimates decreased with respect to the increase of the win-
dow width. The variances of the estimates improved when larger
size windows were used.

3.2 Experiments with Natural Images
The proposed method was applied to some natural images.

Some examples of them are shown in Fig. 7. Given f (x, y), the
method estimates the set of parameters. Once you obtain the val-
ues of those parameters, you can reconstruct the profile of f (x, y)
at each location by substituting the estimated values to the model
function. Figure 8 shows examples of the input images, f (x, y),
and the reconstructed ones. The red curves accurately approx-
imate the blue profiles, even though they are not the Gaussian
curves, exactly. These results demonstrate the robustness of the
proposed method. Figure 9 shows the experimental results of the
scale estimation. The estimated sclaes were larger in the back-
grounds, in which the images were defocused.

4. Conclusion

A new method was proposed that accurately and efficiently
estimates the parameters of the Gaussian model for describing
local image profiles. The Gaussian function is non-linear with
respect to the parameters to be estimated, and this fact makes
it difficult to estimate them efficiently and accurately. The pro-
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Fig. 9 The estimated scales at each location.

posed method employs the framework of the weighted integral
method [1], which linearizes the parameter estimation problem
based on the differential equations satisfied by the Gaussian func-
tion. Experimental results demonstrated that the estimation was
as accurate as the state-of-the-art method and was much more ef-
ficient than the existing method. Future work includes fusing the
estimated results for describing the entire image. As mentioned
in this paper, the values of the parameters are estimated by com-
puting q̂ = A−b. It should be noted that this computation scheme
has room for improvement: The components of A include errors
generated by image noises, and the statistical distributions of the
errors are anisotropic and inhomogeneous. The authors believe
one can improve the estimation accuracy by applying, e.g., the
renormalization method [7]. This improvement is also part of our
future work.
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