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Abstract: We propose a method for directly estimating a square grid ground surface from stereo images. We estimate
the heights of all vertices in a square mesh, in which each square is divided into two triangular patches, drawn on a level
plane of the ground, from a pair of images captured by nearly front-looking stereo cameras. We formulate a data term,
representing the sum of the squared differences of photometrically transformed pixel values in homography-related
projective triangular patches between the two stereo images, by the inverse compositional trick for both surface and
photometric parameters for realizing an efficient estimation algorithm. The main difficulty of this problem formulation
lies in the estimation instability for the heights of the distant vertices from the cameras, since the image projections of
the distant triangular patches are crushed in the images. We effectively improve the stability by the combinational use
of an additional smoothness term, update constraint term, and a hierarchical meshing approach. We demonstrate the
validity of the proposed method through experiments using real images, and the usability for mobile robots by showing
traversable area detection results on the ground surfaces estimated by the proposed method.

Keywords: ground surface estimation, square grid, stereo vision, direct image alignment

1. Introduction

3D reconstruction of a ground surface is one of the fundamen-
tal problems of mobile robotics, especially for the vehicles and
robots traversing off-road environments. It is desirable that the
ground 3D information be represented by surface model param-
eters, not by dense point clouds, not only to reduce the amount
of 3D data, but also because of the importance of surface nor-
mals in robot action (e.g., a land rover requires surface normals
for searching an almost level site to move safely).

A 3D surface can be recovered from point clouds by fitting a
polygonal mesh or B-spline surface (e.g., Ref. [5]). Considered
with the requirement for computational efficiency in robotics, a
possible choice is to fit a surface model to the output of a recent
fast dense stereo reconstruction method based on local and/or
semi-global techniques (e.g., Refs. [4], [6], [10]). For ground
surface reconstruction, however, it is preferable to use a global
method since roads and off-roads often have weakly textured sur-
faces and repeated patterns (e.g., wheel tracks). More impor-
tantly, these methods implicitly assume that the target surfaces
are nearly front-parallel for realizing fast cost aggregation. This
assumption is completely corrupted for the ground surfaces ob-
served from in-vehicle front-looking cameras, as clearly depicted
in Ref. [11].

A more promising choice is to adopt a global method which
directly estimates surface model parameters from stereo im-
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ages [7], [8]. In this approach, depths of the mesh vertices drawn
on a reference image are estimated by direct image alignment.
When we apply this approach to a ground surface using front-
looking cameras, however, the resultant surface mesh is quite ir-
regular on the ground, with a detailed mesh on the surface near
to the cameras and a rough mesh far from the cameras. Another
important requirement from mobile robotics is to represent the
ground by a regular square grid with level heights at all vertices,
so-called a digital elevation map (DEM) [9], [12]. Since a DEM
can directly provide a per-unit-length gradient at every edge, we
can easily detect traversable paths on the ground in real-time. The
edge-wise traversability information is also necessary for the ex-
isting path-planning algorithms including the A∗-search [3].

In this paper, we propose a method for directly reconstructing a
ground surface with a regular square grid from stereo images. We
estimate the heights of all vertices in a square mesh, composed
of piecewise triangular patches, drawn on a level plane of the
ground, from a pair of images captured by nearly front-looking
stereo cameras. Our basic idea is to minimize a cost function,
representing the sum of the squared differences of photometri-
cally transformed pixel values in homography-related projective
triangular patches between the two stereo images. For realiz-
ing high computational efficiency, the cost for computing update
parameters is re-formulated by using the inverse compositional
trick [1], [2] for both surface and photometric parameters.

The main difficulty of this problem formulation lies in the in-
stability of the height estimation of the distant vertices from the
camera. This is because the pixel numbers in the image projec-
tion triangles of the distant patches are too small to contribute to
the vertex height measurements. Although an additional smooth-
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ness term somewhat improves the estimation stability, the use of
only two terms cannot control flaps of the surface in the distant
part. We show that the stability can be effectively improved by the
combinational use of an additional update constraint term and a
hierarchical meshing approach. We also demonstrate the usability
of the proposed method for mobile robots by showing traversable
area detection results on the estimated ground surfaces.

2. Preliminaries

The coordinate relationships of a local *1 ground x = (x, y, z)T ,
a reference camera x0 = (x0, y0, z0)T , and the other camera
x1 = (x1, y1, z1)T are expressed by x0 = Rx+ t and x1 = Rsx0+ t s,
as shown in Fig. 1, where Rs, t s, R, and t are assumed to be
known. The z-axis of the local ground system is determined to
be parallel to the gravity direction, which can be provided by in-
vehicle accelerometers. Then the x-y plane of the local ground
system can be set at an arbitrary z-position, which is enough to
represent a ground surface relative to the camera position (but we
prefer setting the plane as near as possible to the actual zero-level
plane). We define R and t so that the origin of x is arranged at
the intersection point between the x-y plane and the perpendicu-
lar line dropped from x0 = 0 to the x-y plane, and that the y-axis
corresponds to the perpendicular projection of the z0-axis on the
x-y plane.

We set a 2D square grid, in which each square is divided into
two triangles for generating a triangular mesh, on the x-y plane
of the local ground system, as also shown in Fig. 1. The trian-
gular mesh includes V vertices, whose 3D positions are specified
by xv = (xv, yv, zv)T , (v = 1, · · · ,V) where xv, yv are known, and
N triangular patches S n, (n = 1, · · · ,N). Let z ≡ (z1, z2, · · · , zV )T

represent the surface parameter vector to be estimated.
Let I0[u0] and I1[u1] be the pixel values (gray levels) of the

reference image I0 and the other image I1, respectively, where
u0 = (u0, v0)T and u1 = (u1, v1)T respectively denote the corre-
sponding points in I0 and I1. For avoiding complexity, let u0 and
u1 be in the canonical image configuration.

Fig. 1 Geometry relationship.

*1 While the vehicle moves around, the local ground system also moves
with the camera systems, but the relationship is elastic.

Considered with the possible estimation instability due to a
large number of surface parameters to be estimated, the pixel
value differences between I0[u0] and I1[u1] caused by the dif-
ferences of device characteristics and viewpoints are undesirable,
even with several gray-levels, since the ground often have weakly
textured surfaces. Therefore we take a photometric transforma-
tion into consideration. A widely-used transformation is repre-
sented by I0[u0] = α1I1[u1] + α2, where α1 and α2 denote the
gain and the bias, respectively. Let α ≡ (α1, α2)T represent the
photometric parameter vector also to be estimated.

3. Direct Ground Surface Reconstruction

We minimize a cost composed of a data term and a smooth-
ness constraint term by an iterative manner. In this section, how-
ever, to make full use of limited page space, we directly intro-
duce an approximated cost function with an additional update
constraint term for iteratively computing parameter updates, in-
stead of showing the exact cost function to be minimized.

We define an additive update rule for the surface parameter
vector as z̄ ← z̄ + Δz, where z̄ and Δz respectively denote a cur-
rent estimate and update of z. On the other hand, we adopt an
inverse compositional update rule for the photometric parame-
ter vector [2] as ᾱ ← ( ᾱ1

1+Δα1
, ᾱ2−Δα2

1+Δα1
)T , where ᾱ = (ᾱ1, ᾱ2)T and

Δα = (Δα1,Δα2)T respectively denote a current estimate and up-
date of α.

The cost function, C, for computing updates, Δz and Δα, is
written as

C(Δz,Δα) = CD(Δz,Δα) +CS (Δz) +CU (Δz), (1)

where CD,CS , and CU denote a data term, smoothness constraint
term, and update constraint term, respectively.

3.1 Data Term
We formulate the above data term by using the inverse compo-

sitional trick [1], [2] for both surface and photometric parameters
for accelerating the estimation.

We denote by wn(u0; z̄) a 2D transformation of a reference
image point u0, dropped in the projection of the n-th triangular
patch on the reference image, with a surface parameter vector z̄.
wn(u0; z̄) can be written by a homography warp with homoge-
neous coordinate expressions ũ0, ũ1 as

ũ1 ∝ Hnũ0 (2)

where Hn = Rs + t smT
n (nn( z̄)), (3)

where nn(·),mn(·) and Hn respectively denote a 3×1 vector func-
tion representing plane parameters defined in the ground coordi-
nate system, a similar one but defined in the reference camera
coordinate system, and a 3×3 homography matrix.

We also denote by Δwn(u0, z̄;Δz) a local 2D transformation
with an update vector Δz, which is only valid for a small pa-
rameter space around a given surface vector z̄. We assume
w(u; z̄)◦Δw(u, z̄;Δz)−1 = w(u; ẑ), where ẑ is the minimizer of the
original data term. Δwn(u0, z̄;Δz) can also be expressed by a ho-
mography matrix ΔHn, extended from the expression in Ref. [7]
for fast plane parameter estimation.
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(a) Reference image (Left) (b) Initial mesh (2 m sides) (c) Result (2 m sides) (d) Result (1 m sides)

(e) Result of (50 cm sides) (f) Result (25 cm sides) (g) Result (12.5 cm sides) (h) Patch clustering (12.5 cm)

Fig. 2 Result of the proposed method using hierarchical meshing. The image (h) shows the angle be-
tween the plane normal and the z-axis of each patch in the final hierarchical meshing results (g)
(12.5 cm). Blue: smaller than 10. Cyan: 10∼15, Yellow: 15∼20, Orange: 20∼25, Red: larger than
25 (in degrees).

ΔHn = I − 1

1 + m̄T
n RT

s t s + ΔmT
n RT

s t s
RT

s t sΔmT
n , (4)

where m̄n = mn(nn( z̄)). Since an additive update rule was adopted
for m in Ref. [7], we can derive Δmn(Δnn(Δz)) by linear approx-
imation from the expression of mn (these exact expressions are
omitted here).

We also denote a photometric transformation of a pixel value
ξ with a photometric parameter vector ᾱ by P(ξ; ᾱ), and a local
transformation with an update vector Δα by ΔP(ξ;Δα). These
transformations are presented in Ref. [2] as

P(ξ; ᾱ) = ᾱ1ξ + ᾱ2, (5)

ΔP(ξ;Δα) = (1 + Δα1)ξ + Δα2. (6)

In this case we assume that ΔP(ξ;Δα)−1 ◦ P(ξ; ᾱ) = P(ξ; α̂),
where α̂ is the minimizer.

Then we write the data term as

CD(Δz,Δα) =∑

n

∑

u∈τn

κ(u)
(
ΔP (T [Δw(u, z̄;Δz)];Δα) − P (I[w(u; z̄)]; ᾱ)

)2
,

(7)

where u ∈ τn denotes the pixels u in the projection of the n-th tri-
angular patch τn on the reference image, and κ(u) is an iteratively-
changed binary mask indicating whether the pixel u is used or not.
We set κ by checking whether the surface point on the ray of u is
visible from both images and the absolute image gradient on u is
larger than a pre-defined threshold.

3.2 Smoothness Constraint Term
Since the mesh has a regular grid, we can adopt a simple

smoothness term representing the sum of the squared Laplacian
convolution outputs over the mesh.

CS (Δz) = λS |F( z̄ + Δz)|2, (8)

where λS denotes a user-defined weight, and F denotes a V×V

matrix whose v-th row f T
v contains a 8-neighbor discrete Lapla-

cian kernel for the v-th vertex. More specifically, the row vector
f T
v has an element 1 at the v-th vertex position, elements −1/8 at

the 8-neighbor positions, and zeros at the other positions.
Let us note the inherent difference of the strengths of the

smoothness constraints on the vertices near the cameras and far
from the cameras. In our approach, the data term is more domi-
nant on vertices nearer to the cameras, since more pixels in larger
projected patches on the images contribute to the vertex height
measurements, leading to a higher precision. On the other hand,
for the surface part far from the camera, the smoothness term is
more dominant due to the recession of the data term, leading to
the improvement of the estimation robustness.

3.3 Update Constraint Term
The above two terms have their origin in the cost function to be

minimized. However, the iterative estimation only with the two
terms still engenders flaps of the distant part of the surface. This
is because there is an ambiguity due to the recession of the data
term, such that the heights of a group of vertices go up and down
at the same time while keeping a flat shape (i.e., the smoothness
cost is also small) in the distant part. For improving the stability,
we add the update constraint term representing the norm of Δz.

CU (Δz) = λU |Δz|2, (9)

where λU is a user-defined weight.
A possible drawback of the term would be a slow convergence.

However, the update constraint term desirably works, when we
combine the term with a hierarchical meshing approach, where
we first roughly estimate the surface using a mesh with large
squares and the level-of-detail of the mesh is increased in stages
(see Fig. 2) while keeping the same weights of the smoothness
and update constraint terms. In this case, a current level-of-detail
succeeds to the previous rougher level-of-detail, in which the data
term is more dominant than the current one because of larger tri-
angular patches (the update term is also generally smaller itself
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because of a smaller number of the vertices). Therefore, the effi-
cacy of the update constraint term is not only to prevent the sur-
face from flapping in each iteration process, but also to keep the
current surface as similar as possible to the surface estimated by
the previous level-of-detail. The efficacy is getting stronger as the
meshing level is increased.

3.4 Computation of Update Vectors
Let us briefly describe a few important aspects of the compu-

tation of the update vectors Δz,Δα without details.
We estimate Δz of all vertices in the mesh drawn in a certain

area of the x-y plane, even the vertices projected out of one of the
two images (i.e., some heights will be estimated without any data
term contributions).

We apply Gauss-Newton optimization to the cost Eq. (1). The
(approximated) Hessian of the proposed method is the summa-
tion of the three Hessians derived from the three terms. Al-
though the data term is formulated by the inverse compositional
trick, unfortunately, the Hessian of the data term should be re-
computed in each iteration process, since the local 2D transfor-
mation Δwn(u0, z̄;Δz) depends on a current estimate z̄ (the Hes-
sians of the other two terms are constant). However, thanks to the
inverse compositional trick, we do not need per-pixel Jacobian
computations but need per-patch Jacobian computations, as indi-
cated by Ref. [7]. In our experiments, the number of the triangular
patches is at most 6,000 which is much smaller than the number
of pixels (around 300,000). Therefore the Hessian computation is
much faster than the case without the inverse compositional trick.

4. Experimental Results

The algorithm was implemented in C++-language with a sin-
gle thread and runs on a Windows7 PC (Xeon E3-1225 3.1 GHz,
16 GB). All images with the size of 640×480 pixels were cap-
tured by Point Gray Research Bumblebee2 with the baseline
length of about 12 cm, mounted on a wheelchair at the height of
about 1.0 m. We empirically set λS = 1.5×105 and λU = 5.0×103

for all experiments. We stop the iteration in each meshing level
when the iteration number reaches 10 or when the maximum dis-
tance of the image projection points of the mesh vertices between
z̄ and z̄ + Δz comes to smaller than 1.0 pixels.

Figure 2 (a) shows the input reference image which observes
an asphalt road side where its ground level is partly raised by a
long time growth of the tree in the right side of the scene. Fig-
ure 2 (b)∼(g) shows results of our hierarchical meshing approach
for the scene (a). We set a mesh in the range of {−2 ≤ x ≤
2} × {1 ≤ y ≤ 9} (in meters) in front of the reference camera,
and started the estimation algorithm with a mesh grid with sides
2 meter long. At each level the target surface was well approx-
imated. The final mesh (g) (with 12.5 cm mesh sides) recovered
the raised ground level in the center area while keeping other flat
areas very well. Figure 2 (h) shows a patch clustering result on
(g). Each color represents the angle between the plane normal of
each patch and z-axis. The blue-colored patches indicate safely
traversable areas for a mobile robot.

The convergence behaviors in the case with and without the up-
date constraint term are shown in Fig. 3 (a)(b), where the red solid

(a) Case without the update constraint term

(b) Case with the update constraint term

Fig. 3 Comparision of the cases with/without the update constraint term.
We plotted |Δz|/V (red solid lines) and RMSE of pixel values (blue
broken lines) at each iteration process in the five hierarchical mesh-
ing levels for the scene Fig. 2 while keeping the iteration number 10
for every meshing level.

lines and the blue broken lines respectively show the mean update
values |Δz|/V and the root mean squared differences of the data
term over 10 iterations in the hierarchical estimation of Fig. 2.
Since the update constraint term is small itself in the rough mesh-
ing levels 1∼3 (2 m∼50 cm), no remarkable differences between
the two cases can be seen in these meshing levels. On the other
hand, in the case without the update constraint term, although the
data term is getting smaller in the progress of the meshing levels
and iterations, the mean update value |Δz|/V fluctuates due to the
aforementioned recessions of both the data term and the smooth-
ness term for the vertices distant from the camera. The update
constraint term effectively reduces the fluctuation of Δz on the
distant vertices while keeping the surface as close as possible to
the one estimated in the previous meshing level.

In the case of Fig. 2, the total computational time was about 1.2
second over the five hierarchical meshing levels (the final mesh
had 3,185 vertices and 6,144 patches). The iteration numbers
were 10, 7, 3, 2, and 3 in the meshing levels 1 (2 m), 2 (1 m),
3 (50 cm), 4 (25 cm), and 5 (12.5 cm), respectively.

Figure 4 shows three surface reconstruction results for other
scenes. Figure 4 (a) shows an asphalt road with a sidewalk bump
in the right of the scene. The reconstruction result (b) shows a
preferably recovered bump position. Figure 4 (c) shows an off-
road scene with a very small hole and a hillock on the ground
surface, which were well recovered by the proposed method as
shown in (d). Figure 4 (e) and (f) also show an off-road and a re-
covered large slope in the right part of the scene. We believe that
these colored regular-grid representations directly obtained from
the stereo images are very helpful for traversable area detection
and path-planning for robot systems.
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(a) Reference image (b) Result of (a)

(c) Reference image (d) Result from (c)

(e) Reference image (f) Result from (e)

Fig. 4 Surface reconstruction results for other scenes.

5. Conclusions

We have proposed a method for directly reconstructing a
ground surface with a regular square grid from stereo images.
We have iteratively minimized a cost function composed of a data
term formulated by the inverse compositional trick, a smoothness
term, and an update constraint term, by Gauss-Newton optimiza-
tion and a hierarchical meshing approach. The experimental re-
sults have shown that the ground surfaces could be preferably
recovered even in the parts far from the camera.

The current computational time is promising for real-time ap-
plications since it is possible to highly parallelize the per-patch
computation in our proposed method. Such an acceleration and
ego-motion estimation will be studied during future research
work.
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