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Abstract: In image retrieval applications, the Fisher vector of the Gaussian mixture model (GMM) with a diagonal-
covariance structure is known as a powerful tool to describe an image by aggregating local descriptors extracted from
the image. In this paper, we propose the Fisher vector of the GMM with a full-covariance structure. The closed-form
approximation of the GMM with a full-covariance structure is derived. Our observation is that the Fisher vector of a
higher dimensional GMM yields higher image retrieval performance. The Fisher vector for the GMM with a block-
diagonal-covariance structure is also introduced to provide moderate dimensionality for the GMM. Experimental com-
parisons performed using two major datasets demonstrate that the proposed Fisher vector outperforms state-of-the-art
algorithms.
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1. Introduction

Image retrieval plays an important role on many computer
vision based applications such as image/video copy detection,
keyframe indexing of video, and visual robot localization. Ac-
cording to the great success of the bag-of-words (BOW) model,
A basic approach of image retrieval consists of three steps:
(1) detecting and describing features (keypoints); (2) encod-
ing them as image descriptors using pre-computed codebooks;
(3) ranking (making a shortlist) by matching image descrip-
tors of query and database images. Since the efficiency and
performance of retrieval essentially depend on how the images
are described, the image description has been a widely studied
topic [6], [7], [10], [12], [13], [15], [16].

The most popular image descriptor in a decade is the bag-of-
visual-words (BoVW) representation [15]. The BoVW represen-
tation can be considered as a simple and effective aggregation
of powerful local descriptors such as SIFT descriptor [8] or oth-
ers [17]. More recent successful image descriptor is to encode as
Fisher vectors [12], [13]. Fisher vectors associated to parameters
of generative model are computed by aggregating local descrip-
tors of images. Computation Fisher vectors generally require a
huge computational cost. A closed-form approximation of Fisher
vectors for Gaussian Mixture Model (GMM) with a diagonal-
covariance is proposed under reasonable assumptions [12]. An-
other recent image descripor is Vector of Locally Aggregated De-
scriptors (VLAD) [6], [7] which efficiently aggregate local de-
scriptors with a small visual vocabulary. VLAD encodes local
descriptors by accumulating the difference between the local de-
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scriptors and their nearest visual words [6]. Although VLAD
was originally proposed as an extension of BoVW representa-
tion [6], it is shown that VLAD can be interpreted as a simplified
Fisher vector associated to the means of the GMM with a scaled-
identity-covariance structure [7].

If we focus on the generative models of Fisher vector and
VLAD, the difference is only the covariance structure of each
GMM component. The diagonal-covariance is assumed for the
Fisher vector, while the scaled-identity-covariance is assumed for
the VLAD. Since the diagonal-covariance structures are more in-
formative compared to the scaled-identity-covariance structures,
Fisher vectors generally give better image retrieval performance
than VLAD [7]. Motivated by this fact, we aim at improving the
performance of image retrieval by representing more informative
Fisher vectors arising from the richness of GMM.

In this paper, we refer the diagonal-covariance GMM to the
GMM with the diagonal-covariance structure. The diagonal-
covariance Fisher vector is referred to the Fisher vector based on
the diagonal-covariance GMM.

In the sense of the richness of the covariance structure, the best
choice is the full-covariance structure which has full elements of
the covariance matrix. However, the full-covariance Fisher vector
has two main issues. First, to the best of our knowledge, a closed-
form approximation of the full-covariance Fisher vector is not in
the literature. Second, the number of the training parameters of
the full-covariance GMM is very large. Estimating parameters of
the GMM which has a very large number of components by Ex-
pectation and Maximization (EM) algorithm [1] is not feasible.

The main contribution of this paper is to derive a closed-form
approximation of the full-covariance Fisher vector with the same
assumptions as Ref. [12]. By diagonalizing the covariance ma-
trix, the closed-form approximation can be derived in the sim-
ilar manner to Ref. [12]. We also introduce a block-diagonal-
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covariance Fisher vector whose generative model is the block-
diagonal-covariance GMM. This provides a moderate number
of parameters to be learned. Also, since the block-diagonal-
covariance structure can express both the diagonal-covariance
structure and the full-covariance structure as special cases, one
can design suitable covariance structure.

2. Fisher Kernel and Diagonal-covariance
Fisher Vector

2.1 Fisher Kernel
Let X and Y be samples of a generative model expressed by

a probability density function p with a parameter λ. Note that a
sample implies a set of local descriptors in our case. The Fisher
kernel is defined by the inner product between the gradient vec-
tors in feature space [3]:

K(X ,Y ) = g�λ(X ) F −1
λ gλ(Y ) , (1)

where

gλ(X ) = ∇λ log p(X ; λ) , (2)

Fλ = EX∼p[gλ(X ) g�λ(X )] . (3)

� represents the transpose operator, gλ is the gradient vector of
the log-likelihood, and Fλ is the Fisher information matrix. Since
the Fisher information matrix is symmetric and positive definite.
it can be decomposed as Fλ = L�λLλ . Using this matrix Lλ , the
Fisher vector of the sample X is defined as

g(X ) = Lλ gλ(X ) . (4)

2.2 Diagonal-covariance Fisher Vector
Assuming that each local descriptor is independently genarated

from a generative model, GMM is a natural choice since it can ap-
proximate sufficient classes of probability density distributions.
The GMM is defined as

p(x) =
K∑

i=1

wi q(x; μi,Si) , (5)

where wi is the mixture weight for i-th GMM component, K is
the number of the GMM components, and q(x; μ,S) represents
the Gaussian distribution of mean μ and covariance S.

In Ref. [12], they derived the closed-form approximation of
the diagonal-covariance Fisher vector with two assumptions: (1)
the number of the extracted local descriptors is constant, and (2)
each GMM component is far from each other*1. The diagonal-
covariance matrix is expressed by

S = diag(σ2) , (6)

where diag(σ2) represents the diagonal matrix whose diagonal
components are the elements of σ2. The soft assignment factor
of the local descriptor xt to the i-th GMM component is intro-
duced:

γi(xt) =
wi q(xt; μi,Si)∑K

j=1 w j q(xt; μ j,S j)
. (7)

*1 In the original paper Ref. [12], the second assumption is mentioned in a
different manner. However, the mathematical meaning is same.

Using soft assignment factors, the diagonal-covariance Fisher
vectors associated to the means and the covariance of i-th GMM
component are derived [12]:

g
μ
i (X ) =

1√
Twi

T∑
t=1

γi(xt)

(
xt − μi

σi

)
, (8)

gSi (X ) =
1√
Twi

T∑
t=1

γi(xt)

⎡⎢⎢⎢⎢⎣ (xt − μi)2

σ2
i

− 1

⎤⎥⎥⎥⎥⎦ , (9)

where 1 is the column vector of which every elenment is one
and the dimension is the same as that of xt, and the component-
wise vector divisions and square operations are performed. The
common normalization factor,

√
T , in Eqs. (8) and (9) are dif-

ferent from that expressed in Ref. [13]. However, the common
normalization factor will be canceled in the power normalization
process [13]. In this paper, we follow the normalization factor in
the original paper [12].

The Fisher vector associated to the means, gμ(X ), is the con-
catenation of the vectors gμi (X ) for i = 1, 2, · · · ,K. The Fisher
vector associated to the covariance, gS (X ), can be obtained by
the same manner. The dimensions of the gμ(X ) and the gS (X )
are D × K, where D is the dimension of the local descriptor. Al-
though the Fisher vector associated to the mixture weight can be
obtained, the Fisher vectors associated to the mean and/or the co-
variance are used in general [7], [13] because the Fisher vectors
associated to the mixture weights weights do not significantly
contribute to the image retrieval. Therefore, we focus on the
Fisher vectors associated to the means and the covariance.

3. Proposed Full-covariance Fisher Vector

The difference between the diagonal-covariance and the full-
covariance GMM is shown in Fig. 1. The diagonal-covariance
GMM can not precisely model the distribution of the local de-
scriptors, the orientation of the axes between them does not coin-
cide. Although the coordinate rotation, for example by the prin-
cipal component analysis (PCA), can be applied before model-
ing by the diagonal-covariance GMM, only several components
could be fitted, but the others are not. In contrast, as shown in
Fig. 1 (b), the full-covariance GMM can precisely model the dis-
tribution. Note that although the mixture weights are also the pa-
rameters of the GMM, we focus on the Fisher vectors associated
to the means and the covariance as discussed in Section 2.2. It
is expected that this difference also appears in the image retrieval
performance.

The number of parameters of the full-covariance matrix is
D(D + 1)/2 because the covariance matrix is symmetric, while

(a) the diagonal-covariance GMM (b) the full-covariance GMM

Fig. 1 Schematics of the difference between the diagonal-covariance and
the full-covariance GMMs, where dark gray region represents high-
density region, the blue lines represent dominant directions of the
density, and the red ellipses represent the modeled Gaussian compo-
nent.
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that of the diagonal-covariance matrix is D, where D is the di-
mension of the local descriptor. The full-covariance matrix, S ,
can be rewritten by the eigen decomposition:

S = U diag(ξ2) U� , (10)

where U is the matrix whose column vectors are the eigenvec-
tors of S, and ξ2 is the vector whose elements are the eigen-
values of S. It can be considered that the eigenvalues, ξ2, of
the full-covariance matrix correspond to the variances, σ2, of the
diagonal-covariance matrix.

The matrix U represents the dominant direction of the distribu-
tion and the vector ξ2 represents the variance along the associated
dominant direction. We can consider two different types of the
Fisher vectors with respect to the covariance; the Fisher vectors
associated to the dominant direction parameters and the variance
parameters. Because the derivation of the Fisher vector associ-
ated to the dominant direction parameters are intractable, we only
derive the Fisher vector associated to the variance parameters or
the eigenvalues. The derivation of the Fisher vector associated to
the dominant direction parameters is our future work. If we focus
on the full-covariance Fisher vector associated the eigenvalues,
its closed-form approximation can be derived with the same as-
sumption as in Ref. [12]. The dimension of the full-covariance
Fisher vector associated to the covariance is the same as that of
the diagonal-covariance Fisher vector associated to covariance.

In order to derive the closed-form approximation, first, we ro-
tate the coordinate, so that the covariance matrix of the current
component is the diagonal matrix as shown in Fig. 2. The integral
is identical for the coordinate rotation. Then, we can derive the
Fisher vector associated to the current component by following
the same manner in Ref. [12]. The closed-form approximation of
the full-covariance Fisher vectors can be derived by rotating for
each component as shown in Fig. 2.

Here, we show the closed-form approximation of full-
covariance Fisher vector as follow*2:

h
μ
i (X ) =

1√
Twi

T∑
t=1

γi(xt)S
−1/2
i (xt − μi) , (11)

hSi (X ) =
1√
Twi

T∑
t=1

γi(xt)
[{

S−1/2
i (xt − μi)

}2 − 1
]
, (12)

where the inverse square root of the matrix Si is defined by

Fig. 2 The schematic flow of the derivation of the full-covariance Fisher
vector.

*2 Although the diagonal-covariance Fisher vector is expressed with the
full-covariance matrix in Ref. [2], they clearly mentioned that the co-
variance matrix is assumed to be diagonal. So, their expression is only
for the diagonal-covariance Fisher vector.

S−1/2
i = diag(ξ−1

i )U�i , (13)

where Ui is the matrix whose column vectors are the eigenvec-
tors of Si, and ξ2

i is the vector whose elements are the eigenvalues
of Si. For the derivation of the closed-form approximation, the
number of the local descriptors is assumed to be constant, T , as
same as in Ref. [12]. In practice, the number of the local descrip-
tors depends on the image. However, this dependency and the
common normalization factor,

√
T , does not affect to the retrieval

performance, since we apply the power normalization [13].
These closed-form approximation of the full-covariance Fisher

vectors in Eqs. (11) and (12) represents the diagonal-covariance
Fisher vectors in Eqs. (11) and (12) as special case of S =

diag(σ2). The power normalization [13] can be applied to the
full-covariance Fisher vector as well as the diagonal-covariance
Fisher vector.

Even though the full-covariance GMM can precisely represent
the distribution of the local descriptors, the parameter estima-
tion of the full-covariance GMM with large number of compo-
nents is not an easy task. Accordingly, we also use the block-
diagonal-covariance GMM instead of the full-covariance GMM.
The block-diagonal-covariance matrix and its inverse can be rep-
resented as Ref. [14]

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
B1 0

. . .

0 Bm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , S−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
B−1

1 0

. . .

0 B−1
m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (14)

where Bi is the square matrix and m is the number of covari-
ance blocks. Note that the inverse operation of the block-diagonal
matrix preserves the block-diagonal structure. This property
makes easy to the parameter estimation of GMM with the block-
diagonal-covariance by the EM algorithm. In addition, the block-
diagonal matrix can express the diagonal and the full matrix as
the extreme cases where m = D and m = 1, respectively. We can
choose the dimensionality of the covariance structure with the
block-diagonal-covariance by setting the number of the blocks.

4. Experimental Validation

We use the 128-dimensional SIFT [8] to extract the local de-
scriptors. For the parameter learning of the GMM, we apply the
EM algorithm. Note that we can apply the same code for them
because the block-diagonal-covariance GMM can represent the
diagonal-covariance and the full-covariance GMMs. The power-
normalization with α = 0.5 is applied as the post-processing.
A ranking of a query image is performed according to the in-
ner products between the Fisher vectors of the query image and
the database images. Then, an image retrieval performance is
evaluated based on this ranking. Although several efficient ap-
proximate search algorithms such as a FLANN [9] and a prod-
uct quantization [5] have been proposed, we use the exact nearest
neighbor search to purely compare the performances of the Fisher
vectors. The evaluation is performed on two major datasets:
• The University of Kentucky Benchmark (UKB) [11]. This

set consists of 2,550 groups of four images each. The most
commonly used performance measure of this set is to count
how many of the four images which are top-four (including
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Table 1 Image retrieval performance comparisons on the UKB dataset with the block-diagonal Fisher
vector of different number of covariance blocks, where K is the number of the GMM component
and D is the dimension of the Fisher vector. The bold indicate the best performance.

(Full) number of covariance blocks (Diagonal)
K dim. 1 2 4 8 16 32 64 128

means & cov. (eigenvalues) 16 4096 3.091 3.087 3.097 3.077 3.040 3.040 3.054 3.030
means only 32 4096 3.273 3.253 3.242 3.208 3.195 3.141 3.154 3.098

cov. (eigenvalues) only 32 4096 2.782 2.786 2.888 2.932 2.936 2.992 3.020 2.991

Table 2 Image retrieval performance comparisons with state-of-the-art algorithms, where the component
number K = 16 and there is no data with K = 16 on the UKB in Ref. [7]. The PCA reduces the
dimension to 512. The bold font represents the best performance.

Ref. [6] Ref. [7] Proposed
VLAD Fisher VLAD Fisher Fisher with PCA Fisher

UKB 3.07 3.07 - - - 3.19
Holidays 0.496 0.497 0.520 0.540 0.546 0.591

the query itself) in the searching result of the 10,200 images.
The best value of this performance measure is four and the
higher value represents better performance.

• The INRIA Holidays dataset [4]. This set consists of 1,491
images, 500 of them used for queries. For this set, the mean
Average Precision (mAP) is used as the performance mea-
sure. The best value of the mAP is one and the higher value
represents better performance.

Recently, the Fisher vector associated to the means is mainly
used [6], [7]. We experimentally confirm the impact of using
Fisher vector associated to the means only. Table 1 summarizes
the image retrieval performances on the UKB dataset with three
type of the Fisher vectors associated to the means & the covari-
ance (eigenvalues), the means only, and the covariance (eigen-
values) only. The number of the GMM components is set 16
for those of the means & the covariance (eigenvalues) and 32 for
those of the means only and the covariance (eigenvalues) only,
respectively, so that the dimension of the each aggregated im-
age descriptor equals 4,096. That the covariance block number is
one means the full-covariance Fisher vector. That the covariance
block number is 128 means the diagonal-covariance Fisher vec-
tor. The diagonal-covariance Fisher vector, or the case that the
number of covariance blocks is 128, represents existing Fisher
vectors and other cases represent the proposed Fisher vectors.

For all number of covariance blocks, the Fisher vector associ-
ated to the means only outperforms those of the means & covari-
ance (eigenvalues) and the covariance (eigenvalues) only. These
comparisons experimentally validate the superiority of using the
Fisher vector associated to the means only. Then, we focus on the
performances of the Fisher vector associated to the means only.
The image retrieval performance almost monotonically degrades
as the number of covariance blocks increases. It shows that the
Fisher vector based on the block-diagonal-covariance GMM with
the smaller number of the covariance blocks, or the richer genera-
tive model, can yield better performance. It also indicates that we
can improve the performance by increasing the dimensionality of
the GMM while the dimension of the aggregated image descrip-
tors is fixed. It has a positive impact on memory efficiency.

We compare the proposed full-covariance Fisher vector with
the state-of-the-art algorithms [6], [7]. For the fair comparisons,
we compare with the same number of the GMM components with

K = 16. The evaluated performances are summarized in Table 2.
These image retrieval performance comparisons demonstrate that
the proposed full-covariance Fisher vector outperforms the exist-
ing diagonal-covariance Fisher vector and the VLAD.

5. Conclusion

In this paper, we propose a novel full-covariance Fisher vec-
tor for the image retrieval. The closed-form approximation of
the full-covariance Fisher vector is derived by using the eigen
decomposition of the covariance matrix. The block-diagonal-
covariance Fisher vector is also introduced, so that the parame-
ters of the generative GMM are easily learned by the EM algo-
rithm. The experimental comparisons demonstrate that the pro-
posed full-covariance Fisher vector outperforms state-of-the-art
algorithms in the image retrieval. Our future works include effi-
cient GMM parameter learning, and the comparisons with a very
large dataset.
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