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Abstract: We focus on gait recognition for criminal investigation. In criminal investigation, person authentication is
performed by comparing target data at the crime scene and multiple gait data with slightly different views from that
of the target data. For this task, we propose fusion of direct cross-view matching. Cross-view matching generally
produces worse result than those of same-view matching when view-variant features are used. However, the correla-
tion between cross-view matching with different view pairs is low and it provides improved accuracy. Experimental
results performed utilizing large-scale dataset under settings resembling actual criminal investigation cases, show that

the proposed approach works well.
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1. Introduction

Recently, many closed-circuit television (CCTV) surveillance
cameras have been set up around the world, and are capturing
video continuously. These CCTV surveillance cameras could by
chance record incidents at a crime scene or at a place near the
crime scene. Therefore, such video footage can provide clues
in identifying the perpetrators of the crime. Perpetrators can be
identified based on their faces if the quality of the footage includ-
ing resolution and contrast is adequate. However, the resolution
of facial images in CCTV footage tends to be low in many cases,
while the image contrast may also be low owing to poor illumi-
nation conditions. Moreover, the perpetrator may attempt to hide
his/her face by wearing a mask for example, to avoid being iden-
tified. In these cases face recognition does not work even if the
perpetrator appears in the footage, and thus gait recognition is
used instead [2], [8], [9].

Gait recognition is a method for biometric person authenti-
cation using the shape and motion of the person walking ac-
quired from the footage[12]. Different from many biometrics,
gait recognition is possible at a considerable distance from the
camera because it works well even if the resolution of the target
image sequence is relatively low (e.g., a height of 30 pixels). The
accuracy of gait recognition is however, often degraded by sev-
eral covariates (e.g., views, clothes, and belongings) [13]. Of the
covariates, view differences are the most problematic and hence
in this paper, we focus on the view issue in gait recognition.

At least two image sequences are necessary for person au-
thentication. These two images sequences are the gallery and
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Fig. 1 Typical setting of a criminal investigation.

the probe. Both the gallery and probe can be captured in con-
trolled *! or limited environments for access control application,
but they are generally captured in uncontrolled environments for
surveillance applications. However, situations for criminal in-
vestigation applications are different from those for access con-
trol/surveillance applications. In the case of a criminal investi-
gation, once a gait image sequence of the perpetrator associated
with the criminal scene is given as a gallery and suspects have
been identified, the criminal investigators set out to collect multi-
ple gait image sequences of the suspects in a confidential fashion
as probes. Considering the nature of the crime scene, the gallery
cannot be captured in a controlled environment, and in the worst
case only a single image sequence associated with a single gait
cycle from a single view may have been recorded.

Probes can be collected in partially controlled environments
in the case of a criminal investigation. A probe is acquired af-
ter the crime by the criminal investigators so that the view of the
probe is similar to that of the gallery. Although criminal inves-
tigators apply their best efforts to achieve that in multiple trials,
there are some real limitations because the data must be acquired
in a confidential fashion. Consequently, multiple gait image se-
quences from close but different (not exactly the same) views may
be collected. Figure 1 shows a schematic of a typical setting of a

*I'In gait recognition, the term control means we can set a view that is

the relationship between the walking direction and camera position/pose
and/or data acquisition settings, which include the type of camera used,
and resolution of images.
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Fig. 2 Scatter plots of positive and negative scores: (left) direct cross-view matching (without view trans-
formation), (right) cross-view matching with view transformation.

criminal investigation.

In this setting, several approaches are possible. A simple ap-
proach is to use only the gait feature pair of gallery and probe
with the closest (or, if possible, the same) view [4]. This ap-
proach works well if the associated views are the same or rela-
tively close. However, a limitation of this approach is that the
accuracy degrades if the view difference becomes large. More-
over, this approach discards data from the other close views.

Another approach is to use not only the gait feature pair with
the closest view, but also gait feature pairs with different views
after transforming the different views to the same view using a
view transformation technique, such as the discrete view transfor-
mation model (VIM) [6] or arbitrary VTM [11], and to compare
the gait feature pairs with the same views. Thereafter, several
matching scores are fused for improvement [14]. Although this
approach is reasonable and makes use of all the available data,
it has certain limitations associated with the applicable view or
camera calibration. In the case of applying a discrete view trans-
formation, the applicable views are limited to only several dis-
crete views for which training gait data for the VTM has been col-
lected; this severely limits the applicable criminal scenes. How-
ever, although arbitrary VTM is free of view limitations, trouble-
some camera calibrations are required in all the scenes associated
with the gallery and probes.

To solve these problems, we propose a different approach in
this paper. In the proposed method, gait features from different
views are matched without using a VTM, and the matching scores
are fused for authentication. Cross-view matching using view-
dependent gait features [3], [7], [10] generally results in worse
accuracy than same-view matching, we observe, however, that di-
rect cross-view matching scores are relatively uncorrelated owing
to the view-dependent nature of gait features. Since score-level
fusion generally works more efficiently with lower score correla-
tions, we make full use of these relatively uncorrelated scores to
improve the accuracy.

The contributions of this paper are summarized in the follow-
ing two points.

1. Accuracy improvement in a criminal investigation setting
Our method works well in settings resembling criminal investiga-
tion cases, where views of the gallery and those of the probe sets
are close, but slightly different. Owing to the relatively uncorre-
lated scores obtained from different pairs of cross-view matching,
the fusion works efficiently.
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2. High usability

Our method does not require troublesome camera calibrations
for every scene, because data with different views are directly
matched without using an arbitrary VITM.

2. Fusion of Direct Cross-view Matching
Scores

2.1 Correlations between Scores

Since the key to success in the proposed method depends on
how uncorrelated the scores are for cross-view matching, we first
observe score distributions for cross-view matching *2.

Figure 2 shows the scatter plots of positive (genuine-genuine
matching) and negative (genuine-imposter matching) scores as-
sociated with cross-view matching of three different view pairs
with and without (w/wo) view transformation. From these fig-
ures, we observe that the correlations of matching scores with
view transformation are higher than those without view transfor-
mation. This observation shows that the improvement in fusing
scores without view transformation is likely to be larger than that
of fusing scores with view transformation.

2.2 Algorithm

After preprocessing and feature extraction, view-dependent
gait features are extracted and the extracted probe gait features
are directly matched with that of the gallery. The calculated mul-
tiple scores are then converted into a single final score using the
fusion scheme.

Let x¢ and x” = (xF,...,x}) be the gallery gait feature and
probe gait feature set from N views, respectively. First, we calcu-
late a distance vector d(x®, x”) by

d(x,x") = (d(x°, xb), ..., d(x%, xR)), (D

G P G_ P
d(x7,x,) = Ix7 = x,lh,n=1,2,...,N.

We then calculate the final score S (x%,x"”) by fusing the ele-
ments of the distance vector by

S (xGa XP) = Ffus[on(d(xG’ XP); ®)9 (2)

where F i0n(+; ©) is a fusion function with parameter ®. Using
the final score, a decision is made.

*2 Explanations of the matching score calculation and database used are

given respectively in Sections 3 and 4.
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3. Implementation

3.1 Gait Features

We selected frequency-based features (FDFs) [10] as gait fea-
tures. The FDFs are generated from a silhouette image sequence
in a gait cycle by applying a discrete Fourier transform of the
temporal axis. In this paper, we use 0-, 1- and 2-times frequency
elements.

3.2 Fusion Function

As the final score, we consider the posterior probability that
the suspect is indeed the perpetrator.

Let ¢ € {S(same), D(dif ferent)} be a label, and d(x,x") be
the normalized scores. We set the final score by

S x") = P = S1d°,x")). 3)
We consider the linear logistic regression (LLR) of the posterior
probability

o [ P(£ = S1d(x9,x"))

L= P( = S|d(x,xP))

N
) =60+ . 0,d0%,xD), (@)
n=1

and calculate the posterior probability as
1

1 + e~@0+ZI, 0,46 x5

P({ = S1d(x°,x")) = )

Parameter ® = (6, 6, . .., 0y) is set through training to minimize
the objective function proposed in Ref. [1].

4. Experiment

4.1 Database

We used a subset of the OU-ISIR database [5] for accuracy
evaluation because it includes gait image sequences from differ-
ent views. Both the gallery and probes in the database consist
of image sequences collected from the same 1,912 subjects, with
each image sequence divided into four subsets based on the ob-
servation angles. From these sequences, we used the subset with
observation angle 65 [deg] as the gallery, and subsets with obser-
vation angles 55, 65, 75, and 85 [deg] as probes.

4.2 Experimental Settings

We performed two experiments, a preliminary and a main ex-
periment. The purpose of the preliminary experiment was to con-
firm that utilizing the VTM as a benchmark improves the ac-
curacy of individual cross-view matching against the database,
while that of the main experiment was to evaluate the accuracy of
the proposed method compared with that of other methods.

In the main experiment, we considered the four settings asso-
ciated with criminal investigations as given in Table 2.

In settings A and B, gait features with exactly the same gallery
view were not available; instead, gait features with similar, but
different views associated with both sides of the gallery view were
used. In settings C and D, gait features with exactly the same
gallery view were included in the probe gait features.

In all the experiments, we randomly divided the data into two
sub-groups, and performed two-fold cross-validation. To elimi-
nate the impact of the grouping, we repeated the cross-validation
five times.
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Table 1 EERs and Rank-1 values for the same-view and cross-view
matching (preliminary experiment).

EER [%] Rank-1 [%]
Matched view Without ~ With | Without  With
(Gallery, Probe) VIM VM VTM VM
Same (65, 65) 2.35 - 89.7 -
Cross (65, 55) 542 3.37 60.9 81.7
Cross (65, 75) 3.55 3.51 73.4 79.6
Cross (65, 85) 7.08 4.43 40.1 68.5

G65-P65Direct
——G65-PS5Direct
T TN ===G65-PS5VTM
——G65-P75Direct
w—(G65-P75VTM
G65-P85Direct
G65-P8SVTM

G65-PESDirect
60 I/ ——G65-P5SDirect  —
——G65-PS5VTM
——G65-P75Direct
50 - — — — — ——GE5-PTSVTM
G65-P8SDirect
G65-P8SVTM

Identification Rate [%]

40

5.6 7 8 9 10
FAR'[%] ! M opank 2

01 2 3 4

Fig.3 ROC (upper) and CMC (bottom) curves for the same-view and
cross-view matching w/wo VTM.

4.3 Preliminary Experiment

Table 1 gives the equal error rates (EER) and rank-1 identi-
fication rates (referred to as Rank-1 in this paper), while Fig.3
shows the receiver operating characteristic (ROC) curve depict-
ing the tradeoff between the false acceptance rate (FAR) and false
rejection rate (FRR), and the cumulative matching characteristic
(CMC) curve showing the relationship between the rank and cu-
mulative matching rates. From these results, we observe that: 1)
the EER and Rank-1 improve when applying the VTM, and 2)
the EER and Rank-1 for the same view are better than those for
the cross-view despite application of the VTM.

4.4 Main Experiment

In Table 2, Fig. 4, and Fig. 5, we show the EERs and Rank-1
values, ROC curves, and CMC curves, respectively, for the pro-
posed method in several settings together with those of the clos-
est view and fusions of a cross-view with the VTM using sum
rule [14] and LLR. As for the closest view associated with set-
tings A and B, we select the view with the better accuracy.

According to these results, the proposed method achieved the
best results in almost all the settings. Experimental results from
settings A and B show that the proposed method achieves com-
parable or better accuracy than that of the same-view matching
(see Table 1) even though a probe with exactly the same view as
the gallery is not available. Moreover, the proposed method im-
proves the accuracy obtained in setting D, which includes probe
data with exactly the same view as the gallery. This result shows
that the direct cross-view matching scores are relatively uncorre-
lated with the same-view scores, and that fusion of these scores
works efficiently.

The accuracy of fusion with cross-view matching using the
VTM is better than that of the closest view in settings A and B
where exactly the same view as the gallery is not available but
accuracy is worse than that of the proposed method. In settings
C and D, the accuracy of fusion with cross-view matching us-
ing the VIM is almost the same as that of the closest view, and
worse than that of the proposed method in setting D, despite the
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Table 2 EERs and Rank-1 values.

EER [%] Rank-1 [%]
Setting View Closest VIM VIM  Proposed | Closest VIM VIM  Proposed
Gallery Probe view  (Sum)[14] (LLR)  (LLR) view  (Sum)[14] (LLR)  (LLR)
A 65 (55, 85) 542 2.80 2.87 2.35 60.9 85.1 85.5 90.1
B 65 (55,75) 3.55 2.69 2.73 2.07 73.4 87.1 87.0 914
C 65 (55, 65) 2.35 2.51 2.40 2.28 89.7 89.5 89.9 89.9
D 65 (55,65,85) | 235 2.40 2.36 1.98 89.7 89.4 90.3 91.6
10 Tg—r—\—T— T — ———1 0 qE—r—r—T—T7—"—"—"—"
L\ | [ —Proposed | 10 | L —Proposed | °
’ TN T—vman ] ST T v 5. Conclusions and Future Work
—VTM (Sum) —VTM (Sum) . . . L . .
! TN T —Closest 55) | TTINN T T—closest 75 | In this paper, we focus on gait recognition for criminal investi-
seWrrNTTT T <6 T T . . . .
; s i 5 gation and propose a method to fuse direct cross-view matching
&4 £ scores.
; BRANUE z Experimental results show that individual direct cross-view
R I i matching cannot achieve higher accuracy than cross-view match-
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Fig.4 ROC curves.

95 +

©
S
©
S

%
I3
0
b3

=
S

=
&

——Proposed ——Proposed

Identification Rate [%]
%

z
Identification Rate [%]
%
=3

70 H— —VTM (LLR) - 0 4—————— —VTIM (LLR) -
—VTM (Sum) —VTM (Sum)
65 f— — — — — — - 65— — — — — — -
Closest (65) Closest (65)
60 - 60
1 11 21 1 11 21
Rank Rank
a) Setting A b) Setting B
M- ——- 100

96

©
b
3
£

o
S
o
S

%
3

——Proposed

%
3

——Proposed

%
=3

3
N

Identification Rate [%]
©
=3
Identification Rate [%]
)
=3

—VTM (LLR) —VTM (LLR)
B —VTM (Sum) =" —VTM (Sum)
=== Closest (65) === Closest (65)
80 80

1 1 21 1 1 21
Rank Rank
¢) Setting C d) Setting D

Fig.5 CMC curves.

fact that the VTM improves the accuracy of individual cross-view
matching as shown in the preliminary experiment (see Fig. 3 and
Table 1). These results imply that even though the accuracy of
individual cross-view matching is improved by the VTM, fusion
of the same-view matching scores with the cross-view matching
score by the VTM does not always improve the accuracy, since
these scores are highly correlated.

© 2013 Information Processing Society of Japan

ing by the VTM, whereas multiple direct cross-view matching
does contribute to improving the accuracy by fusion owing to
the relatively uncorrelated scores. Consequently, the proposed
method achieved either the best or comparable accuracy. More-
over, the proposed method has another advantage in that it can be
applied to any criminal scene without troublesome camera cali-
brations, which is also important when considering usage in crim-
inal investigations.

Our method assumes that views of the probe are different, but
close to that of the gallery. However, if the view difference be-
comes large, the proposed method does not work well because in-
dividual direct cross-view matching does not achieve acceptable
accuracy. This is a limitation on the proposed method caused by
the tradeoff between accuracy degradation of cross-view match-
ing and uncorrelation among the cross-view matching scores. We
need to further analyze which view differences are acceptable for
applying the proposed method to improve accuracy.

In this paper, we only focused on view difference between the
gallery and probes, and evaluated cases where azimuth angles are
different in the experiments. We also need to consider other co-
variates that influence the accuracy of gait recognition such as
tilt angle and speed changes. We believe the proposed approach
has the potential to be applied to these covariates. This will be
evaluated in a future work.
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