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Abstract: In this paper, we propose a method of scale-invariant edge detection that represents edge images as polyno-
mials in a scale parameter using spectral decomposition (generalized PCA), in order to obtain an optimal local scale.
As this proposed method is successfully able to estimate the local scale of each pixel, accurate scale-invariant edge
amplitudes and directions can be obtained. Our experimental results show that the proposed method detects rough
edge contours in indistinct parts and detailed contours in the clarified parts of test images.
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1. Introduction

Edge detection is the basic technique for object recognition
and low-level feature extraction in computer vision. In previous
edge detection research, local mask filters to detect the gradient
magnitude of an input image using Roberts or Sobel operators [7]
were proposed. Marr and Hildreth [5] introduced the use of a
smoothing filter, following which the application of Laplacian of
Gaussian (LoG) filters was proposed, while Canny [1] developed
a framework optimal filter theory.

Meanwhile, scale-space image theory, in which a Gaussian fil-
ter with set scale parameters is used to generate a series of blurred
images, has become the primary computer vision image process-
ing technique [3]. Lindeberg proposed the use of edge detection
in the context of scale-spaces [4]; however, the size of detected
edge contours depends strongly on the scale parameter, with large
parameters resulting in rough contours and smaller parameters
detecting smoother contours. Therefore, a variety of scale pa-
rameter sets should be used for edge detection in a given input
image, with scale resolution generally improving in proportion to
the number of scale-space parameter sets used. However, com-
putation time also increases in proportion to the number of scale
parameters used.

Recently, the application of spectral theory to scale-space com-
pression was proposed [2]. Spectral theory is a generalized form
of principal component analysis (PCA) that can be used to effi-
ciently compress Gaussian scale-spaces and is applicable to scale-
space image processing involving infinitely large parameter sets.

In this paper, we introduce the use of spectral theory for edge
detection in scale-space and demonstrate a novel application of
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scale-invariant edge detection.

2. Edge Detection

2.1 Classic Edge Detection
A local change of image intensity (edge) for an input 2D-image

f (x, y) can be defined as:

∇ f (x, y) =

(
∂ f (x, y)
∂x

,
∂ f (x, y)
∂y

)
≡

(
fx, fy

)
, (1)

where fx and fy are the x- and y-derivatives, respectively, of the
image function. The edge amplitude Amp(x, y) and edge direc-
tion Dir(x, y) of each pixel (x, y) can then be respectively defined
as:

Amp(x, y) =
√

f 2
x + f 2

y ,

Dir(x, y) = tan−1 fy
fx

In image recognition, edge pixels (edge contours) are detected
as local features or namely as neighborhood maxima of edge am-
plitude Amp(x, y) with given values of edge direction Dir(x, y),
often by means of eight-direction quantization.

2.2 Edge Detection on the Scale-space
An additional scale parameter s is used for edge detection

in scale-space. The process involves rendering an input image
f (x, y) in scale space using

L(x, y; s) = g(x, y; s) ∗ f , (2)

where ∗ is convolution operator and g(x, y; s) is a gaussian kernel
defined as:

g(x, y; s) =
1

2πs
e−

x2+y2

2s . (3)

A scale normalized differential operator, such as ∂s ≡ s∂, can
be used as the edge operator on the scale-space. From this, the
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x- and y-derivative images on the scale-space can be respectively
defined as:

Lx(x, y; s) =
s∂g(x, y; s)
∂x

∗ f =
(
− x

2πs3
e−

x2+y2

2s

)
∗ f ,

Ly(x, y; s) =
s∂g(x, y; s)
∂y

∗ f =
(
− y

2πs3
e−

x2+y2

2s

)
∗ f .

Similarly, the edge amplitude and direction on the scale-space
can be respectively defined as

Amp(x, y; s) =
√

L2
x + L2

y,

Dir(x, y; s) = tan−1 Ly
Lx
.

Note that if a large value of the scale parameter s is used in
these equations, then rough edge contours will be detected, while
a smaller scale parameter will result in more detailed edge con-
tours.

3. Proposed Method

As described in above section, the edge smoothness in a given
scale-space depends on the scale parameter s. Accordingly, a lo-
cal scale s∗(x, y) can be defined for each pixel (x, y) and be used
to detect edge amplitude and direction, allowing for the definition
of scale-invariant edges:

s∗(x, y) = arg max
s

Amp(x, y; s),

Amp∗(x, y) = Amp(x, y; s∗),

Dir∗(x, y) = Dir(x, y; s∗).

The nonlinearity of Amp(x, y; s) combined with the continuity
of the scale parameter s complicates the task of finding an opti-
mal value of s∗; however, if the differential operator Gx in Eq. (4)
is represented as the sum of a series of polynomials in s:

Gx(x, y; s) ≡ − x
2πs3

e−
x2+y2

2s (4)

= s0q0(x, y) + s1 · q1(x, y) + · · · + sN · qN(x, y),

then Amp(x, y; s) can also be represented using polynomials in
s, making it simple to obtain an exact optimal local scale s∗ in
Eq. (4).

To develop an exact polynomial representation of Gx in terms
of s in the case where there is a finite number of scale parameters
(i.e., s1, s2, · · · , sN), it is possible to use a subspace method [9] to
solve an N×N matrix-based eigenproblem in order to express the
original operator Gx as a linear combinations of eigenvectors and
eigenvalues:

Cϕ = λϕ. (5)

The matrix C is a covariance matrix with its i-th row and j-th
column elements defined by

Ci j =
〈
Gx(x, y; si),Gx(x, y; s j)

〉
(6)

≡
�

Gx(x, y; si)Gx(x, y; s j)dxdy.

However, because the scale parameter s is continuous, it is dif-
ficult to apply this matrix-based PCA to scale-space compres-
sion. In the case where N → ∞, it is necessary to expand the

eigenproblem. In mathematical function analysis, this approach
is known as spectral theory [8]. By applying spectral theory to
Eq. (5), the matrix eigenproblem can be transformed into the fol-
lowing Fredholm integral equation:

∫
K(s, t)ϕ(s)ds = λϕ(t). (7)

where K(t, s) is the integral kernel corresponding to a covariance
matrix of Eq. (5), and K(t, s) is defined as:

K(s, t) =
�

Gx(x, y; s)Gx(x, y; t)dxdy

=
1

2π
(

1
s2 +

1
t2

)
(st)3
. (8)

If this integral kernel is non-zero, symmetric, and finite, Eq. (7)
has a unique solution. Nevertheless, the integral equation remains
difficult to solve exactly without using a set of specific integral
kernels. Therefore, we propose a solution by using a polynomial
approximation:

ϕi (s) = s0a0
i + s1ai,1 + s2ai,2 + · · · + sNai,N

=
(
1, s, s2, · · · , sN

)
· ai. (9)

By multiplying both sides of Eq. (7) with the polynomials
1, s, s2, · · · sN and then integrating, Eq. (7) is transformed into the
following generalized eigenproblem of an (N+1)×(N+1) matrix:

Ka = λSa. (10)

The elements of K here are defined as:

Ki+1 j+1 =
1

2π

�
s jti(

1
s2 +

1
t2

)
(st)3

dsdt, (11)

S i+1 j+1 =

∫
si+ jds =

s1+i+ j

1 + i + j
. (12)

By solving the above eigenproblem, we can obtain the eigen-
solutions with which Gx can be represented using the following
Fourier series:

Gx(x, y; s) =
N∑

i=0

〈Gx(x, y; s), ϕi(s)〉ϕi(s)

≡ Fx,i(x, y) · ϕi(s), (13)

in which Fx,i(x, y) (the eigenimage) is defined as:

Fx,i (x, y) =
∫ s2

s1
Gx(x, y; s)ϕi (s) ds

= −
N∑

n=0

−ai,nx

23/2πr

( r

21/2

)n−1
Γ

⎛⎜⎜⎜⎜⎝2 − n
2
,

r2

2s2
1

,
r2

2s2
2

⎞⎟⎟⎟⎟⎠ , (14)

where r =
√

x2 + y2, and Γ is a complete gamma function defined
as:

Γ (a, t1, t2) =
∫ t2

t1

ta−1 exp (−t) dt (15)

that can be calculated accurately using a continued fraction ex-
pansion [6].

In the same way, the eigenimage of the y-differential operator
Gy can be defined as:
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Fy,i (x, y) =
∫ s2

s1
Gy(x, y; s)ϕi (s) ds

= −
N∑

n=0

−ai,ny

23/2πr

( r

21/2

)n−1
Γ

⎛⎜⎜⎜⎜⎝2 − n
2
,

r2

2s2
1

,
r2

2s2
2

⎞⎟⎟⎟⎟⎠ . (16)

Finally, the x-and y-derivative images on the scale-space, Lx

and Ly, can be respectively represented in polynomials of s as:

Lx(x, y; s)

=

N∑
i=0

(
Fx,i(x, y) ∗ f

) × (
ai,0 + ai,1s + · · · ai,N sN

)
, (17)

Ly(x, y; s)

=

N∑
i=0

(
Fy,i(x, y) ∗ f

)
×

(
ai,0 + ai,1s + · · · ai,N sN

)
. (18)

As discussed in Section 2.2 above, the local scale s∗, the scale-
invariant edge amplitude Amp(x, y; s∗), and the edge direction
Dir(x, y; s∗) can then be derived.

4. Numerical Examples

In this section, we show numerical examples of eigensolutions
of Eq. (7). In order to approximate the eigenfunction of Eq. (9),
we use second-order polynomials (N = 2) and set the integral
range of the scale parameter s to s1 = 0.8, s2 = 4.2. Based on
this, we can solve the 3 × 3 matrix-generalized eigenproblem of
Eq. (10).

The solutions ai, j and eigenvalues λi for N = 2 are shown in
Table 1, from which it can be seen that λ2 = 0.0007 is only 2 [%]
of λ0 = 0.0309.

Based on this rapid decrease, it is apparent that the original

Table 1 Solutions for N = 2.

i ai,0 ai,1 ai,2 λi

0 −1.73812 0.82005 −0.10597 0.0309
1 −2.54528 2.19890 −0.37072 0.0070
2 −1.94300 −2.16838 0.49750 0.0007

Fig. 1 Eigenimages and eigenfunctions for Gx.

Gaussian derivative function can be approximated by using a
polynomial series of relatively small degree. The eigenimages for
N = 2 are shown in Fig. 1. The left part of the figure Fx,i shows
the eigenimages on the xy-plane, while the right side shows the
eigensolution ϕi. Note that the eigenimage becomes an odd func-
tion and the number of wave-like mountains increases as the de-
gree increases.

5. Experimental Results

We performed edge detection on two images, Fig. 2 (a) and
Fig. 3 (a). Figure 2 (a) is a 210 × 210 pixel, 8-bit gray-scale input
image used to obtain experimental results in which the illumi-
nation change on a section of skin surface is loose and the hair
has many edges. Figures 2 (b) and (c) show the results of edge
detection using fixed scale parameters s = 1.2 and s = 3.5, re-
spectively. From left to right, the figures show the x-derivative
image, the y-derivative image, the edge amplitude, and the edge
contour. It can be seen that scale factor s = 1.2 successfully ex-
tracts the edge of the hair, but over-edge detection occurs on the
skin, while using s = 3.5 leads to many details on the edge of the
hair being missed.

On the other hand, using the proposed method allows for de-
tailed detection of the edges of the hair while suppressing edges
in the skin (Fig. 2 (d)). The left side of Fig. 2 (d) shows the esti-
mated local scale s∗ using pseudocoloring.

Figure 3 shows the results for the second image, Fig. 3 (a),
a 454 × 308 pixel input. The doll shown to the left has many
sharp edges while the shadowing on the right is indistinct. Fig-
ures 3 (b) and (c) show edge contours detected using fixed pa-
rameters s = 1.2 and s = 3.5, respectively; for s = 1.2, the edge
contours on the shadowed section on the right have been divided,
and for s = 3.5, the edge contours on the hand and arm of the doll
are broken off.

By contrast, the proposed method estimates local scales appro-
priately, with both the small scales on the doll and the large scales
on the shadow detected correctly (Fig. 3 (d)).

6. Conclusion

In this paper, we propose a method of scale-invariant edge de-
tection that represents edge images as polynomials in a scale pa-
rameter s using spectral decomposition, a generalized PCA, in
order to obtain an optimal local scale.

As this proposed method is successfully able to estimate the lo-
cal scale of each pixel, accurate scale-invariant edge amplitudes
and directions can be obtained. Our experimental results show
that the proposed method detects rough edge contours in indis-
tinct parts and detailed contours in the clarified parts of test im-
ages.

In our future research, we plan to evaluate the proposed method
quantitatively in terms of linearity of estimated scale in a scale-
adjusted input image.
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Fig. 2 Results of edge detection for venus.

Fig. 3 Results of edge detection for doll.

c© 2013 Information Processing Society of Japan 33



IPSJ Transactions on Computer Vision and Applications Vol.5 30–34 (July 2013)

References

[1] Canny, J.: A Computational Approach to Edge Detection, IEEE Trans.
Pattern Anal. Mach. Intell., Vol.8, No.6, pp.679–698 (1986).

[2] Koutaki, G. and Uchimura, K.: Application to Pattern Matching Using
Spectrum Theory (in Japanese), The 15th Meeting on Image Recogni-
tion and Understanding (MIRU), IEICE (2012).

[3] Lindeberg, T.: Scale-Space Theory in Computer Vision, Kluwer Aca-
demic Publishers, Norwell, MA, USA (1994).

[4] Lindeberg, T.: Edge Detection and Ridge Detection with Automatic
Scale Selection, International Journal of Computer Vision, Vol.30,
pp.465–470 (1996).

[5] Marr, D. and Hildreth, E.: Theory of Edge Detection, Proc. Royal
Society of London. Series B, Biological Sciences, Vol.207, No.1167,
pp.187–217 (1980).

[6] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P.:
Numerical Recipes 3rd Edition: The Art of Scientific Computing,
Cambridge University Press, New York, NY, USA (2007).

[7] Roberts, L.G.: Machine Perception of Three-dimensional Solids, MIT
Press (1965).

[8] Shigeru, M.: Introduction to Integral Equations in Japanese, Asakura
Press (1968).

[9] Turk, M. and Pentland, A.: Eigenfaces for recognition, J. Cognitive
Neuroscience, Vol.3, No.1, pp.71–86 (1991).

(Communicated by Shinichiro Omachi)

c© 2013 Information Processing Society of Japan 34


