
IPSJ SIG Technical Report

Fault Tolerance Design for Hadoop MapReduce on Gfarm
Distributed Filesystem

MariliaMelo1,a) Osamu Tatebe1,b)

Abstract: Many distributed file systems that have been designed to use MapReduce, such as Google file system and
HDFS (Hadoop Distributed File System), relax some POSIX requirements to enable high throughput streaming access.
Due to lack of POSIX compatibility, it is difficult for programs other than MapReduce to access these file systems. It is
often need to import files to these file system, process the data and then export the output into a POSIX compatible file
system. This results in a large number of redundant file operations. In order to solve this problem we have proposed[9]
Hadoop-Gfarm plugin to be able to execute MapReduce jobs directly on top of Gfarm, a globally distributed file sys-
tem. In this paper we analyse the redundancy and reliability for a fault tolerance design for Hadoop-Gfarm plugin. Our
evaluation shows that Hadoop-Gfarm plugin can offer a reliable solution and performs just as well as Hadoop’s native
HDFS, allowing users to use a POSIX-compliant API and reduces redundant copy without sacrificing performance.

1. Introduction
In recent years, companies, researches, and goverments accu-

mulate increasingly large amounts of data that they process using
advanced analytics. In order to process the data in a reasonable
amount of time the computation have to be distributed across hun-
dreds or thousands of computers. As a result, organizations are
moving data analysis activities off of the desktop and onto clusters
of computers - public and private “clouds”. However, program-
ming these clouds for a huge amount of data analysis remains a
challenge, since we have to be able to handle machine failures,
schedule processes, partition the data and so on. MapReduce[1]
has proven itself as a powerful and cost-effective framework for
data-intensive computing since it can hide these complexities. It
is very beneficial for scientists to use the MapReduce program-
ming model because it makes distributed computation easy.

MapReduce has been used in a variety of applications, includ-
ing not only log analysis and creating inverted indexes, initially
used by Google, but also in genome analytics[2], astronomy[3],
and other fields of scientific research. To handle large-scale data,
MapReduce utilizes a distributed file system to store the input
and output of data. Google File System[4] is used as the input
and output of the MapReduce in Google.

Hadoop is a widely used open-source implementation of
GFS/MapReduce and has been deployed to multi-thousand node
production clusters. Hadoop utilizes the Hadoop Distributed File
System (HDFS)[7] to store input and output data. However,
HDFS does not support the POSIX semantics since it is not re-
quired by MapReduce workloads. It does not support file modi-

1 Graduate School of Systems and Information Engineering, University of
Tsukuba

a) marilia@hpcs.cs.tsukuba.ac.jp
b) tatebe@cs.tsukuba.ac.jp

fication other than the append operation after once closed. Also,
HDFS does not support concurrent writes to a single file from
multiple clients. Lack of these features makes it difficult for
applications other than Hadoop MapReduce to access these file
systems, including legacy POSIX applications and MPI-IO ap-
plications. We have proposed a solution[9] to this problem by
implementing a Hadoop-Gfarm plugin that enables access to the
Gfarm file system from Hadoop MapReduce applications. Gfarm
file system[8] is a global distributed file system that has a POSIX
compliant API and can exploit data locality.

In this research we discuss the use of Hadoo-Gfarm plugin
in applications in wide area environment, and analyse the use
of replication in Hadoop-Gfarm to provide fault tolerance ca-
pability, since Gfarm’s replication methods differ greatly from
those of HDFS. However, replication is an essential part of mod-
ern distributed file systems to provide fault tolerance. We look
into providing a reliable solution to applications that make use of
POSIX-compliante systems without sacrificing performance by
using Hadoop-Gfarm plugin with replication.

This paper is structured as follows. Section 2 introduces
MapReduce and Hadoop technologies. Section 3 describes the
Gfarm file system and Gfarm-Hadoop plugin and Section 4 de-
scribes fault tolerance by analysing the replication process. Sec-
tion 5 shows the performance evaluation. Section 6 introduces
related work and section 7 concludes this paper.

2. Background
2.1 MapReduce

MapReduce is a popular parallel programming framework for
processing large datasets. MapReduce provides a simple API for
writing user-defined operations: a user only needs to specify a
serial map function and a serial reduce function. The implemen-
tation takes care of applying these functions in parallel to a large

c© 2013 Information Processing Society of Japan 1

Vol.2013-HPC-140 No.14
2013/7/31

IPSJ SIG Technical Report

set of data. The programming model of MapReduce splits a work-
flow into 3 phases: map, shuffle and reduce.

map :: (K1,V1)→ [(K2,V2)]

reduce :: (K2, [V2])→ [(K3,V3)]

The map function takes a key and value of arbitrary types K1 and
V1, and returns a sequence of (key, value) pairs of possibly differ-
ent types, K2 and V2. In the shuffle phase, all values associated
with the same key K2 are grouped into a sequence and passed
to the reduce function, which emits arbitrary key-value pairs of a
final type K3 and V3.

In the MapReduce architecture there is a single central mas-
ter node where Job Tracker runs. The job tracker manages all
slave/worker nodes and embraces a scheduler that assigns tasks
to idle slots. MapReduce master takes the location information
of the input files and attempts to schedule a map task on the ma-
chine that contains the input file. If that is not possible, it tries to
execute on the closest machine to the one holding the input data
file. This algorithm conserves network bandwidth and exploits
locality to minimize computation time.
2.1.1 Hadoop

Hadoop is open-source implementation of MapReduce cur-
rently being developed by Apache Software Foundantion. The
Hadoop platform is now commonly considered to consist of the
Hadoop kernel, MapReduce and Hadoop Distributed File Sys-
tem (HDFS), as well as a number of related projects - including
Apache Hive[6], Apache HBase[5] and others.

2.2 HDFS
HDFS is a distributed file system, which is normally used by

Hadoop. It is designed to hold very large amounts of data and pro-
vide high throughput access. Files are split into chunks which are
managed by different nodes in the cluster. Each chunk is repli-
cated across several machines, so that a single machine failure
does not result in any data being unavailable. However, HDFS re-
laxes some POSIX requirements in order to achieve high through-
put in streaming access.

In scientific research, it is often the case that researchers need
to use existing POSIX software such as MATLAB, as well as
MPI, which is widely used in high performance computing, can-
not run on HDFS. It is often necessary to import files of the
POSIX programs to a HDFS, run MapReduce on them, then ex-
port the results to a file system that can be read by a POSIX appli-
cation. Essentially, it needs to execute redundant copy and stor-
age operations.

3. Gfarm and Gfarm-Hadoop plugin
3.1 Gfarm

Gfarm file system is a global distributed file system that is con-
formable to the POSIX semantics. It has a similar architecture to
the HDFS and Google File System in terms of federating local
file systems on compute nodes. The Gfarm file system consists
of a metadata server (MDS) and I/O servers. The MDS manages
the system metadata including a hierarchical namespace, file at-
tributes and the replica catalog. I/O servers provide file access
to the local file system. The client can access Gfarm using the

Fig. 1 Interaction of Hadoop MapReduce and Gfarm file system

Gfarm client library. Also, Linux clients can mount the Gfarm
file system using the FUSE kernel module. Files stored in the
Gfarm file system can be replicated and stored on any node and
accessed by any node.

One big difference between Gfarm and many distributed file
systems is that Gfarm does not use file striping or divide the file
into blocks, like HDFS. In Gfarm large files are managed by a
file group, which is specified by a directory or file name with a
wildcard. Using file groups instead of large files gives us one big
afvantage over file striping, namely that by splitting large files
into groups we can explicitly manage file replica placement. This
is key for file location aware distributed data computing.

3.2 Gfarm-Hadoop plugin
The physical layout of HDFS and Gfarm are very similar. The

NameNode corresponds to the Gfarm MDS, and DataNodes cor-
respond to Gfarm I/O servers. Both file systems federate local
file systems to provide a single file system. Therefore, Gfarm
can be deployed in the same layout as HDFS. However, HDFS
splits files into chunks which are distributed across several ma-
chines. Hadoop MapReduce allocates map tasks corresponding
these chunks. Meanwhile Gfarm does not split files into chunks,
but the disk access pattern of Hadoop MapReduce tasks running
on gfarm can be the same as HDFS.

Suppose you run a MapReduce job on HDFS with 4 tasks, each
task processes the block pointed to by the indicated line. How-
ever, when you run the same MapReduce job on Gfarm, each task
processes either the first of last half of its designated files. In this
way, MapReduce tasks can be distributed among multiple disks
on the Gfarm file system, same as HDFS.

In [9] the Hadoop-Gfarm plugin has been implemented using
the Hadoop Common utilities that provides a FileSystem inter-
face to enable access to the Gfarm file system through the Java
Native Interface. It contains not only common filesystem APIs
such as open, read, write and mkdir, but also getFileBlockLo-
cations to expose the data location of file replicas. Using this
interface, Hadoop MapReduce can allocate tasks near input data,
as depicted in 1.

4. Fault Tolerance by Replication
Fault-tolerance is the property that enables a system to con-

tinue operating properly in the event of the failure of one more

c© 2013 Information Processing Society of Japan 2

Vol.2013-HPC-140 No.14
2013/7/31

IPSJ SIG Technical Report

components and not lose data even after some components of that
system have failed. In managing fault tolerance it is important
to eliminate Single Points of Failure (SPOF) of a system. The
current stable version of Hadoop, 1.1 release, provides a high de-
gree of fault tolerance to your jobs by restarting tasks and run-
ning speculative executions. However, on HDFS the master node
(NameNode) is still a SPOF and if it goes down, the system is
unavailable.

Distributed parallel computing requires reliability to be useful.
A single computer may fail once a year. With 365 computers, one
will fail everyday. If you have a cluster with 36,500 computers,
failures will occur every hour. Reliability is an essential feature
for cloud computing processings.

Hadoop-Gfarm plugin has been implemented without use of
replication, making it not a reliable system. In this research we
aim to provide fault tolerance to Hadoop-Gfarm plugin by mak-
ing use of replication, i.e. providing multiple identical instances
of the same system or subsystem, directing tasks or requests to
all of them in parallel. Different than HDFS, the Gfarm allows to
replicate not only the datanodes with processing data, but also the
Master node and its metadata information. This can solve the Sin-
gle Point of Failure that exists on HDFS. To implement such fea-
ture we need to install Hadoop, Gfarm and then Hadoop-Gfarm
plugin to be able to edit the replication configuration. Gfarm pro-
vides the gfrep and gfncopy commands to create replicas but also
has automatic replication system. We explain the basic replica-
tion system available in HDFS and Gfarm in the next session.

4.1 Replication in Distributed File Systems
Replication methods are available in both Hadoop and Gfarm,

but differ greatly. HDFS uses chain replication, meaning that by
the time the client finishes writing the data, the replicas have al-
ready been created. However, Gfarm create replicas in the back-
ground after the client has finished writing the data. Even if you
create replicas, write performances should not change.
4.1.1 Data Replication in HDFS

When writing data to a hadoop cluster, the client breaks the
data file into ”Blocks” and place those blocks on different ma-
chines throughout the cluster. Each block will be replicated in
the cluster as its loaded. The standard setting for Hadoop is to
have 3 copies of each block in the cluster. This can be configured
with the dfs.replication parameter in the hdfs-site.xml.

As data for each block is written into the cluster a replication
pipeline is created between the data nodes, meaning that as a data
node is receiving block data it will at the same time push a copy
of that data to the next node in the pipeline. We can easily under-
stand that Hadoop uses a lot of network bandwidth and storage.
Since Hadoop usually treats very big files and each file will be
replicated onto the network and disk 3 times.

The current gfarm-hadoop plugin was implemented and tested
with dfs.replication parameter set to 1, that means that only one
version of the data file was stored and replicas were not created
in the system.
4.1.2 Data Replication in Gfarm

Gfarm has many ways to support replication[14]. The biggest
difference from HDFS and Gfarm replication is that the current

Fig. 2 Replica system on HDFS and Gfarm

version of Gfarm replication process is in asynchronous mode.
That means the replication only happens when a file is closed by
its last writer. For a MapReduce application, it means the net-
work bandwidth and system CPU will not be affected during the
execution of the job.

To create replicas on Gfarm you can use the gfrep, that will
generate the specified number of copies on the spot, and you can
also use the gfncopy, that manipulate the number of replicas au-
tomatically created for a filesystem. The later command adds an
extended attribute to the specified directory that every time a new
file is created under that directory, automatically number of repli-
cas will also be created.

In the same way as HDFS checks Datanodes availability peri-
odically, Gfarm also make sure all replicas are available for the
user and when a node goes down, it will automatically replicate
the data in another node.

The figure 2 highlights the difference of replication system be-
tween HDFS and Gfarm.

5. Performance Evaluation
5.1 Evaluation environment and configuration tunning

Performance evaluation for Gfarm-hadoop plugin regarding
scaling with number of cluster nodes has been already demon-
strated by [13]. So in this paper we focused on analysing the im-
plementation example of a running cluster available on InTrigger
system[15] with 14 nodes, with 1 machine dedicated to Meta-
data Server/Name Node and Job Tracker, and 13 compute nodes.
Each machine has the configuration as described in Table 1 and
the software configuration as listed in Table 2.

Hadoop has an extensive set of configurations available for tun-
ning its performance. This time we made the minimum required
changes from the default values. The used settings are listed in

Table 1 Machine Specification

CPU 2.4GHz Quadcore Xeon E5620 (2 sockets)
Memory 24GB
Disk ST9500430SS 500GB

Table 2 Software Specification

OS Linux 2.6.26-2-amd64 SMP
Hadoop 1.1.2
Gfarm 2.5.8.1

c© 2013 Information Processing Society of Japan 3

Vol.2013-HPC-140 No.14
2013/7/31

IPSJ SIG Technical Report

Table 3 Hadoop Settings

Property Name Property Value
mapred.tasktracker.map.tasks.maximum 2
mapred.tasktracker.reduce.tasks.maximum 2
mapred.map.tasks 26
mapred.reduce.tasks 13
dfs.replication 3
dfs.block.size 134217728

Table 3.
Also, to make sure Gfarm had the replication settings turned on

automatically, a path for /home/$USER was created with the gn-
copy attribute set to 3. This way, everytime a file is written under
/home/$USER on gfarm, 3 replicas will be automatically created
in different nodes. You can check the location of the replicas by
using the command gfwhere.

5.2 Benchmarks
Hadoop provides pre-installed benchmarks like TeraGen, Tera-

Sort and TeraValidate. We used a mixed of benchmarks for this
analysis, executing 4 kinds of benchmarks to analyze the write,
read, sort and grep functions.

We chose the TeraSort benchmark because it is probably the
most well-known Hadoop benchmark, since in 2009 Yahoo! set
a record by sorting 1 PB of data in 16 hours in a Hadoop cluster
of 3800 nodes[16]. In order to test the write performance, we ex-
ecuted TeraGen benchmark to generate 10GB of data. TeraGen
generates random data that can be used as input for a subsequent
TeraSort run. It uses only Map tasks and is used to evaluate the
write performance of the node.

For TeraSort applications the data size of the input and output
are the same. It has a initial Map phase and also Reduce phase,
so this bechmark is used to test the write and read capabilities.

TeraValidate creates one map task per file in TeraSort’s output
directory. The map task ensures that each key is less than or equal
to the previous one and also generates records with the first and
last keys of the file. The reduce tasks ensures that the first key of
file i is greater than key of file i-1. This benchmark tests the read
function.

Finally we used the grep application. It scans through all the
data, searching for the given input string. Grep benchmark is a
read-intensive application because the output data size if much
smaller than the input data size.

However, since Gfarm replication takes place in the backend,
we executed these 4 benchmarks in sequence in one line only
command. By doing so, we want to make sure the next process
can run while the replication is being executed in the backend.
Each set of the 4 benchmarks was executed 5 times and we used
the average the represent the time execution for each benchmark
individually.

5.3 Results
The results from this experiment are shown on 3. As we can

see, the Teragen benchmark is 57% faster on Gfarm than HDFS.
We believe this is due to the fact HDFS finishes writing all its
replicas before closing the file, as we explained on the previous
section.

Fig. 3 Benchmark results for Gfarm and HDFS with replica

For the following benchmarks there are not so significant dif-
ferences. Gfarm is sligthly faster than HDFS on average, but
this is less than 5%. We can understand that for initial mapre-
duce jobs, the Gfarm system performes higher than HDFS. This
is probably because Gfarm usually writes to the filesystem once
and finishes the job, while HDFS writes all the 3 replicas at the
same time. Also, during the first job there is no replication pro-
cess being executed on the backend, so the overhead is relatively
low when compared to the following jobs. However, for the fol-
lowing jobs, the performance does not change significantly. This
may be showing that backend replicas does not affect the normal
MapReduce processes on Gfarm, but does not add performance
improvent when compared to HDFS.

This results shows that using Hadoop with Gfarm with replicas
is a realiable way to use a POSIX-compliant filesystem with equal
performance as HDFS. We still need to averiguate the real cases
where the user needs to transfer the data input to the distributed
filesystem. Gfarm can provide a solution to this transfer period,
while HDFS requires double transfer for import and export of the
data. We also want to verify the amount of real jobs that can be
executed with single mapreduce jobs, and those that need to run
many interactions.

6. Related Work
Trying to use a different distributed file system with Hadoop

has been explored in many ocasions, but most of them requires
changes to the system configuration or does not support most im-
portant features. In [10] the authors compare HDFS and PVFS,
and show that PVFS can perform as well as HDFS. However,
they have changed the configuration, increasing the default 64
KB stripe size to 64 MB, the same as the HDFS block size.
This change may cause performance degradation in other applica-
tions. CloudStore [11] is a distributed file system integrated with
Hadoop through the Java Native Interface. However, CloudStore
lacks many of the required features necessary for a general pur-
pose file system, such as security features and file permissions.
The GPFS on Hadoop Project [12] allows Hadoop MapReduce
applications to access files on GPFS. However, it requires chang-
ing block size to 128 MB for MapReduce and 128 KB block size
for online transaction processing. This means the data cannot re-
ally be shared by MapReduce applications and other applications
even in the same file system since the optimal block size is differ-
ent.

c© 2013 Information Processing Society of Japan 4

Vol.2013-HPC-140 No.14
2013/7/31

IPSJ SIG Technical Report

Also, recent projects have tried to make hadoop more reliable
with projects called Hadoop High Availability[17]. The next ver-
sion of Apache Hadoop 2.0.5, still in alpha version, includes a
new concept of Standby NameNode, a secondary namenode that
would assume control in case the main namenode fails. However,
this is still in development state.

7. Conclusion
In this paper we analyzed the currently mainly used solutions

for High Performance Cloud Computing as a file system to the
MapReduce framework. The MapReduce framework has been
more and more utilized for data analysis processing of large scale
data. Distributed File System with POSIX compliance is still
a strong requirement for scientific applications. The Hadoop-
Gfarm plugin enables Hadoop MapReduce to be excute on Gfarm
File System. However, this plugin does not provide fault toler-
ance capabilities, which is essential in a scalable distributed com-
puting system.

The HDFS filesystem creates replicas at the moment of writing
data to the system. If the replica settings is set to 3, the system
will write the data to 3 locations at the same time before finalizing
the process. However, the Gfarm filesystem has an assynchronous
way of creating replicas. It means that the data is initial written to
one node and after the client finalizes the process, the replication
then takes place.

We have implemented a fault tolerance design to gfarm-hadoop
plugin by making use of replicas, that can be configured to be au-
tomatically created. Using of the default benchmarks provided by
Hadoop, we tested the system with the Teragen, Terasort and Ter-
avalidate benchmarks. Since Gfarm’s replication structure runs
in the background, the replication does not affect performance re-
sults. More over, for the initial mapreduce jobs, the Gfarm appli-
cation can be 57% faster than HDFS, since HDFS finishes writing
all its replicas before closing the file.

Our future work will include performance evaluation using sys-
tems like Pig[18], a platform for analyzing large data sets that
consists of a compiler that produces sequences of Map-Reduce
programs. By having such benchmarks where mapreduce tasks
are created sequentially, we could analyze in detail with the
background replication influences the system performance or not.
Also, we want to analyze examples where you need to import
your data. Since HDFS is not POSIX-compliant, most of the ap-
plications need to spend time transfering the data in and out of the
filesystem. Gfarm-hadoop allows the user to save this time and
not sacrifice performance.

References
[1] Jeffrey Dean, Sanjay Ghemawat. “MapReduce: Simplified Data Pro-

cessing on Large Clusters”. Proceedings of OSDI ’04, 2004.
[2] Ben Langmead, Michael C Schatz, Jimmy Lin, Mihai Pop and Steven

L Salzberg, “Searching for snps with cloud computing,” Genome Biol
2009, 10:R134, 2009.

[3] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, John
Good, “The cost of doing science on the cloud: The montage exam-
ple”, 2008.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system”,
SIGOPS - Operating Systems Review, Vol. 37, No. 5, pp. 2943, 2003.

[5] Apache, “HBase”. DOI: http://wiki.apache.org/hadoop/hbase.
[6] Apache, “Hive”. DOI: http://wiki.apache.org/hadoop/hive.

[7] Apache,“Hadoop Distributed File System architecture”. DOI:
http://hadoop.apache.org/common/docs/current/hdfs design.html.

[8] Osamu Tatebe, Kohei Hiraga, Noriyuki Soda, “Gfarm grid file system”,
in New Generation Computing, Ohmsha, Ltd. and Springer, Vol.28,
No.3, pp.257-275, DOI: 10.1007/s00354-009-0089-5, 2010.

[9] Kazuki Ohta and Shunsuke Mikami. Hadoop-Gfarm. DOI:
https://gfarm.svn.sourceforge.net/svnroot/gfarm/gfarm hadoop/trunk/.

[10] Wittawat Tantisiriroj, Swapnil Patil, and Garth Gibson, “Data-
intensive file systems for internet services: A rose by any other”, CMU-
PDL-08- 114, 2008.

[11] “CloudStore,” in DOI: http://kosmosfs.sourceforge.net.
[12] Karan Gupta, Reshu Jain, Himabindu Pucha, Prasenjit Sarkar, Dinesh

Subhraveti, “Scaling highly-parallel data-intensive supercomputing ap-
plications on a parallel clustered file system,” The SC10 Storage Chal-
lenge, 2010.

[13] Shunsuke Mikami, Kazuki Ohta, Osamu Tatebe: ”Using the Gfarm
File System as a POSIX compatible storage platform for Hadoop
MapReduce applications”, IEEE/ACM International Conference on
Grid Computing (Grid 2011).

[14] Grid Datafarm, DOI: http://datafarm.apgrid.org/.
[15] InTrigger, DOI: http://www.intrigger.jp/.
[16] Hadoop Sorts a Petabyte in 16.25 Hours and a Terabyte in 62 Seconds,

DOI: http://developer.yahoo.com/blogs/hadoop/hadoop-sorts-petabyte-
16-25-hours-terabyte-62-422.html.

[17] HDFS High Availability, DOI: http://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/HDFSHighAvailabilityWithNFS.html.

[18] Apache Pig, DOI: http://pig.apache.org/.

c© 2013 Information Processing Society of Japan 5

Vol.2013-HPC-140 No.14
2013/7/31

