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GPU の完全仮想化

鈴木 勇介1,a) 加藤 真平2,b) 山田 浩史3,c) 河野 健二1,d)

概要：Graphics processing units (GPUs) は最先端のメニーコア計算デバイスとなっていて，その最も大
きな利点は超並列計算による性能のスケーラビリティである．しかしながら， GPU は仮想化の機能を欠
いており，特定の用途への利用は制限されている．GPU をシステムにおける第一級の計算資源とするた
めに，本研究では， Xen を用いた GPU の仮想化を提案する．特に，既存の多くのプログラミングフレー
ムワークを利用すべく，本研究では GPU の完全仮想化を実現する．我々のマイクロベンチマークの評価
の結果，GPU ワークロードが本質的に時間が掛かるとしても，GPU 仮想化のオーバーヘッドは低く抑え
られることがわかった．
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1. Introduction

Graphics processing units (GPUs) are becoming very

powerful platforms in the parallel computing market, em-

bracing the concept of many-core compute devices. Ap-

plication domains of GPUs are increasingly spread rang-

ing from embedded systems to supercomputers. Exam-

ples include autonomous vehicles [1], software routers [2],

encrypted networks [3], storage and file systems [4], and

a plenty of scientific applications. Such a rapid growth

of GPUs is encouraged by recent advances in the pro-

gramming language. CUDA and OpenCL are particular

instances of the programming language that facilitated

general-purpose computation on GPUs, a.k.a., GPGPU.

Due to emergence of GPGPU programming, GPUs are

becoming more and more generalized for compute appli-

cations. Notably the peak performance of GPUs in the

current state of the art exceeds 3 Tela FLOPS, integrat-

ing more than 1,500 cores on a single chip, which is nearly

equivalent of 19 times that of traditional microprocessors

such as Intel Core i series.

Assuming that this performance trend continues, the
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GPU may turn into an on-chip supercomputer platform

in the future. Instead of building a cluster of wimpy

nodes, cloud computing services could be provided with

just a single node employing the GPU. What is cur-

rently lacking in this scenario is a reliable platform of vir-

tual machines (VMs) to isolate client accesses to GPU

resources. Although first-class GPU resource manage-

ment in multitasking environments has been studied re-

cently [5], [6], [7], system support for GPU virtualization

is limited to the programming runtime level and para-

virtualization [8], [9], [10], [11], [12], [13], [14]. Albeit a

long history of virtualization technology, an integration of

GPUs still remains an open problem.

Contribution: This paper presents Gxen, an open ar-

chitecture of GPU virtualization using Xen [15]. Gxen

is distinguished from previous work in that we support

“full” virtualization in the hypervisor layer. There is no

need to modify device drivers and runtime libraries. We

provide the design and implementation of Gxen, disclos-

ing details of GPU virtualization mechanisms. We also

demonstrate that the overhead imposed on full virtualiza-

tion is not very significant given that GPU workload is

time consuming by nature. To the best of our knowledge,

this is the first piece of work that answers the question:

why not fully virtualize GPUs?

Organization: The rest of this paper is organized as

follows. Section 2 presents the system architecture of

Gxen. Section 3 describes the status and assumption of our

1ⓒ 2013 Information Processing Society of Japan

Vol.2013-OS-126 No.14
2013/7/31



情報処理学会研究報告
IPSJ SIG Technical Report

Physical

GPU

Virtual

GPU

device model

A3

VM2

device

driver

Physical Accesses

to

a Physical Accelerator

Virtual Accesses

to

Virtual Accelerators

communications

between A3 and VGPU

Virtual

GPU

device model

VM1

device

driver

図 1 Conceptual architecture of Gxen.

prototype implementation. Section 4 provides a brief per-

formance evaluation using a microbenchmark. Section 5

discusses related work, and this paper concludes in Sec-

tion 6.

2. System Architecture

Figure 1 illustrates the conceptual architecture of Gxen.

The device interface, a.k.a., the device model, of the vir-

tual GPU is provided with each VM where a native GPU

device driver is running. Any access to the virtual GPU

is managed by the hypervisor and is routed to the device

model. Hence direct accesses to the physical GPU are

not allowed in Gxen. The device model in turn sends the

access information to the resource manager, called Aggre-

gator of Accesses to Accelerators (A3) in this paper, which

arbitrates accesses to the physical GPU and manages its

status.

A3 is a primary component of Gxen. It aggregates all

accesses to the physical GPU while managing the virtual

GPUs. The communication between the device model and

A3 is based on a client-server model. A3 virtualizes re-

sources of the physical GPU and assigns them to each

virtual GPU. Accesses to the virtual GPU are aggregated

in A3. While arbitrating these accesses, A3 modifies them

to manage the status of the physical GPU. This architec-

ture allows a single physical GPU to be used as multiple

logical GPUs among multiple clients. As a result, the

physical GPU is successfully multiplexed among VMs.

The main objective of A3 is the virtualization and sepa-

ration of (i) the device memory, a.k.a., the video memory

(VRAM), and (ii) the hardware channels of the GPU. A3

is also required to handle memory-mapped I/O (MMIO)

accesses with respect to the PCIe base address registers

(BARs). To enhance the performance of virtual GPUs,

A3 uses Intel Virtualization Technology for directed I/O

(VT-d) [16]. Switching the entries of VT-d accordingly,

the guest system physical memory space of an appropri-

ate VM is implicitly targeted for the direct memory ac-

cess (DMA) from the physical GPU at runtime. Thus, the

physical GPU is accessed by no more than one VM at the

same time.

2.1 Translation of Physical GPU Addresses

The GPU incorporates a VRAM on board as a fast

high-bandwidth device memory. This VRAM provides

continuous physical memory addresses. Since a guest de-

vice driver assumes that it occupies this memory space

starting at address “0x0”, we must translate guest de-

vice physical addresses into host device physical addresses

transparently.

A3 splits the VRAM of the physical GPU into multiple

pieces for the virtual GPUs. It also reserves a particular

region of the VRAM for A3 itself, which is to be used for

such data sets that must reside in the VRAM for GPU

virtualization. Any data access to the virtual GPU spec-

ified by guest device physical addresses are translated to

the corresponding host device physical addresses by A3.

For example, most GPUs support such I/O functionality

that allows the CPU to read and write the VRAM space

directly specifying the device physical address. To multi-

plex this type of direct read and write access, which does

not use hardware-oriented DMA commands, the transla-

tion of physical GPU addresses is an essential task of A3.

2.2 Shadowing of GPU Page Tables

GPU contexts run in their own virtual memory space

and physical addresses are not visible to programmers. In

fact, CUDA does not provide an API to control physical

addresses of the GPU. When accessing data, virtual ad-

dresses are translated to the corresponding physical ad-

dresses through GPU page tables. In case of NVIDIA

GPUs, GPU page tables are provided as part of GPU

channels. Almost all hardware resource primitives for the

GPU are managed based on these GPU channels accord-

ing to the NVIDIA’s design. In other words, the isolation

of GPU contexts is achieved through the GPU channels.

A3 creates shadow GPU page tables in the reserved

VRAM area, translating guest device virtual addresses to

host device physical addresses. By design, a device driver

needs to flush TLB caches every time a GPU page ta-

ble is updated. A3 detects this operation and accordingly

updates the corresponding GPU shadow page table.

An issue of concern is raised when malicious guest VMs

exist in the system. If some malicious guest device driver

creates a real GPU page table configured to point to
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図 2 Shadow channel RAMIN and shadow page tables.

the VRAM area allocated to other VMs, the isolation of

virtual GPUs is violated, because A3 cannot detect di-

rect accesses from GPU channels (contexts). It should

also be noted that real GPU page tables are referenced

from the special VRAM area called the instance memory

(RAMIN). Since the RAMIN is part of the VRAM, it can

also be altered by malicious VMs.

In order to overcome this issue, A3 creates the shadow

channel RAMIN in the reserved VRAM area. The in-

teraction of the shadow channel RAMIN and the shadow

page tables is illustrated in Figure 2. The shadow channel

RAMIN is designed to reference the shadow page tables,

while it is referenced through GPU channel registers. By

design, these GPU channel registers are mapped onto the

channel-based PCIe address space and they can never be

accessed from channels.

2.3 Separation of PCIe BARs

The GPU allocates MMIO regions to the PCIe BARs as

a means of allowing the CPU to directly read and write the

VRAM. They often serve for GPU control registers and

dynamic memory windows, called apertures. The aper-

tures are used to make the specified areas of the VRAM

visible and accessible to the CPU through the special GPU

page tables. Note that this specification is more depen-

dent on hardware vendors. For simplicity of description,

we herein restrict our attention to NVIDIA GPUs.

By design, each PCIe BAR is exclusive for a physi-

cal GPU. Therefore A3 virtualizes the PCIe BARs and

publishes them to virtual GPUs. When the system is

loaded, we also scan the special GPU page tables pre-

configured for the apertures to reconstruct them in the

reserved VRAM area. Remember that data accesses to

the apertures are managed by the GPU page tables. Un-

fortunately multiplexing of the apertures requires switch-

ing of the page tables even for a single byte access. Such

a switching operation incurs a significant performance

penalty largely due to the overhead of TLB flushes. It
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is also partly impossible to multiplex the apertures be-

cause the device driver may use these areas for the man-

agement of GPU channels, which should never be evicted.

We find that the virtualization of PCIe BARs needs a way

of data accesses that does not use the GPU page tables.

Fortunately NVIDIA GPUs as well as most other GPUs

support direct VRAM accesses based on physical address

offsets. Therefore A3 hooks data accesses to the apertures

and translates them to host device physical addresses in

order to use the above direct VRAM access mechanism.

2.4 Separation of GPU Channels

The number of GPU channels is limited in hardware

and they are numerically indexed. The device driver as-

sumes that these indexes start from zero. Since the same

index number cannot be assigned to different GPU chan-

nels, the separation of GPU channels must be supported

to multiplex VMs.

A3 divides physical GPU channels into the same number

of virtual channels as VMs. Real indexes of GPU channels

are hidden from VMs but virtual indexes are assigned to

their virtual channels. Mapping of real and virtual indexes

is managed by A3 as shown in Figure 3.

When a GPU channel is used, it must be activated

through the playlist where the active channel index num-
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ber is written. In virtualization, we use virtual indexes in-

stead of real indexes. Therefore the index number written

to the playlist must be translated accordingly. To sup-

port this translation, A3 provides the shadow playlist as

shown in Figure 4. Each virtual GPU is assigned with one

shadow playlist, which is created in the reserved VRAM

space. When the virtual GPU is selected for run, the

corresponding playlist is used as the physical playlist.

2.5 Poll Area Mapping

The GPU operates based on commands issued from the

CPU. There is a command buffer prepared for each GPU

channel, which has a fixed size of a continuous region on

the virtual memory space allocated to the specified aper-

ture. It is mostly used to control the channel.

This command buffer may be architecture-dependent.

Assuming that we use NVIDIA GPUs, the command

buffer is mapped to a particular continuous region of PCIe

BAR1 aperture and is entitled with “Poll Area”. Since we

can change the location of this Poll Area by modifying the

value of a GPU register, the memory space cannot be as-

signed for virtual GPUs statically. To successfully execute

GPU requests from VMs, we need to handle each VM’s

operations related to this area.

A3 maps the physical Poll Area to an appropriate chan-

nel at runtime. An overview of this mapping is depicted in

Figure 5. A3 prepares a page table that maps virtual-to-

physical addresses for the Poll Area, and sets it to a GPU

register. By performing the channel translation described

the previous section, each GPU request is executed ap-

propriately.

3. Implementation

We implement Gxen using Xen 4.2.0. The underlying

operating system is based on Linux Kernel v3.6.5. In the

Xen environment, the Dom0 VM uses Ubuntu 12.10 while

DomU VM uses Fedora 16. We assume NVIDIA GPUs

and an open-source device driver called Nouveau, which

is provided as part of the mainline Linux kernel. Gdev [5]

表 1 List of Gdev benchmarks.

Benchmark Description

MADD NxN matrix addition

MMUL NxN matrix multiplication

is used as the CUDA runtime driver providing a GPGPU

programming environment. Note that Gxen will not re-

quire modifications at all to Linux Kernel, Nouveau, and

Gdev. This is a primary advantage of full virtualization.

Limitation: The current prototype of Gxen does not

complete the implementation of shadow page tables yet.

A small piece of code is manually added to Nouveau to

make it work with Gxen but it will be removed in the

near future. Note that this manual modification is a mi-

nor factor and does not influence performance. We also

still partly work in progress for multiplexing of VMs. In

particular, GPU channels are not automatically switched

among VMs. Instead we run VMs in a pre-configured

order for the experiment.

4. Evaluation

We now provide a basic performance evaluation for Gxen

using microbenchmarks. The experimental results encour-

age the GPU to be fully virtualized if applications deal

with a practical data size.

4.1 Experimental Setup

We ran CUDA applications by using Gdev [5] as

CUDA runtime. For comparison, we also measure their

performance in native Linux (Native), and Xen PCI

Passthrough (Pass-through) where the underlying GPU is

exposed to a VM via the PCI-passthrough function. We

first measured typical matrix calculation programs shown

in Table 1.

We used a machine that has Intel Xeon E5-2470 proces-

sor and NVIDIA Quadro 6000. We ran Linux 3.6.5 and

Nouveau module as the GPU device driver.

4.2 Results

The results are shown in Fig. 6 and 7. The x-axis rep-

resents execution time normalized by the result of Native,

and the y-axis is the matrix size. The figure reveals that

overhead incurred by Gxen gets negligible. Since the main

task of Gxen is to intercepts guest kernel GPU operations

such as PCIe BARs access and page table updates, the ex-

ecution of matrix calculation is not almost affected. When

the matrix size is bigger, the execution times in Gxen is al-

most the same as ones in the others. The execution time

in Gxen is shorter than the others one when the matrix
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図 6 Relative speed of MADD benchmark.

図 7 Relative speed of MMUL benchmark.

表 2 Detailed times of MADD with N = 128.

Native Pass-through Gxen

Initialize (ms) 20.14 14.57 7710.24

Kernel (ms) 3.65 0.53 0.27

Finalize (ms) 1.93 0.36 221.74

Total (ms) 25.72 15.46 7932.25

sizes are smaller, due to mysterious behavior of the GPU.

Table. 2 exhibits an analysis of the execution of MADD

whose N is 128. Initialize is time for initiating a GPU

context, Kernel is the GPU kernel execution time, Fi-

nalize is time for finalizing a GPU context, and Total is

the total execution time. This result reveals that Gxen

takes more time for Initialize and Finalize than Native

and Pass-through. Because the VM sends many requests

to GPU in initiating and finalizing a GPU context, Gxen

routes the requests from the device model to A3, and from

A3 to the physical GPU. This overhead gets more smaller

or negligible as time for Kernel is longer in cases where N

is longer. We believe that this overhead is not a serious

problem since typical GPGPU workloads perform their

calculation for a long time, which means time for Kernel

is typically long.

5. Related Work

To execute GPU applications on VMs, some approaches

support APIs for GPU computing in the VMs, hook the

APIs, and forward the requests to the real GPU like a

proxy. GViM [8], vCUDA [9], and Pegasus [10] pro-

vide NVIDEA’s CUDA programing API in the VMs so

that GPGPU applications running on them can be exe-

cuted. rCUDA [11] also supports the API and sends the

requests to remote GPUs. VMGL [12] provides OpenGL

API inside VMs and Tien et al. present a way to provide

OpenCL API using KVM [13]. In these systems, we can-

not use “as-is” existing software stack in VMs; we have

to insert into VMs special modules that forward the re-

quests of GPU applications to the real GPUs. Since our

approach fully virtualizes GPUs, we can build our own

software stack on the VMs.

VMware SVGA II[14] para-virtualizes GPUs. By load-

ing a special device driver, we can execute GPU appli-

cations inside VMs. Since our approach is to virtualize

GPUs fully, we can load any device driver, which means

we can use any software stack we want.

There are several approaches to efficiently manage re-

source of GPUs. TimeGraph [6] schedules GPU com-

mands at the device-driver-level in a prioritized manner.

Gdev [5] is a kernel-level mechanism that provides a GPU

scheduling scheme to logically partition a physical GPU

into multiple GPUs. GPUfs [17] allows GPU code to ac-

cess the host’s file systems by providing POSIX-like API.

While these approaches focus on the efficient management

of GPUs, our approach focuses on the virtualization of

GPUs. We can combine our approach with these ones to

efficiently virtualize GPUs.

6. Conclusion

We have presented Gxen, an open architecture of GPU

virtualization. We provided an open-source prototype

implementation of Gxen and its overhead evaluation. It

turned out that full virtualization of the GPU adds some

performance penalty to the initialization of GPU chan-

nels, but the execution times of GPU contexts are not

very affected. To the best of our knowledge, this is the

first piece of work that achieved full virtualization of the

GPU.

In future work, we will complete the remaining pieces

of coding related to the shadow page table and multiplex-

ing of VMs. We will also allow multiple GPU channels
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assigned to different VMs to run simultaneously, while

this paper assumed that VMs access the GPU exclusively.

This simultaneous executions of VMs on the GPU increase

the total throughput of the system.
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