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高可用システムのための待機系仮想マシンの集約
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概要：仮想化環境において，ハードウェア障害はサービスの可用性を著しく低下させる要素のひとつであ
る．ハードウェアが故障すると，その上で動作している仮想マシン (VM)が全て停止してしまうためであ
る．そこで，VM の複製を別の物理ホスト (待機系ホスト)に作成し，ハードウェア障害が生じたらその複
製 VM に制御を切り替える方式が提案されている．しかしながら，保護したい物理ホストが複数ある場
合，同数の待機系ホストを用意しなければならない．そのため，待機系ホストの管理コストや電力コスト
がかさばりがちになる．本研究では，複製 VM の集約を実現する Backup VM Consolidation を提案する．
複製 VM を集約することで，待機系ホスト台数の減少を可能にする．待機系 VM を集約するために，VM
のメモリ情報に着目し，buffer cache といった起動に必ずしも必要のないメモリを転送せず，複製 VM の
メモリサイズを小さく保つ．提案手法を Linux 3.6.0 および Qemu 0.15.1 上に実験を行った．実験結果よ
り，提案手法が複製 VM のメモリサイズを小さくできることがわかった．
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Abstract: Users have come to expect 24× 7 availability even for simple non-critical applications. Handling
hardware failures is crucial to achieve high available services in virtualized environments because all the
virtual machines (VMs) fail on the failing machine. Virtualization-based high availability is attractive for its
cheap nature but it does not come for free; one backup machine is necessary to protect one primary machine.
To survive the failure of any single machine in the data center, the number of physical machines must be
doubled. This paper proposes backup VM consolidation that advances the cheap nature of virtualization-
based high availability. The backup VM consolidation enables one backup machine to protect two or more
machines, and thus can reduce the number of backup machines and achieves the availability in proportion
to the number of available backup machines. The key insight behind the backup VM consolidation is that
the whole memory image is not necessarily synchronized between a primary and backup machines. We im-
plemented a prototype on Linux 3.6.0 and QEMU 0.15.1. The experimental results show that our prototype
successfully consolidates backup VMs and reduces required physical memory of backup machines.

Keywords: High Availability, Virtual Machines, Cloud Computing

1. Introduction

Handling hardware failures is crucial to achieve high

available services. Users have come to expect 24 × 7

availability even for simple non-critical applications, and

businesses can suffer costly and embarrassing disruptions
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when hardware fails. Hardware failures become more se-

vere in virtualized environments in data centers and cloud

platforms. Since multiple VMs are consolidated on a small

number of physical machines, a hardware failure affects all

the services running on the failed machine.

Virtualization-based high availability [1], [2] is attrac-

tive for cheap high availability. In virtualization-based

high availability, no special-purpose hardware or reengi-

neering of existing software stacks is needed. This fea-

ture makes high availability handy for the services that

prefer higher availability but whose affordable cost is lim-

ited. In non-mission-critical commercial systems, higher

availability is preferred but the affordable hardware cost
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is limited due to severe price competition in the market.

In virtualization-based high available systems, a primary

machine can be protected with an off-the-shelf machine.

This paper describes backup VM consolidation, which

advances the cheap nature of virtualization-based high

availability in data centers or cloud environments. To

protect all the machines in a data center, the number

of machines must be doubled with existing techniques of

virtualization-based high availability. A backup machine

retains the complete copy of all the VMs on a primary

machine. This implies that a backup machine has mem-

ory equal to or greater than the primary machine. If the

backup machine does not have enough memory to retain

the memory images of the VMs, it must swap in/out mem-

ory pages from/to disks. The overhead caused by disk

accesses cannot be accepted in virtualization-based high

available systems. The backup machine receives updated

memory pages at very high frequency — as often as every

25ms in Remus — to keep consistency between primary

and backup machines.

In the backup VM consolidation, a single backup ma-

chine can protect more than one primary machine. A

key insight behind the backup VM consolidation is that

the whole memory image is not necessarily retained by a

backup machine. If we can reduce the amount of memory

that must be synchronized between primary and backup

machines, a backup machine can retain more VMs than a

primary machine. In backup VM consolidation, memory

pages are that can be reconstructed after a failure oc-

curs are not synchronized between between primary and

backup machines.

Backup VM consolidation enables the trade-off between

the availability and the cost of backup machines. In the

existing approach, if we have one backup machine for two

primary machines, we have to choose one primary that

should be protected. In the backup VM consolidation,

both of the primaries can be protected by a single backup

machine. If one of the primaries fails, the backup ma-

chine takes over the failed primary. If the other primary

also fails, it cannot be protected because there is only one

backup machine.

A prototype has been implemented in Linux 3.6.0 and

QEMU 0.15.1, and some experiments are conducted. The

experimental results show that our prototype successfully

reduces the size of memory images of backup VMs.

2. Backup VM Consolidation

In backup VM consolidation, we assume that all the

図 1 Basic concept of backup VM consolidation

図 2 Basic approach. In backup VM consolidation, no soft

states are transferred to backup machines.

machines (at least a primary machine and a backup ma-

chine) share a single storage. In large-scale data centers,

a storage system is usually shared by a number of physi-

cal machines because a share storage usually reduces the

maintenance costs and is superior in reliability. In this

configuration of data centers, a backup machine can ac-

cess to the storage that a primary machine uses to store

its persistent data. This assumption plays an important

role in our design of backup VM consolidation.

Figure 1 illustrates the basic concept of backup VM

consolidation. As shown in this figure, a memory image

that must be retained in backup machines are shrunk in

backup VM consolidation. By shrinking or distilling a

memory image of a primary VM, a single backup machine

can retain virtual machines of more than one physical ma-

chine.

In backup VM consolidation, memory pages are divided

into two classes: 1) soft pages and 2) hard pages. A

soft page is a memory page that can be reconstructed

from the data saved in shared storage in a data center.

File cache is a typical example of soft pages. Since the

file contents can be fetched from the shared storage af-

ter the backup takes over the primary, backup VMs need

not retain the memory pages (i.e, page cache) used for

file cache. A hard page is a memory page that cannot be

reconstructed from the data in shared storage. Memory

pages used for heap and stacks are typical examples of

hard states. Backup VM consolidation synchronizes only

the hard states of each protected VM between primary

and backup machines. This saves the memory space in

backup machines and enables the consolidation of more

VMs than the primary machine.

Figure 2 illustrates the basic behavior of backup VM
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consolidation. When a memory image must be synchro-

nized between a primary and backup machines, the guest

operating system (OS) notifies the VMM of the memory

usage information that describes which memory page is

soft. Using this information, the VMM running on the

primary machine removes all the soft pages from the pages

that must be transferred to the backup machine to keep

the consistency of memory images between the primary

and backup machines. By doing this, backup VM consol-

idation reduces the memory size of backup VMs.

In our approach, soft states such as page caches are not

transferred to backup machines, there is the possibility

that the performance of the resumed VM is terribly low

because all the page caches are gone and must be fetched

from the shared storage. This performance penalty is pe-

culiar to our backup VM consolidation. In the conven-

tional virtualization-based high availability systems, all

the page caches are kept consistent between a primary

and backup machines. Therefore, once the backup ma-

chine resumes its operation, the expected performance is

the same as the primary machine if the machine of the

same specification is used.

We believe that this restriction of the backup VM con-

solidation can be mitigated if we regard extremely hot

page caches as hard states (not soft states).

3. Design and Implementation

We designed a mechanism to embrace backup VM con-

solidation, and implemented a prototype on Linux 3.6.0

and Qemu 0.15.1. We make use of Kemari [2] to replicate

a VM state on another physical host. Kemari transfers

memory pages to a backup machine in an iterative man-

ner like Remus [1].

Our prototype consists of three modules: softpage mon-

itor, address keeper, and page sender. The softpage mon-

itor, which runs in the guest Linux kernel, lists up the

addresses of soft pages and sends them to the host Linux

kernel. It also updates the kernel data objects for soft-

pages when the backup VM begins. The address keeper,

which runs in the host Linux kernel, receives the address

of soft pages from softpage monitor and maintains the

address list. In addition, it sends an event to trigger the

update of kernel data objects to be performed by the soft-

page monitor. The page sender, which runs in a QEMU

process, avoids sending softpages to the backup machine.

Behavior of the current prototype is overviewed in

Fig. ??. Fig. ??(a) shows prototype behavior during nor-

mal operation. The softpage monitor traces soft pages,

lists up their guest physical addresses, and periodically

notifies the address keeper of the addresses vis a hyper

call. The address keeper receives the addresses of soft-

pages, maintains the addresses, and returns them to the

page sender. The page sender avoids to sending softpages

of the target VM, following the address list received from

the address keeper.

Fig.??(b) shows how our prototype behaves when a fail-

ure occurs. To successfully continue services after the ac-

tive VM failed, the backup VM first updates the kernel ob-

jects to keep the consistency of the kernel state. When the

control is transferred to a backup VM, the address keeper

inserts a virtual interrupt so that the softpage monitor

updates kernel objects for softpages. This means that the

update is the first task the kernel running on the backup

VM performs. And then, the backup VM performs nor-

mal operations.

3.1 Softpage monitor

To effectively notify the address keeper about which

pages are softpages, the softpage monitor periodically is-

sues a hyper call. Our prototype uses this information

as a hint to select which pages are necessary to transfer.

When we finished setting up a backup VM, the softpage

monitor starts to trace which pages are softpages. The

softpage monitor memorizes the addresses of the detected

softpages. The addresses are maintained as the list, and

the pointer of the list is passed from the softpage monitor

to address keeper. The current prototype issues the hy-

per call in 1 second. Also, in the current implementation,

the softpage monitor lists up the address of buffer cache

pages only. We have a plan to extend the implementation

to trace other softpages such as free pages.

Note that this design releases us from strictly notifying

the VMM of the addresses of softpages. Our prototype

transfers dirty pages even if the pages are softpages. By

doing so, we guarantee that pages containing the hard-

state kernel objects are copied to the backup machine.

The guest kernel can be resumed with the consistent state

by combining this notification and the update of the ker-

nel state.

3.2 Address keeper

The address keeper maintains softpages addresses in-

formed by the softpage monitor. When the address keeper

receives the addresses via a hyper call, it traces the list.

To save memory space, it generates a bitmap that shows

which pages are softpages. The bitmap is updated ev-
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ery time the address keeper receives the hyper call from

the softpage monitor. address keeper returns the bitmap

when the page sender requests it to know which pages

should be sent. The page sender sends pages of the active

VM, following our bitmap and a dirty page bitmap that

is originally managed by the Kemari code in QEMU. The

details are described in the next section.

The address keeper also inserts a virtual interrupt when

the backup VM begins so that the softpage monitor up-

dates the kernel data for managing soft-state kernel ob-

jects. When the active VM failed, control is transferred to

the backup VM. At this time, the address keeper inserts

a virtual interrupt with Intel VT feature. Specifically, the

address keeper modifies the virtual machine control data

structure (VMCS) of the backup VM to input an inter-

rupt for the update of the kernel objects inside the guest

kernel. The modification is performed when the execution

of the backup VM is triggered.

3.3 Page sender

The page sender makes use of a part of the original Ke-

mari functions in QEMU to transfer pages of the active

VM to a backup machine. To create a backup VM, Ke-

mari first sends all pages of the active VM to the backup

machine and then iteratively sends dirty pages. To detect

dirty pages, Kemari manages a bitmap that shows which

pages get dirty in an interval. The bitmap is generated by

the dirty page tracking feature supported by KVM. KVM

starts/stops to track dirty pages by using system calls re-

lated to KVM. The result of the tracking is summarized

into a bitmap.

The page sender leverages a dirty bitmap and a softpage

bitmap to transfer pages of active VMs without softpages.

When the page sender sends pages of the active VMs, it

first gets a bitmap of softpages addresses from the ad-

dress keeper and transfers pages that is not marked in the

bitmap. This means that the page sender does not send

pages of softpages. After sending the all pages, the page

sender iteratively sends dirty pages and updated softpages

by using a bitmap that is the conjunction of both bitmaps.

The reason why updated softpages are sent to the backup

machine is that the softpages gets to contain a hard-state

kernel object. Following the bitmap, the page sender se-

lects pages to be transferred.

4. Preliminary Experiments

To confirm the effectiveness of our prototype, we con-

ducted experiments. In this thesis, we answer two funda-

mental questions;

( 1 ) How does our prototype reduce memory usage of a

backup VM?

( 2 ) How much overhead does our prototype incur?

4.1 Experimental Setup

We used three DELL Poweredge T610 machines each of

which has an Intel Xen 2.8GHZ Quad-Core processor with

32 GB of memory and SAS 500 GB HDD. The machines

are connected to each other through a Gigabit Ethernet.

We ran our prototype on the two machines; one is the ac-

tive machine while the other is the backup machine. Also

we ran an NFS server on the other machine. The NFS

server machine is mounted by the other machines. We

ran a VM whose memory size is 4 GB of memory. After

starting a VM, we replicate it on the backup machine with

our prototype.

4.2 Memory Usage of Backup VM

To demonstrate how our prototype reduces memory us-

age of a backup VM, we measured its memory size with

several benchmarks. The benchmarks include an artifi-

cial workload and real applications. The artificial work-

load creates specified size of buffer cache. We changed

the buffer cache size from 10% of the memory assigned to

VM to 90%. The real applications are postmark, Make,

and Gzip. Postmark is modeled after an e-mail server.

Make compiles a Linux kernel source. Gzip compresses 2

GB of a file.

Fig.3 and Fig.4 are the result. The memory size of the

backup VM with the artificial workload is shown in Fig.3.

The result reveals that our prototype reduces more mem-

ory size as the buffer cache becomes bigger. When ratio

of the buffer cache is 10%, the backup VM memory is

2909 MB. This means our prototype reduces the backup

VM memory by 14.95%, compared to the original Kemari.

When the ratio is 90%, it reduces the backup VM memory

by 76.64%.

The result of the real applications is shown in Fig.4. In

the graphs, we can see that our prototype can reduce the

backup VM memory effectively. In the case of postmark,

we can reduce the memory size by 1416 MB, compared

to the original Kemari. Our prototype also reduce the

memory size of the backup VM by 237 MB In GNU Make

experimentation. In addition, our prototype reduces the

memory by 1242 MB in the case of Gzip.
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(a) Our prototype (b) Original Kemari

図 3 Memory usage of backup machine’s QEMU process with our artificial

workload.

図 4 Memory usage of backup machine’s QEMU pro-

cess with real applications

表 1 Overhead of our prototype
Workload prototype Original

Postmark Total Transaction Time 111 sec 83 sec

Postmark Total Data read 24.38 MB/sec 29.8 MB/sec

Postmark Total Data write 28.94 MB/sec 35.37 MB/sec

Gzip Total time 137.674 sec 124.973 sec

GNU Make Total time 58m28.351s 48m41.907s

4.3 Overhead

To show the overhead of our prototype, we measured a

performance penalty with the real applications described

in the previous section. Compared to the original Kemari,

our system additionally performs a hyper call of the soft-

page monitor, the softpages addresses maintenance of the

address keeper, and the bitmap calculation of the page

sender. We observed the throughput of the applications

when we ran the original Kemari and our prototype. We

recorded the benchmark score of postmark, the execution

time of Make and Gzip as their throughput.

The result is exhibited in Tab.1. The table reveals that

the overhead incurred by our prototype is negligible. In

the case of postmark, our prototype incurs only 33.3%

penalty. Also, the overhead is 10.2% when we ran Gzip.

5. Related Work

Remus [1] and Kemari [2] are typical systems that syn-

chronize the whole status of virtual machines between pri-

mary and backup machines. Bressoud and Schneider [3]

is based on deterministic replay of events to keep the con-

sistency between primary and backup machines. These

systems assume that backup machines have the same ca-

pacity as primary machines, and do not address the con-

solidation of backup VMs.

RemusDB [4] extends Remus to protect a database

management system (DBMS). Since the DBMS is highly

memory-intensive, the synchronization overhead is terri-

ble. RemusDB compresses the delta of frequently updated

pages to reduce the transferred data, and also ignores

pages in the buffer pool of DBMS. Although RemusDB

does not concern about backup VM consolidation, these

techniques can be combined with the backup VM consol-

idation.

Reducing the size of VM images is addressed in various

contexts. Park et al. [5] propose a technique to reduce

the size of checkpoints. It tracks I/O operations so as to

avoid saving the pages in non-volatile storage. In the con-

text of live migration, the post-copy approach [6] reduces

the total number of transferred pages by sending them

on demand. MECOM [7] and Svaard et al. [8] compress

the transferred pages. CR/RT-Motion [9] transfers execu-

tion trace logs to replay the execution on the destination.

SonicMigration [10] avoids sending softpages.

6. Conclusion

Handling hardware failures is crucial to achieve high

available services in virtualized environments since a hard-

ware failure affects all the VMs on the failed physical

machine. Although the VM replication is an attractive
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technique to survive hardware failures, it requires backup

machines to have the same capacity as primary machines.

This diminishes the cheap nature of the virtualization-

based high availability.

This paper describes backup VM consolidation, which

advances the cheap nature of virtualization-based high

availability. The backup VM consolidation distills mem-

ory images that must be synchronized between primary

and backup machines, and enables two or more primary

machines to be protected by a single backup machine.

This design of the backup VM consolidation gives greater

flexibility in the trade-off between availability and the cost

of backup machines. Our prototype based on Linux 3.6.0

and QEMU 0.15.1 successfully reduces the memory size

of backup VMs, and enables the consolidation of backup

VMs.
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