
IPSJ SIG Technical Report

A Power State Transition Algorithm for Power Controller
of Energy Efficient Computer Clusters

Amgalan Ganbat1,a) Kenjiro Taura1,b)

Abstract: With the increase in both performance and scale of computer clusters, energy consumption has attracted
much attention because of their impact on the environment and inevitably increasing operational cost. While various
different approaches are being proposed to reduce power consumption of clusters, one promising approach is to make
the idle nodes into low-power consuming state (i.e., turn-off or sleep) when the system’s utilization level is low. How-
ever, complex dependencies among physical resources and services make it difficult to create common power control
tool for such clusters. In this paper we propose an algorithm which solves complex dependencies among cluster nodes
including both physical and service nodes. In addition, since different facilities offer various kinds of services and each
has unique structure, they have different system management policies and constraints. This situation makes it hard to
create a common power control tool that works on different kinds of clusters. Therefore, by exploiting our algorithm,
we propose a versatile, scalable power control tool, ClusterNap, with which users can define their own policies and
constraints that explicitly suits for the physical resources they have and the services they provide.

Keywords: State transition algorithm, ClusterNap, Energy-proportional computing, Cluster management

1. Introduction
Until recently recource management of computer clusters and

datacenters were mainly about scheduling workloads or monitor-
ing resources. However, as the performance and size of such fa-
cilities increase, energy consumption has increased dramatically
and energy consumption cost alone now takes the largest part of
total operational cost of most clusters. Therefore energy aware-
ness tends to become indispencable part of resource management
of computer clusters.

In 2007 Barroso et al [1] introduced a concept called Energy-
Proportional Computing where they insisted that resources
should consume energy proportional to the utilization of the sys-
tem. It is because power consumption tends to be almost con-
stant in many of current clusters and datacenters, while utiliza-
tion level of computer clusters change through some periods. In
other words, even when there is very low utilization, the cluster
system consumes almost same as or only little bit lower energy
than high-utilization period.

There are various approaches towards energy-proportionality.
One of the most promising approach is to turn-off or make low-
power comsuming state for some parts of the resources (nodes)
when utilization level is low. Fig 1 shows CPU utilization sam-
ple of Google’s 5000 servers collected during 6 months of period.
From this figure, we can see that most of the time, server utiliza-
tion is below 40 percent. That is, since most of the time servers
have low utilization, we can turn off possible part of the servers
so that electricity consumption can be reduced. Even though

1 The University of Tokyo
a) amgaa@eidos.ic.i.u-tokyo.ac.jp
b) tau@eidos.ic.i.u-tokyo.ac.jp

many research have shown the efficiency of this node power state
change method in some specific situations, to our best knowledge,
there is no such common tool which can be implemented in dif-
ferent kind of clusters as a part of their resource managers. One of
the biggest factor making it difficult to create such common tool
is the diversity of clusters. Each computer cluster has different
physical structure and the services they provide also vary signif-
icantly. Moreover, when there are complex dependencies among
the nodes, both physical resources and services, it is very hard
to find the optimal low power state of cluster which is enough
for keeping the requested services work gracefully. Finding the
optimal power state can be reduced to Pseudo-Boolean constraint
problem and it is a NP-hard problem.

The first contribution of this paper is that we propose a Power
State Transition Algorithm, part of which also solves near opti-
mal power state by greedy way. The main goal of this algorithm
is to find the state transition way to reach the cluster’s optimal
power state when there are some certain nodes (a node can be
both physical resource or a service) requested. Power State Tran-
sition Algorithm is explained in Section 3.

We mentioned that node power state changing method is a
promising way to reduce a cluster’s energy consumption while
still continuing the services gracefully. However, since different
cluster systems provide various kinds of services and have dif-
ferent policies and global constraints (examples are introduced in
Section 2), it is hard to have common cluster power control tool
that is adaptable in those different clusters.

The second contribution of our paper is that we are proposing
a prototype of cluster power control tool, ClusterNap, which can
be adapted to many different kinds of clusters. ClusterNap uses
Power State Transition Algorithm and is introduced in Section 4.

c⃝ 2013 Information Processing Society of Japan 1

Vol.2013-OS-126 No.7
2013/7/31

IPSJ SIG Technical Report

Fig. 1 CPU utilization sample of Google’s 5000 servers in 6 months [2]

Fig. 2 VM consolidation

2. Related works
Clusters using VMs

One of the technology development that made node power
down method useful is Virtual Machine (VM) consolidation.
Hardware technology development in multi-core processing ca-
pabilities of servers has enabled a single server to hold multiple
VM on itself without any problem and this is called VM con-
solidation. Consequentially, many clouds employ resource virtu-
alization technique to abstract system resources (both hardware
and software) from its host OS to provide their services such as
IaaS or PaaS. Moreover, live migration technology of VMs let us
move a VM from one physical host to another by imposing only
scale of milliseconds of delay to the user. It means we can freely
choose the VM scheduling policy. Younge et al [3], i.e., proposed
an efficient resource management way for cloud computing en-
vironments. By introducing power aware VM shceduling tech-
nique, VM migration and other techniques they improved overall
system efficiency with little overhead.

While VM consolidation (fig 2) enables us to use node power
down method in clusters, our algorithm and proposal prototype
tool can cooperate these resource management techniques and
can acts as power controlling interface to deploy these techniques
easily.

Clusters with DFS
As mentioned in previous section, cluster management must

be aware of constraints under which the service it provides is
available. Another example to emphasize the importance of being
aware of cluster constraints is clusters which use Distributed File

Systems (DFS) such as Hadoop Distributed File System (HDFS).
Such clusters convert big data into multiple numbers of smaller
sized data blocks and distribute them among cluster nodes to en-
able data parallelism. To provide data availability and fault tol-
erance, most common file systems replicate data blocks and keep
each replica on different nodes. Therefore, to keep the fault toler-
ance and data availability, even the idle nodes have to be in active
state even when the utilization level is very low. This policy cer-
tainly wastes a lot of energy. In this case, to leverage node power
state change method, one could determine the group of nodes that
together contain at least one of the replicas of all data blocks so
at least we can provide data availability constraints. Once we
find the group of nodes which has at least one replica of all data
blocks, now rest of the nodes can be turned into low power mode.
To maximize the energy reduction, one should find the minimum
number of such group nodes to be kept active. For example, let’s
suppose we have nodes {node1, node2, node3, node4, node5} and
data blocks {b1, b2, b3, b4, b5, b6}. Now let’s assume that data
blocks are distributed among the nodes as follows:

node1 = {b1, b4}
node2 = {b2, b5}
node3 = {b3, b6}
node4 = {b1, b2, b3}
node5 = {b4, b5, b6}

From above distribution of blocks, among many other possi-
ble solutions, we can easily find that node4 and node5 suffice
data availability. However, finding this minimum number of sets
(nodes) which covers all of elements (datablocks) is known as
Minimum Covering Set Problem and is known as NP-Complete.
Kim et al [4] proposed an approximate greedy algorithm to solve
this problem. Kim’s study showed that node power state change
method can reduce energy consumption significantly. By config-
uring data blocks properly, our algorithm also solves this problem
and it is shown in section Experiment. However, the main goal
of our algorithm is to solve the dependencies between all kind of
nodes (physical nodes and services).

Maheshwari et al [5] proposed a dynamic reconfiguring algo-
rithm for clusters running MapReduce jobs. This dynamic recon-
figuring technique enables the system to turn-off or on nodes in
the cluster according to the systems utilization.

Other works
Since 2009, Dustin Kirkland et al [6] has developed a simple

configurable power control tool, PowerNap, which works on a
single standalone Ubuntu server. By giving the freedom to config-
ure system policies and constraints to the user, PowerNap tool has
become very flexible that it can be used in many different kind of
environments. While PowerNap works on a standalone node, our
proposal tool works on computer clusters (multiple nodes which
have many dependencies on each other).

Even though all these approaches mentioned in this section is
trying to save electric consumption by using node power down
method, none of them considered the dependencies between
physical resources. Most of them only concentrated on clusters

c⃝ 2013 Information Processing Society of Japan 2

Vol.2013-OS-126 No.7
2013/7/31

IPSJ SIG Technical Report

min : ka × nodea + kb × nodeb + ...ky × nodey + kz × nodez

s.t : Dependency(D) ∧ requested nodeA ∧ requested nodeB...

Fig. 4 Minimum Power State finding problem can be reduced to Pseudo-
Boolean problem. It is considered NP-Hard

which provide specific services and proposes solution for these
specific services. On the other hand, our proposal algorithm and
power control tool can be applied to any kind of clusters and acts
as basic power controlling interface to realize these approaches.

Yokoyama et al [7] proposed a power API on a cluster that
also controls clusters components inlcuding servers, switches and
storages. At the present, this API does not consider the dependen-
cies between physical nodes and services.

3. Power State transition algorithm
3.1 Main problem

Turning node’s power status into low power consuming state,
when the cluster system utilization level is low, is much more dif-
ficult than the case of services provided by a single, standalone
node.

First, the Quality of Services (QoS) must be guaranteed. Ser-
vices the cluster system provides have to continue and be in cer-
tain quality level regardless of the power states of the nodes in
that system. In addition, the system as a whole must be stable re-
gardless of the power states of the nodes. In other words, not only
enough nodes must be active, but also right nodes must be alive.
Cluster power controller must select the right nodes to be active
to keep the system stability and it is not a simple task for most of
clusters since there are most probably very complex dependencies
among the both physical resources and services. Finding the min-
imum power state of a cluster when certain nodes are requested
can be reduced to Pseudo-Boolean constraints (fig 4).

When a cluster’s system dependency Dependency(D), cur-
rent power state and requested node requested nodeA, re-
quested nodeB are given, we can generate pseudo-boolean con-
straints shown in fig 4, where ki (i = a, b, c, ...) can be power
consuming coefficient of each nodes. Nodes can take value of
TRUE (ON) or FALSE (OFF). Finding the satisfying assignment,
which results in minimum power consumption, is thus, in above
case, considered as NP-Hard problem. We use simple greedy al-
gorithm to find approximate optimal solution and it is described
in section 3.2.2.

Second, even if we know the minimum power state, finding the
correct path to reach that state is also important. To reach the
minimum power state gracefully, we need to turn-off and turn-on
right nodes in right orders. Our Power State Transition algorithm
solves this problem and is described in section 3.2
3.1.1 Node dependencies

In this paper, a node is either physical resource (i.e. server,
management node, storage device, network switch) or a service
(i.e. state of a Virtual Machine running, state of being able to
connect to a server or access data). A node can have 3 differ-
ent power states; RUNNING (or ON), SHUT-OFF (or OFF)
and Unknown. There are 3 different dependencies we consider;
RUN-dependency, ON-dependency and OFF-dependency. All
dependencies are written in Conjunctive Normal Form of Boolean

Fig. 5 Example of a simple RUN-dependency

Fig. 6 Example of a simple ON-dependency

logic.
RUN-dependency

If “nodeB” has to be ON to keep “nodeA” ON, we say there is
RUN-dependency between “nodeA” and “nodeB”. Alternatively,
we say “nodeA” is RUN-dependent on “nodeB” and is repre-

sented as nodeA
RUN−−−→ nodeB. For example, in fig 3, a very

typical HPC cluster is depicted. In this cluster, “Compute Node
200” might be RUN-dependent on “Filesystem Node B” and “10G
switch B” as shown in fig 5. Moreover, “Filesystem Node B” can
be RUN-dependent on “RAID B” and “10G switch B”.
ON-dependency

Likewise, if “nodeB” has to be ON to make “nodeA” ON from
OFF state, we say there is ON-dependency between “nodeA”
and “nodeB”. Moreover, we say “nodeA” is ON-dependent on

“nodeB” and is represented as nodeA
ON−−→ nodeB. For example,

to turn-on “Compute Node 200” in fig 3, we might need “man-
agement Node” to be ON and that management node might not
need to be ON once our requested server becomes ON. Therefore
we represent this situation as ON-dependency fig 6.
OFF-dependency

If “nodeB” has to be ON to make “nodeA” OFF from ON state,
we say there is OFF-dependency between “nodeA” and “nodeB”.
We say “nodeA” is OFF-dependent on “nodeB” and is represented

as nodeA
OFF−−−→ nodeB. A similar example as ON-dependency can

be applied to OFF-dependency.
AND operation in dependencies

When a node is dependent on several nodes at the same time,
we can use Boolean AND operation. For example, in fig 5, “Com-
pute Node 200” is RUN-dependent on FilesystemNodeB AND
10GswitchB.
OR operation in dependencies

A node can be dependent on one of several nodes such as

c⃝ 2013 Information Processing Society of Japan 3

Vol.2013-OS-126 No.7
2013/7/31

IPSJ SIG Technical Report

Fig. 3 Example of a typical HPC cluster

Fig. 7 Example of OR operation case in RUN-dependency

(node1 AND node2) OR (node3 AND node4 AND node5) OR (node6)

Fig. 8 An example of nodes written in CNF

NodeA
ON−−→ (NodeB OR NodeC OR NodeD). For example,

if a service can run when only one of ComputeNode100 or
ComputeNode101 or ComputeNode200 is ON, we can use OR
operation in our dependency (fig 7).

The dependents of a node should be Conjunctive Normal Form
(CNF) of Boolean logic. It means Dependents are written as con-
junction (OR operation) of clauses, where a clause is a disjunc-
tion(AND operation) of nodes. An example is shown in fig 8.

3.2 State Transition Algorithm
In section 3.1, the main problems of power state changing

method are discussed. In addition, the main terminologies those
are used in State Transition Algorithm are also described.

The main flow of State Transition Algorithm is shown in fig
9. First State Transition Algorithm gets information of Current
power state of system Statecurrent, requested nodes (nodes that
are requested by user) R, and dependency of system D.

With these three values, we need to calculate the minimum
power state Statemin to which our system need to reach. How
we determine S tatemin is explained in section 3.2.2.

Once the S tatemin is determined, we need to take action to ap-
proach that state. Therefore, based on D, R and S tatecurrent, our
algorithm determines nodes which we can turn-off Nodesto−OFF

Fig. 9 General flow of the Power State Transition Algorithm

and nodes which we can turn-on Nodesto−ON to approach the min-
imum power state. In section 3.2.3, we explain how Nodesto−ON

and Nodesto−OFF are determined.
After determing Nodesto−OFF and Nodesto−ON , power con-

toller of the system tries to turn off Nodesto−OFF and turn-on
Nodesto−ON .

Since the power controller changed power states of some
nodes, now S tatecurrent is changed. If S tatecurrent equals S tatemin,
algorithm finishes. Else, algorithm starts from the beginning until
it reaches S tatemin

3.2.1 Current power state, requested nodes, dependencies
System’s current power state S tatecurrent can be a vector. Each

element of S tatecurrent corresponds to each node of the cluster and
takes value of either one of ON, OFF, or Unknown.

Requested nodes R is a list of node names which are requested
by user.

Dependency D contains the names of all nodes and their de-
pendent nodes described in section 3.1.1. Since there are three

c⃝ 2013 Information Processing Society of Japan 4

Vol.2013-OS-126 No.7
2013/7/31

IPSJ SIG Technical Report

1: procedure Minimum power state(D,R)
2: S tatemin = R
3: while R , 0 do
4: N = choose a node f rom R
5: for node in D[N]′s clauses ▷ D[N] is in CNF do
6: if node is in S tatemin then
7: remove node f rom D[N]′s all clauses
8: end if
9: end for

10: S tatemin + = Clause with the least elements f rom D[N]
11: remove N f rom R
12: end while
13: return S tatemin

14: end procedure

Fig. 10 Minimum power state algorithm

different dependencies (RUN, ON, OFF), we can further divide
D into DRUN, DON, and DOFF respectively.
3.2.2 Minimum Power State

Minimum power state is a power state of a cluster that com-
sumes the least power possible while still keeping the requested
nodes running. When dependency DRUN and requested nodes R
are given, we can construct a Pseudo-Boolean constraint shown
in fig 4 . In this case, solution of this problem is a group of nodes
which satisfies the boolean function on the second line while
keeping the equation in the first line minimum. As mentioned
in section 3.1, it is a NP-hard problem. Fortunately, there are
many approximate Pseudo-Boolean constraint solvers proposed.
A similar problem is Linux’s Minimum install problem. Since,
in Linux OS, packages have their dependencies, there are mul-
tiple ways to install a package. Finding the way to install mini-
mum size (or number) of packages can also be reduced to Pseudo-
Boolean problem. One of the available solutions is proposed by
Tucker et al [8]. In our case, we are using a simple greedy way
to determine the group of nodes for minimum power state. The
algorithm is shown in fig 10.

This algorithm is somewhat similar to Greedy set-covering al-
gorithm introduced in Leiserson et al’s book [9]. In our algorithm,
we choose the least number of dependency nodes of a requested
node and put them into S tatemin node list. Of course, dependency
nodes those are already in S tatemin is excluded. This algorithm
tries to get the least number of nodes that satisfies the seconds
line boolean equation in fig 4 by greedy manner.
3.2.3 Turn-On and Off-able nodes

Now we know which power state we are trying to reach (sec-
tion 3.2.2). However, to reach the destination state S tatemin, we
cannot just turn-off ON nodes that are not in S tatemin, and turn-
on OFF nodes that are included in S tatemin since there are ON,
OFF, and RUN-dependencies. Therefore, we need to know ex-
actly which nodes we should turn-off and which ones we should
turn-on at the moment without causing any inconvenience to the
system.

In fig 11, the procedure of determining turn-On and Off-able
nodes (Nodesto−ON and Nodesto−OFF) is described. First, in line
2-6 in fig 11, we are determining what other nodes are required
to be ON to make OFF nodes ON that are in S tatemin. More-
over, nodes that are required to be ON to make ON nodes OFF

1: procedure Nodes to ON/OFF(DRUN ,DON ,DOFF , S tatemin, S tatecurrent)
2: Nodesto−ON = NodesOFF ∩ S tatemin

3: Nodesto−OFF = NodesON \ Nodesto−ON

4: Nodesto−ON + = MinimumPowerS tate(DRUN ∗ DON ,Nodesto−ON)
5: Nodesto−ON + = MinimumPowerS tate(DRUN ∗ DOFF ,Nodesto−OFF)
6: Nodesto−ON = Nodesto−ON \ Nodesto−OFF

7:
8: # Exclude not Turn-On-able nodes
9: for Node in Nodesto−ON do

10: if not (at least one clause of Node’s RUN ∗ ON − dependency
CNF has all members ON) then

11: remove Node f rom Nodesto−ON

12: end if
13: end for
14:
15: # Exclude not Turn-Off-able nodes
16: for Node in Nodesto−OFF do
17: if not (at least one clause of Node’s OFF − dependency CNF

has all members ON) then
18: remove Node f rom Nodesto−OFF

19: end if
20: end for
21:
22: for Node in Nodesto−OFF do
23: if Another “ON node” is RUN-dependent on Node then
24: remove Node f rom Nodesto−OFF

25: end if
26: end for
27:
28: return Nodesto−ON , Nodesto−OFF

29: end procedure

Fig. 11 Algorithm to determine On and Off-able nodes

that are not in S tatemin is also determined here. Each of them are
now on the list of Nodesto−ON and Nodesto−OFF respectively. In
line 4, ∗ is a operation where Cartesian product of each node’s
RUN-dependents and ON-dependents are taken (dependents are
in CNF) and returned in CNF. Same logic applies to the operation
in line 5.

However, from Nodesto−ON we cannot make all of them ON
at the same time. For example, in fig 3, let us assume all “File
System Node A”, “RAID A”, and “Compute Node100” are OFF.
When the node “Compute Node 100” is requested, all three nodes
are in S tatemin list according to the dependency. However, we
cannot just turn-on all three of them at the same time. It is be-
caue according to the RUN-dependency, we should first turn-on
“RAID A”, then “Filesystem A” and finally turn-on “Compute
Node 100”. Therefore, only turn-On-able node is “RAID A” and
other two nodes should not be included in Nodesto−ON list (line
8-12 in fig 11).

Similar logic applieas to Turn-Off able nodes Nodesto−OFF .
For example, let us assume that all three of “File System Node
A”, “RAID A”, and “Compute Node100” are ON and we do not
need them anymore so we should turn-off them. However, we
cannot just turn-off them at the same time. We should turn-off
them in right order; i.e first “Compute Node 100”, then “Filesys-
tem Node A” and finally “RAID A” (line 15-19 in fig 11).

Moreover, we should check that if another ON node is depen-
dent on any of these three nodes. In that case, we also cannot

c⃝ 2013 Information Processing Society of Japan 5

Vol.2013-OS-126 No.7
2013/7/31

IPSJ SIG Technical Report

turn-off that node (line 21-25 in fig 11).
3.2.4 Action

Once we determine Nodesto−ON and Nodesto−OFF , now power
controller does its job - to change their power states. Since each
kind of node can be turned-on/off by different ways, this part
should be configured by system’s owner. We propose our solu-
tion to this state change way in ClusterNap in section 4.1.2.

By repeating the steps explained through section 3.2.1 - 3.2.4,
cluster’s power state S tatecurrent approaches to S tatemin. In real
clusters, some nodes have Unknown state especially during power
state change. Our algorithm also considers this situation and takes
actions based on the state of nodes which are only ON or OFF.

4. ClusterNap
As mentioned in Section 1, ClusterNap is a simple, config-

urable power control tool for computer clusters. Only by con-
figuring dependencies among the nodes and services in computer
cluster, ClusterNap determines which nodes should be ON and
which can be off (or be in a low-power mode). Moreover, it can
change the power state of cluster in right order while still keeping
the quality of services being provided at good level by exploiting
our proposal algorithm introduced in Section 3.

ClusterNap is designed to work easily with other resource man-
aging and monitoring softwares. For example, ClusterNap can
get information of requested nodes or services from Torque re-
source manager [10]. We are also working on to make it possi-
ble to use other resource monitoring tools, such as Ganglia and
Nagios [11] [12], as its nodes’ state monitoring module. In the
following subsections we introduce main design of ClusterNap.

4.1 Software design
As mentioned before, ClusterNap should be easily and freely

configurable for any kind of cluster. We tried to make it as easily
configurable as possible.
4.1.1 Dependencies

We mentioned that there are three kind of dependencies our
Power State Transition Algorithm considers; RUN, ON, and OFF
dependency. Each of these dependencies are written in corre-
sponding folder with the extention of .dep. Dependency of each
node can be written in a single .dep file or multiple nodes’ depen-
dencies can be written in a single file. A dependency file can have
arbitrary name, but should have .dep extention. An example of a
dependency file is shown in fig 12.

In fig 12, dependencies of four nodes (RAID1, RAID2, VM1,
Data1) are written in a single file. We can easily see that RAID2
is dependent on “(guppy-minnie AND guppyfs) OR guppy3”. In
other words dependency is written in Conjunctive Normal Form
(CNF) of Boolean logic.
4.1.2 State change script

ClusterNap changes power state of any given node in cluster
by executing user-defined script on some user-chosen server in
the system. For example, to turn-on serverA, a user might exe-
cute a script which contains IPMI command on it as root user on
serverB. In other words, if the user defines a script (i.e., a script
which contains command like “ipmitool -I lanplus -H serverA IP

S t o r a g e d e p e n d e n c i e s
node : RAID1
depends : s e r v e r A | s e r v e r B
node : RAID2
depends : se rve rC , s e r v e r D | s e r v e r E

VMs
node :VM1
depends : s e r v e r F

Data
node : Data1
depends : RAID1 | RAID2
. . .

Fig. 12 Configuration of node dependencies

Name : f s 1
Host / u s e r / p a t h : se rverA , amgaa , / p a t h / t o / s c r i p t . sh

Name : f s 2
Host / u s e r / p a t h : se rve rB , r o o t , / p a t h / t o / s c r i p t . sh
Host / u s e r / p a t h : se rve rC , r o o t , / p a t h / t o / s c r i p t . sh
. . .

Fig. 13 Configuration of node state-change scripts

serverA -U root power on”), a node name which contains this
script (for example, serverB), and a username (for example root),
we can change power state of any node in the cluster.

In fig 13, an example of configuration file of power state
change scripts shown. There can be multiple options to change
power state of a single node. For example, in fig 13, node fs2
can be turned-on by running a script on either of node guppy2 or
guppy3. ClusterNap chooses either guppy2 or guppy3 since one
of them might be already OFF.
4.1.3 Requested nodes

ClusterNap takes requested nodes from a folder named “re-
quested/”. Therefore, all that a user should do is just to create
a file which has the same name as requested node in the folder
requested. Since only a single command “touch requested/node-
name” can create such file, it is relatively simple for other re-
source managing tools to cooperate with ClusterNap.
4.1.4 Node states

ClusterNap takes current power states if all nodes from a folder
named “state/”. Similar to the folder “requested/”, in folder
“states/”, there are files which have same names as all nodes in
the system. Inside each of these files, one of 1,0, or -1 is written.
If 1 is written inside of a file named serverA, it means that the
node serverA is ON. If the value was 0 or -1, it implies that node
is OFF or Unknown respectively.

For now, we have not completed creating the module which
updates power states of all nodes in the system constantly. How-
ever, since the configuration is as simple as mentioned here, mak-
ing use of resource monitoring tools such as Ganglia and Nagios
should not be difficult.

Once the user has defined all necessary configurations men-
tioned in section 4.1.1 - 4.1.4, ClusterNap runs the Power State
Transition Algorithm and takes necessary power state change ac-
tions until the system reaches possible minimum power consum-
ing state.

c⃝ 2013 Information Processing Society of Japan 6

Vol.2013-OS-126 No.7
2013/7/31

IPSJ SIG Technical Report

4.2 Other application of ClusterNap
Until now, we have been emphasizing the fact that how Clus-

terNap would be useful for physical cluster systems. There is
another potential application of ClusterNap. One of the key op-
portunities cloud technology giving us is its ability to dynami-
cally provision virtual resources on fine-grained way. In other
words, cloud service users can get necessary resources as much
as or as little as they want according to their needs in near real-
time. Since cloud users have to pay as they use resources, getting
the optimized amount of resources is very important economic
task. Therefore, when the user is using cluster like virtual re-
sources on cloud, they also can make use of ClusterNap in their
virtual cluster. They can define their own policies and constraints
on it so that their virtual cluster scales up or scales down dynam-
ically preventing the user from buying excess amount of virtual
resources on cloud.

5. Experiment
We conducted a simple simulation on a virtual cluster with

similar structure as a cluster shown in fig 3. We used KVM vir-
tual machines as physical resources (compute and manage nodes,
switches, RAIDs, and filesystem servers). With VMs, we can
define complicated dependencies comparatively easily and test
them. Following two cases were tested.
Case 1: HPC cluster shown in fig 3

We created a model of HPC cluster shown in 3. This cluster has
24 nodes: 1 management node, 3 switches, 5 filesystem servers,
5 RAIDs, and 10 compute nodes. From the state of all nodes be-
ing OFF, we tried to make random nodes ON. In all trials, our
tool succeeded to make requested nodes ON gracefully. More-
over, after making requested nodes ON, we also made requested
nodes not-requested, and executed our algorithm. All trials also
succeeded.
Case 2: Data replication placement

To check how our tool solves complicated dependencies among
services we conducted the same example shown in section 2.
Data blocks {b1, b2, b3, b4, b5, b6} are distributed among the
nodes as follows:

node1 = {b1, b4}
node2 = {b2, b5}
node3 = {b3, b6}
node4 = {b1, b2, b3}
node5 = {b4, b5, b6}

We can configure the dependencies of above data blocks as
shown in fig 14.

In above case our tool returns node1, node2, node3 while the
optimal solution was node4 and node5. This situation is un-
derstandable because our Minimum Power State algorithm (fig
10) solves Pseudo-Boolean problem in greedy way. However,
since our State Transition Algorithm consists of several blocks as
shown in fig 9, the Minimum Power State algorithm’s part can
be further optimized and we can use other sophisticated Pseudo-
Boolean constraint solvers. If we configure the dependencies
among services correctly, this case shows that our tool can also

Data b l o c k d e p e n d e n c i e s
node : b1
depends : node 1 | node 4

node : b2
depends : node 2 | node 4

node : b3
depends : node 3 | node 4

node : b4
depends : node 1 | node 5

node : b5
depends : node 2 | node 5

node : b6
depends : node 3 | node 5

Fig. 14 Configuration of data block dependencies

solve other resource allocation problems either.

5.1 Further works
For the algorithm part, as mentioned in previous section, fur-

ther optimization of Minimum Power State Algorithm is consid-
erable. It is because, in our tool, we use very simple greedy al-
gorithm for Pseudo-Boolean constraint solver and even in some
simple cases, our tool does not return the quite optimal solutions.

For ClusterNap, integration of ClusterNap with other resource
managing tools is important. For any kind of clusters, working
with workload schedulers (i.g., Torque resource manager) is vi-
tal. However, to work with such tools, users should define their
policies and constraints. Furthermore, getting each node’s power
state correctly is also important for ClusterNap to work grace-
fully. Therefore, cooperating with resource monitoring tools,
such as Ganglia and Nagios, is our next direction.

6. Conclusion
In this paper, we proposed a Power State Transition Algorithm

for power controller of computer clusters. This algorithm takes
current power state, requested nodes and dependency informa-
tion of cluster and solves a way to reach near minimum power
consuming state of that cluster.

In addition, we proposed prototype of a flexible and versatile
computer cluster power control tool, ClusterNap, which can be
applied to various kind of cluster environments. This tool can
work alone or with other resource managing and monitoring tools
easily. This tool also can potentially be used as a resource man-
ager of virtual resources in cloud environment. ClusterNap uses
Power State Transition Algorithm and is tested on virtual cluster
we built. It showed ClusterNap can make cluster reach to min-
imum power consuming state gracefully and eventually reduce
power consumption.

c⃝ 2013 Information Processing Society of Japan 7

Vol.2013-OS-126 No.7
2013/7/31

IPSJ SIG Technical Report

References
[1] Barroso, L. and Holzle, U.: The Case for Energy-Proportional Com-

puting, Computer, Vol. 40, No. 12, pp. 33–37 (2007).
[2] Barroso, L. and Hölzle, U.: The datacenter as a computer: An intro-

duction to the design of warehouse-scale machines, Synthesis Lectures
on Computer Architecture (2009).

[3] Younge, A. J., von Laszewski, G., Wang, L., Lopez-Alarcon, S. and
Carithers, W.: Efficient resource management for Cloud computing
environments, International Conference on Green Computing, pp.
357–364 (2010).

[4] Kim, J. and Rotem, D.: Energy proportionality for disk storage using
replication, pp. 81–92 (2011).

[5] Maheshwari, N., Nanduri, R. and Varma, V.: Dynamic energy efficient
data placement and cluster reconfiguration algorithm for MapReduce
framework, Future Generation Computer Systems, Vol. 28, No. 1, pp.
119–127 (2012).

[6] Kirkland, D.: PowerNap configurable daemon for Ubuntu,
https://launchpad.net/powernap (2012). Accessed: 2013-07-03.

[7] Yokoyama Daisaku, T. K. and Masaru, K.: Towards Energy Efficient
Programming― An Implementation of a Power Control Interface on
a Cluster, IPSJ Special Interest Group on Programming, No. 2, pp.
1–7.

[8] Tucker, C., Shuffelton, D., Jhala, R. and Lerner, S.: Opium: Optimal
package install/uninstall manager, Software Engineering, 2007. ICSE
2007. 29th International Conference on, IEEE, pp. 178–188 (2007).

[9] Leiserson, C. E., Rivest, R. L., Stein, C. and Cormen, T. H.: Introduc-
tion to algorithms, The MIT press (2009).

[10] Staples, G.: TORQUE resource manager (2006).
[11] Massie, M. L., Chun, B. N. and Culler, D. E.: The ganglia distributed

monitoring system: design, implementation, and experience, Parallel
Computing, Vol. 30, No. 7, pp. 817–840 (2004).

[12] Josephsen, D.: Building a monitoring infrastructure with Nagios,
Prentice Hall PTR (2007).

c⃝ 2013 Information Processing Society of Japan 8

Vol.2013-OS-126 No.7
2013/7/31

