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Fusing deep speaker specific features and MFCC for
robust speaker verification
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Abstract: Acoustic representations typically used in speaker recognition are general and carry mixed information,
including information that is irrelevant to the specific task of speaker recognition. Extracting specific information
components from the speech signal for a desired task, such as extracting the speaker information component for
speaker verification, is challenging. In this study, a nonlinear feature transformation discriminatively trained to extract
speaker specific features from MFCCs is combined with a Gaussian mixture model support vector machine (GMM-
SVM) system. Separation of the speaker information component and non-speaker related information in the speech
signal is accomplished using a regularized siamese deep network (RSDN). RSDN learns a hidden representation that
well characterizes speaker information by training a subset of the hidden units using pairs of speech segments. The
hybrid RSDN GMM-SVM system achieves about 5% relative improvement over the baseline GMM-SVM system
when applied to text-independent speaker verification using a subset of the NIST SRE 2006 1conv4w-1conv4w task.
Speaker verification systems that fuse information typically provide better performance than those based on a single
input modality. Score level fusion, in which scores from several classifiers are combined, is commonly employed as a
fusion method for speaker verification. This study explores several fusion methods for RSDN and MFCC information,
including score fusion, and the much less widely utilized fusion methods of GMM supervector fusion, and feature
fusion. Score fusion and GMM supervector fusion offered further performance improvement, both achieving a 6.6%
relative improvement over the baseline GMM-SVM system.
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1. Introduction
The task of speaker verification is concerned with verifying an

individual’s claimed identity based on a sample of their speech.
Discrimination between speakers is made based on speaker-
related differences in the speech signal. The speech signal con-
veys information about the speaker’s identity resulting from a
combination of anatomical differences and the learned speaking
habits of different speakers, though this information is thought to
be secondary to the linguistic information which is the primary
information component in the speech signal. Thus, performance
of speaker verification systems depends on extracting and mod-
eling speaker specific characteristics of the speech signal which
distinguish speakers from one another [1].

GMM-SVM with mel-frequency cepstral coefficients (MFCC)
input features are one of the most prevalent approaches for
speaker verification [2], [3], [4]. In the GMM-SVM approach,
MAP adapted means of the mixture components are stacked to
form supervectors. The supervectors are input to SVMs that
model the boundary between a speaker and a set of imposters,
rather than modeling their probability distributions. While this
approach has provided good performance with demonstrated ro-
bustness and scalability, there are drawbacks. For example, the
generative approach of GMM speaker modeling lacks the ability
to extract speaker specific information by discriminative means.
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The MFCC input features typically used in these systems are a
general spectral representation, widely used in various speech
tasks, such as speech and speaker recognition. However, a task-
specific representation designed with the objective of maximiz-
ing speaker verification performance may be more suitable for
the problem of speaker verification.

An interesting area of recent work in speech information pro-
cessing (e.g. [5], [6], [7]) uses regularized siamese deep networks
(RSDN) to extract speaker specific information from a spectral
representation, which can then be used in speaker modeling in-
stead of the general spectral representations of speech that are
typically employed. RSDN consist of two identical multilayer
feed-forward networks, the middlemost layers of which are as-
sociated via a contrastive loss function for learning a speaker
specific representation from spectral input features. As of yet,
speaker specific features extracted using RSDN have not widely
been combined with a robust approach to speaker modeling and
decision-making for speaker verification, though some prelimi-
nary work has been done [8].

In this study we combine a GMM-SVM system with speaker
specific input features extracted from a discriminatively trained
RSDN, forming a hybrid RSDN GMM-SVM, and demonstrate
the potential of this approach by applying it to a subset of the
NIST SRE 2006 task [9]. We focus on exploring several informa-
tion fusion methods including score fusion, GMM supervector
fusion, and feature fusion. The main contribution of this paper is
the study of multiple fusion methods for the new, not yet well
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studied, hybrid RSDN GMM-SVM using standard benchmark
datasets for speaker verification. The hybrid RSDN GMM-SVM
alone improves on an MFCC based GMM-SVM baseline and we
demonstrate that score combination and supervector fusion both
offer further performance improvements.

The outline of this paper is as follows. In Section 2 we re-
view some related studies on neural network based feature ex-
traction for speaker recognition and information fusion methods.
Then we describe the RSDN architecture we use for extracting
speaker specific features from MFCC inputs. Section 4 reviews
key concepts in the GMM-SVM approach to speaker verification
and describes the hybrid RSDN GMM-SVM system. Section 5
provides the details of our experimental setup and results are pre-
sented in Section 6. We finish the paper with some conclusions
and possibilities for future work.

2. Related Studies
Considerable research has been done on extracting speaker dis-

criminative features from cepstral features using multilayer per-
ceptrons (MLP) (e.g. [10], [11], [12], [13]). A common approach
was to train an MLP to discriminate between a set of selected
speakers, with a window of several frames of MFCC features in-
put to the neural network. After sufficient training of the MLP,
weights are fixed and features are extracted from a hidden layer,
usually a bottleneck layer, and are used as inputs to train another
classifier for speaker identification or speaker verification. In
[11], hidden layer activations from MLPs trained to distinguish
between a subset of speakers selected through a speaker clus-
tering process were used as input features for a SVM speaker
recognition system. Stoll et al. [11] also examined the use of
features generated by an MLP that was trained to distinguish be-
tween phones as input to a GMM speaker recognition system.
[13], [14] focused on extracting features that were robust to mis-
matched training and testing conditions of speaker verification
systems by training MLPs with data for the same speakers under
different conditions. Morris et al. [12] dealt with the question of
which subset of speakers would be most effective for MLP train-
ing when data is available for a large number of speakers.

There are significant difficulties in applying these techniques
on a larger scale with the more challenging speaker verification
tasks studied today, even though previous attempts at using neu-
ral network hidden representations as features for speaker recog-
nition demonstrated some success. These approaches typically
select a small number of speakers to form a small speaker basis
in order to prevent the classification problem from becoming too
difficult to train the MLP. Modern speaker recognition evaluations
contain a diverse set of speakers, languages, channel effects and
handset types that would be difficult to represent well with such a
small speaker basis set. Since the RSDN based feature extraction
approach allows for any number of speakers in the training data,
selecting a compact but representative basis set is not necessary.

Examples of utilizing information fusion in speaker verifica-
tion for improved performance, though not always emphasized,
are numerous in the literature. [15] obtained excellent speaker
verification performance through score level fusion of 11 subsys-
tems. [16] also illustrates the importance of score calibration and
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Fig. 1 Regularized siamese deep network shown with contrastive loss LC
and reconstruction loss LR. Contrastive loss is applied to speaker re-
lated units which learn a speaker specific representation of the speech
signal. Reconstruction loss and non-speaker related units aid in nor-
malizing non-speaker related information in the speech signal.

score fusion for speaker verification. GMM supervector fusion is
an interesting alternative to score fusion, though it is much less
frequently applied. [17] fused GMM supervectors from MFCC
and LPCC and found supervector fusion performed better than
score fusion in a small speaker verification task. [18] provides a
broader discussion of fusion methods for multimodal biometric
systems in general.

Fusion has also been useful in neural network feature extrac-
tion based approaches. For example, [11] found that feature level
fusion of MLP features and MFCCs, as well as score level com-
bination of GMMs trained with those features, offered significant
improvements over a basic, 256 mixture component, GMM base-
line. However, score level fusion of MLP features and a state-
of-the-art GMM system offered no performance improvement.
[13] found consistent improvement in performance when taking a
weighted combination of scores from MLP feature based GMMs
and cepstrum based GMMs, even when the MLP features per-
formed poorly alone.

3. Regularized siamese deep network
3.1 Overview

RSDN can be thought of as a type of regularized siamese
network discriminatively trained using pairs of speech segments
(Fig. 1). The code layer units (we refer to the middlemost hidden
layer as the “code layer”) are split into two parts - speaker related
and non-speaker related. The speaker related code layer units
learn a stable representation of the speech from a given speaker.
The representation learned for each speaker should also be dis-
similar to the representations of other speakers. In other words,
the representation learned by these units is speaker specific. The
non-speaker related units, along with input reconstruction con-
straints added to the network, aid in the normalization of non-
speaker related information present in the speech signal. Fol-
lowing an unsupervised initialization step, RSDN discriminative
training is accomplished using 2 types of loss functions described
in Subsection 3.3. In addition to speaker verification tasks, RSDN
extracted features have been applied to speaker comparison and
speaker segmentation [5], [6], [19]. The unsupervised initializa-
tion step is described next.

3.2 Pretraining
The pretraining phase serves as a means of initializing the

weights and biases of a deep autoencoder using unlabeled data,
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which can then be converted to a siamese network and discrim-
inatively trained using labeled pairs of speech segments. One
method for initializing a deep autoencoder is to stack denoising
autoencoders [20]. Denoising autoencoders, like classical autoen-
coders, map an input to a hidden representation, which is then
mapped back to a reconstruction of the input. However, denois-
ing autoencoders reconstruct the input from a corrupted version
of it and allow for an overcomplete hidden layer while still learn-
ing a useful intermediate representation. Mean squared error loss
between the clean input and the reconstructed input is minimized
with respect to the weights and biases.

During the RSDN pretraining phase, unlabeled speech data, in
this case MFCC features, are used for training a stacked denoising
autoencoder. MFCC features are continuous valued so Gaussian
noise in the form of N(0, σi), where σi is the standard deviation
of feature i estimated from the training data, is added to give a
corrupted version of the inputs during layerwise pretraining. Af-
ter the pretraining phase, the deep autoencoder is duplicated to
form a siamese network with two identical subnets (see Fig. 1).
The weights and biases of the the two halves of the siamese net-
work are shared and any subsequent weight update is applied to
both halves, keeping their values the same.

3.3 Discriminative training
During the discriminative training phase, pairs of short speech

segments (X1, X2), T frames in length, coming from either the
same speaker (genuine pairs) or from different speakers (imposter
pairs), are presented to the network. The contrastive loss function
(Eq. (2)) is applied to a subset of the code layer units in order
to learn a speaker specific representation and is actually a com-
bination of two cost functions - one minimizes the objective with
respect to genuine pairs, and the other minimizes with respect to
imposter pairs. A second loss function, reconstruction loss (Eq.
(3)), provides a form of weight regularization during discrimina-
tive training by requiring the network still be good at reconstruct-
ing the input. Description of the loss functions is facilitated by
first defining a compatibility measure between two speech seg-
ments, (X1, X2):

C(X1, X2) = Cm(X1, X2) + Cs(X1, X2), (1a)

Cm(X1, X2) = |µS 1 − µS 2|
2
2, (1b)

Cs(X1, X2) = |ΣS 1 − ΣS 2|
2
F , (1c)

with µS 1, µS 2, ΣS 1 and ΣS 2 being the means and covariance ma-
trices of the outputs of speaker specific code layer units corre-
sponding to the segment pair (X1, X2), respectively, and | · |F is
the Frobenius norm. Intuitively, we can see that if speech seg-
ments are from the same speaker the value of Eq. (1a) should
be small. In contrast, when the speech segments are from differ-
ent speakers, the value of Eq. (1a) should be large. Minimizing
the contrastive loss function based on the compatibility measure
ensures that the RSDN representation of speech from the same
speaker is similar while being dissimilar to the representation of
speech from other speakers. The contrastive loss LC is defined as:

LC(X1, X2) = IC + (1 − I)
[
e−

Cm
λµ + e−

Cs
λcov

]
, (2)

Fig. 2 A GMM supervector is generated for a speaker through MAP adap-
tation of the UBM given an utterance from the speaker.

with I = 1 for genuine pairs and 0 for imposter pairs, and λµ and
λcov are hyperparameters set to approximately balance the value
of the contrastive loss function for genuine pairs and imposter
pairs. The reconstruction loss LR is defined as:

LR(X1, X2) =
1
T

T∑
t=1

[
|x1t − x̂1t |

2
2 + |x2t − x̂2t |

2
2

]
, (3)

The contrastive loss and reconstruction loss are combined in the
overall loss function (Eq. (4)) which is minimized during dis-
criminative training.

L(X1, X2) = αLR + (1 − α)LC , (4)

where α determines the trade-off between LR and LC .

4. Hybrid RDSN GMM-SVM
4.1 GMM-SVM for Speaker Verification

Before describing the combination of the RSDN speaker spe-
cific feature extractor and GMM-SVM, we will briefly review the
key concepts of GMM supervectors, SVM, and a linear kernel
function for GMM supervectors. Additional details can be found
in [21]. A GMM universal background model (UBM) is defined
as

g(x) =

M∑
i=1

ωiN(x;µi,Σi), (5)

where ωi, µi, and Σi are the mixture weight, means and covari-
ance of the ith mixture component, respectively. A speaker’s ut-
terance is used to obtain a speaker model through MAP adapta-
tion of the UBM means µi. The means from this adapted speaker
model are concatenated to form a GMM supervector, which is
later used as a positive sample for training an SVM model for the
given speaker. Negative training samples are generated using ut-
terances from speakers who make up the UBM. The process of
generating a supervector from a given input utterance and UBM
is illustrated in Fig. 2.

SVM applies linear classification techniques after performing a
nonlinear mapping from the input feature space to a very high di-
mensional feature space and is a very effective method for the bi-
nary classification problem in speaker verification. The discrimi-
nant function for an SVM is

f (y) =

n∑
i=1

αik(y, z) + b, (6)

where z are support vectors and parameters αi and b are found
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during optimization, and the kernel function k(y, y′) is defined as

k(y, y′) = φ(y)Tφ(y′), (7)

where φ(·) is a mapping from the input space to the high dimen-
sional SVM feature space. Whether f (y) is above or below a
threshold determines the classification decision.

Since the kernel has an effect on the SVM decision boundary,
selection of the kernel is generally data dependent [22]. Super-
vectors, which map an utterance to a high dimensional vector, re-
quire an appropriate kernel for the associated classification prob-
lem. Given supervectors sa and sb resulting from GMM training
and MAP adaptation of two utterances a and b, [21] derives a
kernel function based on an approximation to the KL divergence
between the two utterances,

k(sa, sb) =

M∑
i=1

(
√
ωiΣ

− 1
2

i µa
i )T (
√
ωiΣ

− 1
2

i µb
i ), (8)

where µa
i and µb

i are the means corresponding to mixture com-
ponent i from supervectors sa and sb, respectively. This can be
recognized as a linear kernel of the familiar form given by

k(y, y′) = yTy′, (9)

where yi corresponds to supervector mean µi from mixture
component m after normalizing by the corresponding mixture
weight and variance parameters from the UBM,

yi =

√
ωm

σ2
i

µi. (10)

4.2 Combination of RSDN feature extractor and GMM-
SVM

In [6], [7], [19], RSDN code layer outputs were used to de-
rive single Gaussian speaker models from short speech segments
for speaker verification tasks. Scores for binary classification
of a given test trial were calculated using a simplified form of
the divergence metric for two normal distributions from [23],
or by symmetric Gaussian log likelihood measure [24]. Perfor-
mance based on equal error rate (EER) and minimum detection
cost (MDC) metrics was compared with features extracted from
autoencoders and convolutional neural networks, as well as a
GMM trained with 19 dimensional MFCC features and RSDN
features and offered promising results in the speaker verification
tasks studied. [8] takes a straightforward approach to combin-
ing speaker specific features extracted from the RSDN code layer
with a GMM-SVM system for speaker verification. We briefly
review the hybrid RSDN GMM-SVM approach below.

Since we are only interested in using the RSDN as a nonlin-
ear feature extractor, reconstructions of the input are not needed
after pretraining and discriminative training. Thus, only the en-
coder portion of one half of the siamese network is kept (Fig. 3)
which allows for more efficient feature extraction since much of
the computation associated with the full siamese network is elim-
inated.

The remaining nonlinear feature extractor (Fig. 3) is used to
extract speaker specific features from MFCC inputs for each ut-
terance in the UBM, enrollment and evaluation data. The feature

Fig. 3 Given a frame of MFCC input features xt , outputs from the speaker
specific code layer units are extracted for input into the GMM-SVM.
For efficient nonlinear feature extraction, only the encoder portion of
one half of the RSDN is retained after training.

extractor from Fig. 3 replaces the input utterance with speaker
specific features in the supervector generation process illustrated
in Fig. 2. GMM-SVM training follows the typical GMM-SVM
training procedure [2], starting with using the extracted features
to derive a UBM. RSDN code layer outputs are then extracted for
all frames in the enrollment and evaluation data. Next, supervec-
tors are created on a per utterance basis using MAP adaptation
of the means with a relevance factor of 1. Supervectors extracted
from the utterances used to train the UBM are used as imposter
examples to train an SVM model with the linear kernel in Eq.
(8) for each target speaker in the enrollment set. Finally, scores
are calculated for each target and nontarget trial using the target
speaker’s SVM model and the supervector extracted from the test
utterance using the discriminant function in Eq. (6).

5. Experiments
In this section we describe pre-processing of the raw inputs

and the network training protocol. We then describe the copora
used in our text-independent speaker verification experiments and
introduce the fusion methods we explored for improving perfor-
mance.

5.1 Data Processing
We use the following procedure for extracting MFCC features

for use as input features. Silence was removed using an energy
based VAD. The speech signal was pre-emphasized by applying
the first order difference equation s′n = sn − 0.95sn−1. A 25 msec
Hamming window and 10 ms frame rate are used to extract a
19 dimensional MFCC vector (zero order coefficient is excluded)
from 24 filterbank channels. Cepstral mean normalization is ap-
plied to account for long-term spectral effects caused by channel
differences.

5.2 Training Protocol
Details of RSDN training are as follows. All frames in the

training data were used for pretraining. For discriminative train-
ing, we created approximately 6000 pairs of segments (X1, X2)
that are 500 frames in length by splitting up the training data into
a set, S , of non-overlapping segments and randomly selecting an-
other a segment, X2, for each segment X1 ∈ S , with X2 , X1. We
ensured the data set is “balanced” by generating approximately
the same number of genuine pairs as imposter pairs.

Mini-batch sizes were 100 frames and 500 frames for pretrain-
ing and discriminative training, respectively. Note that number of
frames in a minibatch used for discriminative training must be the
same as the number of frames in the speech segments since Eq.
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(2) is defined using 1st and 2nd order statistics of code layer out-
puts generated from a speech segment that is T frames in length.
We used a network with 5 hidden layers having sizes of 100,
100, 200, 100, and 100 hidden units, respectively. We used 100
speaker specific units in the code layer, which is half the number
of hidden units in that layer, as this was found to be advantageous
in [5], [19]. The network was pretrained for 40, 20, 20 epochs at
a learning rate of 0.01. The learning rate for discriminative train-
ing was 0.001. The trade-off parameter α was set to 0.2. In order
to prevent overfitting, early stopping and learning rate annealing
were used while checking EER on the development data, as well
as monitoring the contrastive and reconstruction losses.

5.3 Text-independent speaker verification
We evaluate the performance of the hybrid RSDN GMM-SVM

system, as well as several strategies for fusing with MFCC based
scores and features, on subsets of NIST SRE 2004 and 2006 [9].
The 242 male speakers from NIST SRE 2004 1-side were se-
lected for pretraining and discriminative training of the RSDN.
Utterances from 50 randomly selected male speakers who did not
appear in the training data were taken from NIST SRE 2004 8-
side training files and used for RSDN development. The same
utterances from NIST SRE 2004 1-side that we used for RSDN
training were used to train the UBM. For evaluation, we randomly
selected 100 male speakers from the NIST SRE 2006 1conv4w-
1conv4w task and used all trials associated with those speakers.
In total, 453 genuine trials and 6057 imposter trials were used for
evaluation.

The training and test utterances used in this experiment are 2
minutes on average after silence removal and are considerably
longer than those used in previous studies of RSDN extracted
features for speaker verification, such as [6], [7], which mainly
focused on short test utterances (5s or less) without channel and
environmental mismatch. Most of the segments in the training
and test data are in English (but include non-native speakers) and
are recorded over a telephone line, but different languages, types
of telephone handsets and transmission channels are included.

5.4 Fusion
Two broad categories of fusion in biometric systems exist: pre-

classification fusion combines information prior to the applica-
tion of a classifier and post-classification fusion combines infor-
mation after the decisions of the classifiers have been obtained
[18]. Some common approaches to fusion are feature level fusion
(a form of pre-classification fusion) and score level fusion (a form
of post-classification fusion). In feature level fusion different fea-
ture vectors that are obtained by applying multiple feature extrac-
tion algorithms on the same raw data are combined. We try two
different types of feature level fusion - fusing RSDN extracted
features and MFCCs, and fusing supervectors from MAP adapted
GMMs trained with RSDN extracted features and MFCCs. Score
level fusion refers to combining the scores obtained from several
classifiers. We take the score combination approach in which the
individual scores from SVMs trained on supervectors resulting
from RSDN extracted features and SVMs trained on supervectors
resulting from MFCCs are combined to generate a single scalar

Table 1 EER(%) for MFCC based GMM-SVM and Hybrid RSDN GMM-
SVM with varying number of mixture components.

Mix Comp
System 32 64 128 256

GMM-SVM (MFCC) 14.77 13.72 13.24 13.65
Hybrid RSDN GMM-SVM 12.59 12.58 13.90 15.00

score that is used to make the decision.

6. Results and Discussion
6.1 Comparison with MFCC based GMM-SVM

The baseline results for the hybrid RSDN GMM-SVM system
and MFCC based GMM-SVM system prior to fusion are pre-
sented in this subsection and results for several fusion methods
are presented in subsequent subsections. EER is used as an eval-
uation metric in all experiments. The number of GMM mixture
components was varied from 32 to 256 and the EER for both
systems is shown in table 1. The best performing hybrid sys-
tem achieved 12.58% EER with 64 mixture components which is
about a 5% relative reduction in EER compared to the best per-
forming MFCC based GMM-SVM which achieved 13.24% with
128 mixture components.

It should be noted that there are several differences in the
GMM-SVM system evaluated here compared to those evaluated
by others who have also used NIST’04 for background training
data and NIST’06 for evaluation, such as [4], were all of NIST’04
was used (we use a subset) and concepts like score normalization,
nuisance attribute projection (NAP), and factor analysis were also
applied. Nonetheless, we believe this result demonstrates that
combining speaker specific features extracted from RSDN with
a GMM-SVM system can be an effective approach. The dimen-
sionality of the RSDN extracted feature vectors used in the hybrid
RSDN GMM-SVM is more than 5 times greater than that of the
MFCC feature vectors used in the MFCC based GMM-SVM. It
seems not surprising that the best performing hybrid system has
fewer mixture components relative to the MFCC based GMM-
SVM, given that the number of training vectors remains the same
for both systems. We note that the performance of the hybrid sys-
tem declines abruptly when the number of mixture components is
increased beyond 64, possibly due to overfitting, while the perfor-
mance of the MFCC based GMM-SVM system remains relatively
unchanging for 64, 128, and 256 mixture components.

6.2 Score fusion
It is relatively easy to access and combine scores generated by

different classifiers and thus score fusion is one of the most com-
mon approaches in biometric systems [18], including speaker ver-
ification. Speaker recognition systems utilizing neural network
feature extraction methods (Section 2) have also shown improve-
ment when scores are fused with MFCC based systems, even
when the extracted features performed poorly alone. We per-
formed score fusion by combining the scores from the 64 mix-
ture component hybrid RSDN GMM-SVM and the 128 mixture
component MFCC based GMM-SVM, giving scores from the 2
systems equal weighting when calculating the combined score.
The Detection Error Tradeoff (DET) curves for the fused scores,
hybrid RSDN GMM-SVM, and MFCC based GMM-SVM are
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Fig. 4 DET curves for MFCC based GMM-SVM (MFCC), hybrid RSDN
GMM-SVM (RSDN), and score fusion.

plotted in Fig. 4. DET curves for the 3 systems follow similar
trends but the hybrid RSDN GMM-SVM and score fusion con-
sistently outperform the MFCC based GMM-SVM. Score fusion
of the hybrid RSDN GMM-SVM and MFCC based GMM-SVM
provides some further reduction in EER, achieving an EER of
12.36%, which is a 6.6% relative improvement over the MFCC
based GMM-SVM.

6.3 Supervector Fusion
Supervector fusion offers an interesting form of feature level

fusion for GMM-SVM systems. We performed supervector fu-
sion by concatenating the supervectors generated from MAP
adapted GMMs trained with RSDN extracted features and those
trained with MFCCs. Specifically, we fused supervectors from
the 64 mixture component RSDN based GMM and the 128 mix-
ture component MFCC based GMM, resulting in 8832 dimen-
sional supervectors which were then used to train SVMs. The
DET curves for the fused supervectors, hybrid RSDN GMM-
SVM, and MFCC based GMM-SVM are plotted in Fig. 5. Like
score fusion, supervector fusion performs favorably compared
to the hybrid RSDN GMM-SVM and the MFCC based GMM-
SVM. Supervector fusion achieves an EER of 12.36%, which is
a 6.6% relative improvement over the MFCC based GMM-SVM.
It is often useful (if not critical) to do input normalization for
SVMs [22]. We considered that this might be the case for the
fused supervectors and tried normalizing each supervector s by
dividing s by its norm so that ||s|| = 1 after normalization. How-
ever, we found that this degraded performance considerably and
concluded that the normalization provided by Eq. (10) is already
sufficient.

6.4 Fusion of RSDN extracted features and MFCC
While fusion at the score level has been extensively used in

speaker verification literature, fusion at the feature level is rel-
atively infrequently used. In addition to supervector fusion, we
also performed another type of fusion at the feature level by di-
rectly concatenating the RSDN extracted features and MFCC fea-

Fig. 5 DET curves for MFCC based GMM-SVM (MFCC), hybrid RSDN
GMM-SVM (RSDN), and supervector fusion.

Fig. 6 DET curves for score fusion, supervector fusion and feature fusion.

Table 2 EER(%) for various fusion methods.

Fusion Method EER
Score Fusion 12.36
Supervector Fusion 12.36
RSDN extracted features and MFCC fusion 13.69

tures. This resulted in 119 dimensional feature vectors. A 64
mixture component GMM was then used to model the fused fea-
tures and the MAP adapted supervectors were used to train SVMs
following the usual GMM-SVM procedure. The DET curve for
these fused features is shown in Fig. 6, along with curves for score
fusion and supervector fusion for comparison. This feature fusion
gave 13.69% EER, which is significantly worse than the other fu-
sion methods.

Results of the different fusion methods are summarized in Ta-
ble 2. Score fusion and supervector fusion performed similarly
and obtained the lowest EER. Somewhat surprisingly to us, fu-
sion of RSDN extracted features and MFCC did not perform well,
even though biometric systems that integrate information at an
early stage of processing are believed to be more effective than
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those that integrate it at a later stage [18]. Potential reasons for
the poor performance include the possibility that these features
are too highly correlated and that 64 mixture components may
be too many for the increased dimensionality of the fused feature
vectors.

7. Conclusions and future work
We have explored several information fusion methods for a

text-independent speaker verification system based on a hybrid
RSDN GMM-SVM system. We first compared the baseline per-
formance of the hybrid RSDN GMM-SVM system to a GMM-
SVM system based on MFCC input features and found the hy-
brid RSDN GMM-SVM system yielded a modest performance
gain of 5% relative reduction in EER for the subset of the NIST
SRE 2006 1conv4w-1conv4w task studied. We then explored sev-
eral methods for fusing information including score fusion and
two types of feature fusion. Score fusion and supervector fusion
yielded further improvement over the MFCC based GMM-SVM
baseline system. Score fusion and supervector fusion gave com-
parable results, both achieving a 6.6% relative reduction in EER.
In contrast, direct fusion of RSDN extracted features and MFCC
features was not found to be helpful.

The results found here for the hybrid RSDN GMM-SVM ap-
proach along with several fusion methods are still preliminary and
offer a lot of opportunity for future work. Several methods exist
for score normalization of speaker verification systems, such as
Z-norm and T-norm [25] and could potentially be applied prior to
score fusion for improved performance. Application of channel
compensation techniques, such as NAP [26] may also improve
performance and could potentially be applied prior to fusing su-
pervectors. More work needs to be done to find the optimal raw
input features for RSDN feature extraction and determine if any
benefit can be derived from including delta and delta-delta fea-
tures as input features, as well as feature post-processing meth-
ods for increased robustness, such as feature warping [27]. The
hybrid RSDN GMM-SVM system has a considerable number of
parameters and the combination of two loss functions makes for a
rather difficult training procedure. These factors may be critical to
achieving good performance and could be obstacle to widespread
adoption.
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