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Given independent multiple access logs, we develop a mathematical model to
identify the number of malicious hosts in the current Internet. In our model,
the number of malicious hosts is formalized as a function taking two inputs,
namely the duration of observation and the number of sensors. Assuming that
malicious hosts with statically assigned global addresses perform random port
scans to independent sensors uniformly distributed over the address space, our
model gives the asymptotic number of malicious source addresses in two ways.
Firstly, it gives the cumulative number of unique source addresses in terms of
the duration of observation. Secondly, it estimates the cumulative number of
unique source addresses in terms of the number of sensors. To evaluate the
proposed method, we apply the mathematical model to actual data packets
observed by ISDAS distributed sensors over a one-year duration from Septem-
ber 2004, and check the accuracy of identification of the number of malicious
hosts�1.

1. Introduction

Malicious hosts routinely perform port scans of IP addresses to find vulnerable
hosts to compromise. According to Ref. 1), the Sasser worm performs scans
to fully randomly determined destinations with a probability of 0.52, and to
partially random destinations that have the highest two octets identical and one
octet, with probabilities of 0.25 and 0.23, respectively. Many major worms have
well-engineered algorithms for performing port scans and for choosing random
destinations, e.g., Slammer 6), Witty 7), and Code Red 8). In the Internet, the
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mixture of these complicated behaviors is a significant source of complexity, which
prevents prediction of the exact impact of worms and distributed attacks, even
though new malicious codes now appear daily.

One of the effective countermeasures against the dynamic behavior of malicious
hosts is the Network telescope 9), which records packets sent to unused blocks of
the address space, the so-called “dark net”, and uses the logs of worm activity to
infer aggregate properties, such as the worm’s infection rate, the total scanning
rate, and the evolution of these quantities over time. Kumar, et al. carefully
analyze the telescope observations of the Witty worm, and succeed in revealing
information about the host, such as access bandwidth, uptime, and the number
of physical drivers. They finally identify patient Zero, the host that the worm’s
author used to release the worm.

However, the Network telescope requires large unused address blocks. The
greater the block size, the more accurate is the estimation; but, at the same
time, malicious hosts have a greater chance of discovering the telescope. Instead,
we use small but orthogonally distributed sensors with unused IP addresses and
combine the logs to calculate the behavior of the target set of malicious hosts.
Our estimation is based on a mathematical model of the cumulative distribution
of unique hosts observed by the sensors with respect to the number of sensors
and the duration of observation. A mathematical model allows us to identify
the population of the malicious hosts, and the frequency that port scans are
performed, from arbitrary given logs. In addition, fitting our model to any sub-
set of logs provides useful characteristics of the subset, which can be seen as a
degree of risk. For example, the differences of port scans for destination ports,
source/destination addresses, duration of observation, and time of the year can
be clarified from the result of fitting. Even if an attempt of fitting fails, it imme-
diately implies that there is an ordinary event happening in the Internet scale.

Hence, our model is useful for many applications including
• a prediction of malicious scanning behaviors,
• a risk assessment of target subnet,
• a detection of significant changes in port scanning behavior, and
• a detection of largely coordinated attempts for DoS.
In this paper, we use the Internet Scan Data Acquisition System (ISDAS)
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distributed sensor 4), under the operation of JPCERT/CC, to estimate the scale
of current malicious events and their performance. The idea was first presented
in Ref. 2), using a very limited number of sensors for just 18 weeks, and therefore
the accuracy was not fully evaluated.

Our Contribution
There are some significant aspects to our contributions.
• We present a new mathematical model for a cumulative unique host’s number

in terms of a number of potential scanners, a duration for observation and a
frequency of port scanning attempts. As in the case of duration, a model in
terms of a number of sensors is also presented.

• Based on the actual packets log data observed by the ISDAS distributed
sensors for several years, we evaluate our model to clarify the performance
and the accuracy in several environments.

• Our experiment shows the estimated number of malicious hosts and the es-
timated performance of port scans at the time of the observation.

The rest of our paper is organized as follows. We first provide some fundamental
definitions and show the characteristics of ISDAS data. Then, we present a
mathematical model for cumulative unique host’s numbers. To evaluate the
proposed model, we use the actual logs of ISDAS, we evaluate the validity of
the model and examine each of the properties with respect to an actual set of
malicious hosts in Internet-scale events.

2. Model of Cumulative Unique Source Addresses

2.1 Fundamental Definitions
We give the fundamental definitions necessary to discuss the characteristics of

worms.
Definition 2.1 (Scanner and Sensor) A scanner is a host which performs

port scan to other hosts looking for the target to be attacked. A sensor is a host
that passively observes all packets sent from scanners.

Typically, a scanner is a host that has some vulnerability, and thereby is con-
trolled by a malicious code such as a worm or virus. Some scanners may be
human operated, but we do not distinguish between malicious codes and mali-
cious operators. Sensors have always-on static IP addresses, i.e., we will omit

Fig. 1 Number of malicious hosts over time.

the dynamic behavior effects of address assignment provided via Dynamic Host
Control Protocol (DHCP) or Network Address Translation (NAT).

Definition 2.2 (Population) Let n0 be the number of active global IP ad-
dresses. Consider the set of active addresses in the whole 32-bit address space�1.
Let n and x be the numbers of scanners and sensors, respectively. Clearly,
n, x � n0.

The number of scanners varies hourly. For example, it increases with a new
virus infection and decreases with the extermination of the virus. However, over a
long duration, e.g., monthly, a stationary population of scanners can be assumed.
Figure 1 illustrates the stationary behavior of the number of scanners, where
n(t1, t2) indicates the average population during t1 to t2, in satisfying

n(t1, t2)
.= n(t1)

.= n(t2)
over the duration.

The frequency of scans depends on the scanners. In our analysis, we focus on
the increase in distinct source addresses observed by sensors, which are defined
as unique hosts.

�1 Because of unassigned address blocks and private addresses, the number of active addresses
is smaller than 232. According to Ref. 5), which estimated host counts by pinging a sam-
ple of all hosts, the total number of active addresses in July 2005 was reported as being
353, 284, 184.
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Definition 2.3 (unique hosts) Let h(x, t) be the cumulative number of
unique hosts observed at x independent sensors within the time interval [0, t],
where t is a monthly, weekly or hourly unit of time.

Putting distributed log files together provides useful knowledge about the set of
scanners. For example, from the log files we obtain the average number of scans
observed by a sensor per hour, a list of frequently observed scanners, some com-
mon patterns among port scans, the correlation among sensors, the relationship
between scans and classes of sensors, and scanning variations per hour, week, or
month, etc. Formally, our objective is to identify the total number of scanners,
n, given the unique hosts h(x, t) observed by distributed sensors.

Definition 2.4 (static address) A scanner is static if it is assigned a static
global address and does not use a spoofed address.

In practice, a host may have multiple addresses assigned by a DHCP server.
Alternatively, one proxy address can be shared by multiple hosts inside a firewall
under NAT. We begin with the simplest version of our model with static address
and will generalize the condition toward the reality.

Definition 2.5 (uniform destination) A scan is uniform if the destination
address is randomly determined, and is uniformly distributed over the set of
active sensors.

Note that the actual distribution of destination addresses is not uniform over
the address space because there are some worms that perform local port scans.
However, by filtering the local scans we can minimize the effect of local scans
and approximate the destinations of scans as a uniform distribution over the set
of sensors.

If a scan is uniform, the probability of a certain sensor being chosen is p0 =
1/n0. Since there are n scanners, which can be considered as Bernoulli trials,
we have an expected value for the number of scans as the mean of a binominal
distribution, i.e.,

E[h(1, t)] = np0 = n/n0.

Definition 2.6 (stationariness) A set of scanners is stationary if there exists
a duration T for which a population of scanners reaches a stationary state.

Over the long duration, an increase of population of scanners asymptotically
equals to the decrease at some point.

Definition 2.7 (average scans) A scanner performs c scans in a time inter-
val [0, t], on average.

Ideally, we formalize a performance of scans with a single parameter of the
mean of scans though the performance depends on the kind of worms and on the
performance of the infected hosts. From a macroscopic viewpoint, the number of
scans can be approximated by c. To simplify, we represent the average number
of unique hosts observed by a sensor as

a = c
n

n0
. (1)

Given multiple observations, as the number of sensors increases, the unique
hosts number increases as well. The number of unique hosts is, however, not
linear with the number of sensors x.

There may be a small number of scanners observed by both sensors. Therefore,
we have

h(2, t) ≤ 2h(1, t).
In general, the difference Δh(x, t) = h(x, t)−h(x− 1, t) decreases as x increases,
and asymptotically disappears. In addition, we note that Δh depends on the
total number of scanners n, because n is the dominating factor in the probability
of collision, i.e., two sensors observing a common scanner. Therefore, we can
estimate the total number of scanners from the reduction in the increase of unique
hosts with respect to the number of sensors.

Similarly, we have a relationship between the number of unique hosts and the
duration of observation, namely

h(x, 2) ≤ 2h(x, 1).
This analogy between the number of sensors x and the duration of observation t

provides dual estimation paths. If the two estimates from the increase of x and
t are close, we can be highly confident of our estimate of n.

2.2 Estimation Model of n using Duration t

First, we try to estimate the number of scanners by varying the duration of
observation. In the next section, we will estimate it in an alternative way.

From Eq. (1), we begin with h(1, 1) = a, namely an increase by a in every
time interval. The probability that a new address has already been observed
is p = h(1, 1)/n, so we can regard a observations as a Bernoulli trials with
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probability p. It follows that ap = a h(1, 1)/n = a2/n addresses are duplicates,
on average. More precisely, the probability that k addresses have been observed
in a newly observed addresses is given by the binomial distribution specified by
the probability density function

P (k, a) =

(
a

k

)
pk(1 − p)a−k.

Taking the mean of k, we have
h(1, 2) = h(1, 1) + a − a h(1, 1)/n = 2a − a2/n,

which follows
h(x, t + 1) = h(x, t)(1 − a/n) + a.

Taking the difference Δh(x, t) = h(x, t+1)−h(x, t) gives the differential equation
of the unique host function h()

dh

dt
= −a

n
h(x, t) + a, (2)

which follows the general form

h(x, t) = C · e− a
n t + e−

a
n t

∫
e

a
n t · a dt = C e−

a
n t + n.

With the initial condition h(0, 0) = C e0 + n = 0, we have C = −n. Therefore,
we have the following theorem.

Theorem 2.1 (Unique hosts with respect to duration t) If a set of
scanners is static, uniform and stationary, then a cumulative unique hosts number
is

h(x, t) = n(1 − e−
a
n t), (3)

where n is the total number of potential scanners, x is a number of sensors and
a is the average number of unique hosts observed by a single sensor in the time
interval.

2.3 Estimation Model of n using Number of Sensors x

Recall the analogy between the duration of observation t and the number of
sensors x. By replacing t with x in Eq. (3), we have the following.

Theorem 2.2 (Unique hosts with respect to sensors x) If a set of scan-
ners is static, uniform and stationary, then a cumulative unique hosts number

observed by x sensors is

h(x, t) = n(1 − e−
a
n x), (4)

where a is the average increase in unique hosts for one sensor in certain duration.
These dual functions will be investigated by experiment.
Note that the variation between sensors is greater than that for durations.

Although we have assumed uniform scans, an actual port scan is not performed
globally over the address space. There are some worms and viruses that scan mul-
tiple destinations by incrementing the fourth octet of the IP address. Therefore,
we should carefully choose the location of hosts for sensing, and, to minimize the
difference between sensors, we should take the average for unique hosts from all
possible combinations of x sensors. For example, if we have three sensors, s1, s2

and s3, then h(2, t) is defined as the average for pairs (s1, s2), (s1, s3), (s2, s3).

3. Experiments

This section evaluates our model using experimental log data observed in the
Internet to estimate the number of scanners in the Internet.

3.1 ISDAS Observation Data
The ISDAS comprises multiple passive sensors distributed among multiple In-

ternet service providers in Japan 4). The ISDAS provides daily statistics of pack-
ets observed by the distributed sensors for each of the major ports, 13, 80, 135,
139, 445, and 1026.

In our analysis, we have a set of orthogonal log data, observed by 12 indepen-
dent sensors chosen from more than 40 sensors, from September 1, 2004 through
September 30, 2005.

3.2 Methods of Evaluation
Let h(S, T, P ) be the number of unique source addresses observed using a set

of sensors S = {s1, . . . , s12}, for duration T , and for destination port P . For
example, h({s9}, [2004/5 − 2004/7], 135) denotes the cumulative unique source
addresses observed by a single sensor s9, from May 2004 for three months, for
destination port 135.

We specify parameters n and a in our model by fitting the model to the actual
observed log data in the following ways.
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( 1 ) Identification of the total number of malicious hosts, estimated for several
observation durations t = 1, . . . , 360 (days).
For each sensor s in S, we perform a fitting of Eq. (3) to the observed
data h(s, t, p), where the destination port is one of 135, 139, or 445. The
optimized parameters for our model give the estimated number of total
hosts n.

( 2 ) Identification of the total number of malicious hosts, estimated from the
number of distributed sensors, x.
For x = 1, . . . , 12, we perform a fitting of Eq. (4) to h(Sx, T, p), where |Sx| =
x and T is a constant. Because the number of packets varies considerably
among sensors, we choose the two extreme sets Sx∗ and S∗

x and take the
average of the minimal and maximal sets for each x.

We examine the difference in estimates for several observation durations and
check the stability of the fitting accuracy for several observation intervals. We
show the correlation between the number of unique source addresses and the
number of packets sent to a given sensor.

The strategy for performing port scans to random addresses depends on the
hosts and the malicious codes. We investigate the uniformity of addresses scanned
by showing the statistics for the number of sensors observing a given source
address.

3.3 Estimation of Scanners Based on Duration of Observation
Table 1 shows the total number of packets and the unique source addresses

h(1, T1, 445), observed during T1 (September 1, 2004 through September 30,
2005), for each of sensors s1, . . . , s12. Δh(s, T1, 445) denotes the average in-
crease in unique source addresses per day. Sensor s9 observed the least number
of packets among all sensors, which is about 1/25 of that for sensor s1.

In Fig. 2, we illustrate the daily average increase in unique source addresses
(Δh(s, T1, 445)), which decreases during the period of observation. In other
words, the set of unique source addresses becomes saturated, and asymptotically
reaches a fixed size.

With reference to Eq. (3), we visually demonstrate our fitting accuracy in
Fig. 3, where sensors s = s1, s3, s11 are used in the estimation. For other sensors,
Table 2 shows the estimated total number of malicious hosts and the scanning

Table 1 Statistics of packets for sensors.

sensor ID total packets unique host h(x) Δh(x) [per day]
s1 268024 97102 245.8
s2 153310 63198 160.0
s3 154126 60755 153.8
s4 137848 40315 102.1
s5 168191 62881 159.2
s6 173566 47809 121.0
s7 17167 10066 25.5
s8 164078 54865 138.9
s9 10667 9046 22.9
s10 170417 24394 61.8
s11 30898 13200 33.4
s12 143725 53716 136.0

Fig. 2 Average increase of unique source addresses per day Δh(s3, Δt, 445).

ratio, in conjunction with the asymptotic standard error�1 for each sensor. We
also show the average number of port scanning packets per second, c, in the right-
most column of the table. The average number of packets is c̄ = 16.75, which
seems to imply automatic generation.

Note that not all estimations are successful. For example, sensors s7 and s9 are
implausibly shown as having more than 109 source addresses, which approaches

�1 It provides a degree of accuracy for the qualitative purpose, though it is obtained via the
variance-covariance matrix after the final iteration for fitting. Note it does not determine
the confidence interval.
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Fig. 3 Cumulative unique source addresses h(s, t, 445).

Table 2 Estimated number of total malicious hosts during one year n(1,T1,445).

s n error [%] n/a error [%] c [pckts/s]
s1 121000 1.02 256 1.77 16.0
s2 76900 0.82 245 1.46 17.7
s3 61900 0.34 146 0.83 28.1
s4 49100 0.60 250 1.03 16.4
s5 68200 0.25 171 0.53 23.9
s6 58300 0.89 242 1.59 16.9
s7 4.59E+09 8.70E+03 1.87E+08 8.71E+03 0.0
s8 65000 0.61 239 1.10 17.1
s9 1.11E+09 6.56E+03 5.51E+07 6.57E+03 0.0
s10 30700 0.80 263 1.37 15.6
s11 17600 0.45 298 0.72 13.7
s12 75300 1.09 330 1.69 12.4

average n1 62400 – – – 17.8
SD σ1 28100 – – – 4.72

the total number of all IP addresses. To investigate the reason for this failure
of estimation, details for the two sensors are shown in Fig. 4. In the middle
of duration (t = 200), the number of unique source addresses increases sharply
for some reason, possibly a malicious code’s local impact or a sudden change of
network topology. Excluding this failure of estimation, which is indicated by an
n estimate of over 106, we show the probability density function of the estimated
number of malicious hosts, n, in Fig. 6. Here, the most likely value of n can be

Fig. 4 Failure of estimation.

Fig. 5 Estimation of h(s3, T1, p) w.r.t. destination port p = 135, 139, 445, and ICMP.

seen at the first peak and the average is n1 = 62400 with the confidence interval
being 95% of ±2σ1.

Scanning behavior may depend on malicious codes or viruses. To clarify the
differences in behavior, we repeat the same steps for every port p = 135, 139, 445,

and the Internet Control Message Protocol (ICMP), and show the differences in
Fig. 5. In comparing destination ports, we notice a difference in the number of
packets, but all cases seem to have the same asymptotic value. Therefore, we
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Fig. 6 Probability Density Functions of number of scanners estimated from h(1, T1, 445)
(indicated with n1) and h(1, T3, 445) (n3).

can claim that our model is generally appropriate for any destination port, and
we will use p = 445 as a representative port from now on. A similar discussion
is applicable to other ports.

3.4 Estimation of n Using a Number of Sensors x

Figure 7 shows the cumulative unique source addresses h(x, T2, 445) with re-
spect to a number of sensors x, where the duration is T2 = [2005/2/1–2005/2/28]
and the destination port is p = 445. The number of cumulative unique source ad-
dresses increases as more sensors are used for distributed observation. Note that
the order of sensor choice is a critical factor in the increase of unique addresses
because the number of packets varies by a factor of more than ten among sensors.
To minimize the effects of this difference, we take an average between the two
extreme cases, maximal and minimal, in the choice of sensors, to which we apply
Eq. (4) for fitting. The estimated number of malicious hosts n2(S, T12, 445) is
summarized in Table 3.

The experimental results show the approximation of n using the number of
sensors x as

n2 = 112000,

which is consistent with the previous approximation using duration t with a
confidence interval,

Fig. 7 Cumulative unique source addresses h(S, T2, 445) with respect to number of sensors
x = |S|.

Table 3 Estimated unique source addresses n2(S, T1, 445).

duration T2 n2 error [%] n2/a error [%] c [pckts/s]
2005/2/1–2005/2/28 111655 24.96 33.113 28.76 123.48

n1 = 62400 ± 2σ1 = [6200, 118600]. (5)
Therefore, we claim that both models give a similar approximation of the popu-
lation of scanners. The variance of n1 is not significant.

3.5 Stability During Observation
The set of malicious hosts may be unstable over too small a period of time.

On the other hand, one year may be too long to observe a set of malicious hosts
because unexpected events, such as the spread of worms or a flood of packets
with spoofed source addresses, would spoil the proposed model.

Therefore, we compare the fitting to a three-month duration of observation
data to the estimation results for a one-year duration, as summarized in Table 4,
where fittings are attempted for each three-month duration T3 in the period from
September 2004 through July 2005. Estimated values of n greater than 106 are
considered as fitting failures. Successful fittings comprise 28 cases out of 12
sensors ×4 durations = 48 pairs, i.e., the fitting success ratio is over 50%. The
probability distribution of the number of malicious hosts n3 is shown in Fig. 6.
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Table 4 Number of malicious hosts estimated using three-month observation duration,
n3(1, T3, 445).

beginning 2004/09 2004/12 2005/03 2005/06 average n3

s1 3.76E+09 95300 43900 112000 83700
s2 2.44E+08 20700 376000 9.56E+06 198000
s3 44800 32600 38500 32500 37100
s4 199000 5.46E+08 25000 1.24E+08 112000
s5 92500 33000 25000 1.24E+08 50200
s6 55800 83200 1.30E+09 72100 70300
s7 7.50E+08 3.42E+07 3.23E+10 2.71E+07 0
s8 426000 22100 136000 1.47E+08 195000
s9 2.04E+06 9750 1.69E+08 3.89E+07 9750
s10 13600 1.57E+08 1.13E+08 1.70E+08 13600
s11 31700 28500 39700 7950 27000
s12 2.37E+08 96100 1.40E+10 262000 179000

average n3 87700
SD σ3 106000

The three-month average is
n3 = 87700 ± 2σ3 = [−124300, 299700], (6)

which does not conflict with the first approximation, n1 in Eq. (5), but the interval
is too broad. We find two peaks in the distribution of n in Fig. 6, which is
considered the source of the error. To discover the reason for the difference
between n1 and n3, we examine all possible durations from T = 30 through 100
by fitting the model to the experimental data, as shown in Fig. 8. For example,
T = 30 divides the one-year duration into 365− 30 = 335 sets of fitting data, for
which we perform the fitting and investigate the interval between the minimal
and the maximal approximations. The experimental results show noncontiguous
behavior at |T | = 30, 44, 52, 60 in the figure. Possible reasons for this anomaly
include the synchronous port scans performed by a botnet or the large-scale failure
of a backbone.

3.6 Independence of Sensors
To enable uniform sampling of Internet-scale events, the sensors should be

distributed uniformly over the address space. However, according to Table 1, the
number of packets observed by different sensors varies by a factor of up to ten. To
evaluate our model with regard to the independence of sensors, we first show the
relationship between the number of packets and the cumulative number of unique
source addresses, and then the jointly observed number of source addresses for

Fig. 8 Estimated number of malicious hosts for duration of observation T .

Fig. 9 Scatter diagram of numbers of packets and unique source addresses.

each pair of the sensors.
Figure 9 demonstrates a scatter diagram for the number of packets with des-

tination port 445 and the cumulative unique source addresses h(S, T1, 445). The
correlation coefficient is 0.93, which implies a positive correlation between them.

In Fig. 10, we show the number of source addresses that are jointly observed
by two distinct sensors. The degree of correlation between sensor si and sj is
defined by
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Fig. 10 Correlation between sensors ri,j .

r(i,j) =
h({si}, t, p) + h({sj}, t, p) − h({si, sj}, t, p)

h({si}, t, p)
, (7)

where h(S, t, p) is a cumulative unique source address observed by all sensors in
S, t = T1 (i.e., one year), and for p = 445. Note that pairs (s4, s8), (s4, s6), and
(s7, s9) have stronger correlation factors than others. We claim that the correla-
tions are not strong enough to violate our model about sensor independence.

4. Conclusions

We have proposed a new mathematical model for the increase of unique source
addresses. Using ISDAS distributed sensors and the proposed mathematical
model of the increase in unique source addresses, the number of hosts performing
port scans of destination port 445 is estimated as: n1 = 62400 (±56200) using the
one-year observation duration T1, n3 = 87700 (±21000) using the three-month
duration T3, and n2 = 112000 using x = 12 independent sensors, where a con-
fidence interval of 95%(2σ) is used. As a result, our experiment shows that the
number of malicious hosts averages 80000, and a malicious host performs 16.8
port scans per second on average, during T1 = [2004/9, 2005/9].

The estimated results are independent neither of the duration of observation
nor the starting time for observation. The fitting success ratio implies that a
one-year duration is better than a three-month duration for observation. The
ISDAS sensors, with a tenfold variation in the observed number of packets, are

independently distributed in terms of jointly observed source addresses, but three
out of 66 pairs have positive correlations. The malicious hosts are distributed
uniformly over the whole address space. The frequency of port scans varies with
source addresses, and typical malicious host behavior is observed by an average
of 1.2 sensors per year.

Our further studies include an improvement of accuracy of estimation, which
can be given significantly through enough number of sensors more than 12 used
in this paper.
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