
IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008)

Regular Paper

Detection of Conflicts Caused by a Combination of Filters

Based on Spatial Relationships

Yi Yin,†1 Yoshiaki Katayama†1

and Naohisa Takahashi†1

Packet filtering in firewalls is one of the useful techniques for network security.
This technique examines network packets and determines whether to accept or
deny them based on an ordered set of filters. If conflicts exist in filters of
a firewall, for example, one filter is never executed because of the prevention
of a preceding filter, the behavior of the firewall might be different from the
administrator’s intention. For this reason, it is necessary to detect conflicts in
a set of filters. Previous researches that focused on detecting conflicts in filters
paid considerable attention to conflicts caused by one filter affecting another,
but they did not consider conflicts caused by a combination of multiple filters.
We developed a method of detecting conflicts caused by a combination of filters
affecting another individual filter based on their spatial relationships. We also
developed two methods of finding all requisite filter combinations from a given
combination of filters that intrinsically cause errors to another filter based on
top-down and bottom-up algorithms. We implemented prototype systems to
determine how effective the methods we developed were. The experimental
results revealed that the detecting conflicts method and the method of finding
all requisite filter combinations based on the bottom-up algorithm can be used
for practical firewall policies.

1. Introduction

Network security can be increased by filtering packets at firewalls. Packet
filtering is a technique by which network packets are accepted or denied based on
an ordered set of filters and is called a firewall policy. Each filter in a firewall
policy consists of some conditions and an action (accept or deny). When the
header fields of an incoming packet satisfy a filter’s conditions, this filter’s action
will be carried out on the incoming packet. A first-matching scheme is used
by many packet filtering systems such as IPFW in FreeBSD 22) and Iptables in

†1 Nagoya Institute of Technology

Linux 24). When a packet, P , arrives, the firewall compares P ’s header fields with
the conditions of the filter from the first to the last in turn until it finds one filter
f whose conditions satisfy P ’s header fields. The firewall then uses the action of
filter f to deal with packet P .

Consider a firewall policy that contains filters f and g: f precedes g, and f

accepts all packets that should be denied by g. In this case, we can say that
f causes an error to g because f prevents g from denying packets. Of all the
packets that match g, g is only executed when none of the arriving packets match
f in any way. In addition, g is not executed if the arriving packet completely
matches f . In this case, we can say that filter f causes a warning to filter
g. Such errors and warnings are called conflicts 3),5),6). It is even difficult for
experienced administrators to detect conflicts that occasionally occur in firewall
policies due to their modification. Since conflicts are difficult to detect, they
may easily occur in firewall policies. In examining 37 firewalls in production
enterprise networks in 2004, Wool found that all the network’s firewalls were
mis-configured and vulnerable 1). Various techniques have been developed to help
network administrators detect conflicts in firewall policies 2)–6). Although these
techniques can help administrators detect conflicts, they are limited because they
only consider conflicts caused by one filter to another filter.

Consider a firewall policy that contains filters f1, f2, f3 and g: f1, f2, and f3

precede filter g, and we want to check whether f1, f2, and f3 cause conflicts to g.
We assumed filter f1 would accept all the packets with a destination port number
ranging from 0 to 45, f2 would accept all the packets with a destination port
number ranging from 23 to 80, f3 would accept all the packets with a destination
port number ranging from 80 to 100, and g would deny all the packets with a
destination port number ranging from 10 to 60. If we only consider conflicts
caused by one filter to another, f1 only causes a warning and does not cause any
error to g, and f2 also only causes a warning and does not cause any error to
g. However, because any of the packets that match g also match f1 and f2, g is
never executed. In this case, we can say that a combination of filters f1 and f2

causes an error to filter g. Therefore, it is necessary to detect conflicts caused by
a combination of filters in a firewall policy.

In the firewall policy mentioned above, some combinations of filters that may

3121 c© 2008 Information Processing Society of Japan

3122 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

cause conflicts to filter g can be considered, such as a combination of filters f2

and f3, a combination of filters f1, f2 and f3, and so on. If we consider the
combination of filters f1, f2 and f3, we can determine that it also causes an error
to filter g, but we also know that the single filter f3 does not cause any conflict
to filter g. Therefore, it is important to remove irrelevant filters, such as filter
f3, from a combination that causes an error to filter g, such as the combination
of filters f1, f2 and f3, because the combination of filters f1 and f2 intrinsically
causes error to filter g while filter f3 does not essentially contribute to causing
an error to filter g. We call filters f1 and f2 a requisite filters combination
for an error to filter g. In general, a combination of K filters (K ≥ 2) is called
a requisite filters combination for an error to another filter when an error
is caused by this combination, and no errors (i.e. warnings or no conflicts) are
caused by any of the combinations of (K − 1)-filters that do not contain a filter
from the combination of K filters. An individual filter f is called a requisite
filter for an error to another filter when an error is caused by this filter. A
requisite filters combination for an error and a requisite filter for an
error are represented as RFC.

We developed a conflict detection method, CDM, and two RFC finding
methods: the RFM-T and RFM-B. Given a combination of K filters, and a
filter g, where the K filters are placed before filter g, the CDM detects conflicts
caused by the combination of K filters to g using their spatial relationships. For
the combination of K filters and filter g, RFM -T identifies all RFCs from the
combination of K filters based on a top-down algorithm, while RFM -B identifies
all RFCs from the combination of K filters based on a bottom-up algorithm.

The rest of this paper is organized as follows: Section 2 introduces the back-
ground of firewalls. Section 3 introduces related works. Section 4 describes
the conflicts caused by combinations of filters. Section 5, describes the imple-
mentation of methods that have been developed. Section 6, compares the two
algorithms on the basis of experiments. Finally, we conclude the paper.

2. Background

A firewall policy, FP , consists of an ordered set of n filters, and it is expressed
as follows:

FP : (f1, f2, ... , fn),
where if two filters, fi and fj (i, j∈[1, n] and i�=j), satisfy i < j, filter fi is placed
before fj in FP . Each filter, fi, (i∈[1, n]) consists of m predicates, pi1, pi2, ...,
pim, and an action, and fi is expressed as follows:

fi: pi1, pi2, ... , pim, action
where m is the number of header fields to be used in packet filtering. The
commonly used header fields are: protocol type, source IP addresses (repre-
sented as SrcIP), destination IP addresses (represented as DesIP), source port
number (represented as SrcPort) and destination port number (represented as
DesPort).

Each predicate pij (i∈[1, n], j∈[1, m]) in a filter, is a matching condition for a
packet header field, and it commonly allows four kinds of matches: exact match,
prefix match, range match 18), or list match 23). In an exact match, the packet
header field should exactly match the predicate; this is useful for specifying the
protocol, for instance. In a prefix match, the predicate should be a prefix of a
packet header field; this could be useful for blocking access from a certain sub-
network. In a range match, the header values of a packet should lie in the range
specified by the predicate; this can be useful for specifying port number ranges.
In a list match, the header value of a packet should be one of the items within the
list; for instance, this is useful for specifying multiple similar predicates within a
filter, such as specifying multiple discrete port numbers in a filter.

As previously stated the action of a filter is either “accept” or “deny”.
We used a first-matching scheme, which is used by many systems, such as

IPFW in FreeBSD 22), and the meaning of first-matching was explained in Sec-
tion 1. The default filter of a firewall policy is a filter that can match packets
when no other filters of the firewall policy can, and it is always the last filter in
a firewall policy. In this paper, we used deny all as the default filter that denies
all packets.

A filter where each predicate is represented as an exact value, a prefix, a range
value or a list is called an external form filter. In our work, each predicate pij

(i∈[1, n], j∈[1, m]) in a filter is represented as a uniform range value, [aij , bij).
A filter where each predicate is represented as a uniform range value is called
an internal form filter. An internal form filter, fi (i∈[1, n]), is represented as

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3123 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

Fig. 1 Example firewall policy. Fig. 2 Example filters 1.

follows:
fi: [ai1, bi1), [ai2, bi2),, [aim, bim), action

Assume the values of the header fields of packet P are (x1, x2,, xm), if and
only if ai1 ≤ x1 < bi1, ai2 ≤ x2 < bi2,, aim ≤ xm < bim, packet P

matches filter fi, and the action of filter fi is performed on packet P . An example
firewall policy consists of internal form filters, as shown in Fig. 1, where filter g2

represents a default filter.
External form filters can easily be converted into internal form filters. For ex-

ample, if an exact value predicate of 140.192.37.60 is given, we can represent this
as [140.192.37.60, 140.192.37.61), if a prefix predicate of 140.192.37.* is given, we
can represent this as [140.192.37.0, 140.192.38.0), if a list predicate {192.168.0.1,
10.5.32.6} is given, we can split this into two exact value predicates and then
represent each of them in the internal form. We have omitted the method that
is used to transform external form filters into internal form filters because trans-
formation is outside the scope of this paper.

3. Related Work

Over the past few years, researches on the analysis of firewall policies have
received broad attention 2)–17), and they can be roughly classified into three main
groups: (1) detection of conflicts in firewall policies 2)–6),15)–17), (2) removal of
redundant filters in firewall policies 7),8), and (3) interactive analyzers of firewall
policies 9)–14).

(1) Detection of Conflicts in Firewall Policies.
Al-Share, et al. proposed an algorithm to detect conflicts caused by one filter to

another in a firewall policy based on the relations between every two filters 2),3).
The relations between the two filters were defined based on their predicates as to

whether they could satisfy the condition in { ⊃,⊂, = }. However, their research
has two problems. The first problem is that when the corresponding predicates
of two filters overlap, such as the filters in Fig. 2, the relations between the two
filters cannot be determined because overlapping predicates do not satisfy any
of the conditions in { ⊃,⊂, = }. Therefore, the algorithm for detecting conflicts
also does not work when overlapping predicates appear between two filters. The
second problem is that they cannot detect conflicts caused by a combination of
filters to another filter because they cannot determine the relations between two
filters when overlapping predicates appear in them.

In order to avoid overlapping filters and to find conflicts between every two
filters in a firewall policy, Al-Share, et al. break down two filters with the over-
lapping predicates into several filters which are equivalent to the two filters as a
whole 3). Their problems were that they did not provide a way of breaking down
the overlapping predicates of two filters and that they only considered conflicts
caused by one filter to another. Because a conflict caused by a combination of
filters may be divided into some conflicts between two filters, the way overlapping
predicates are broken down determines whether conflict caused by a combination
of filters can be detected. For example, if filters f1 and f2 as shown in Fig. 2
are broken into equivalent filters f11, f12, f13, and f21, f22 as shown in Fig. 3,
where the predicates of each of the two filters satisfy one of the conditions in
{ ⊃,⊂, = }, because they only considered conflicts caused by one filter to an-
other, they could not detect conflicts such as filter g1 is never executed by the
combination of filters f11, f12, f13 and f21, f22. Therefore, although their con-
flict detection algorithm for two filters can be used after overlapping predicates
are broken down, Al-Share, et al. also occasionally could not detect conflicts to
another filter caused by a combination of filters.

Yuan, et al. presented a static analysis algorithm to check the misconfigura-
tions of an individual firewall as well as distributed firewalls 4). They implemented
their algorithm in a tool FIREMAN based on a binary decision diagrams (BDDs).
Although they mentioned a part of the conflicts that are presented in this paper,
their goal was to achieve fast misconfigurations detection of a single firewall and
of distributed firewalls, but not to detect all the conflicts caused by a combina-
tion of multiple filters and to decide whether a combination of filters is an RFC

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3124 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

or not. Baboescu, et al. addressed the problems of fast updates and fast conflict
detection, and they proposed an efficient and scalable conflict detection algo-
rithm 5). Although this research could be used for large scale firewall policies, it
only considered the conflicts caused by one filter to another, therefore, it cannot
be used to find the conflicts caused by a combination of filters and it cannot
detect all RFCs. Hari, et al. proposed algorithms for detecting and resolving
conflicts in a filter database 6). Although this research can be used to detect and
resolve the conflicts, it also only considered the conflicts caused by one filter to
another. Therefore, it cannot be used to detect conflicts caused by a combination
of filters and detect all RFCs.

In our previous works 15)–17), we discussed the problem of the possible effect to
another filter caused by adding a filter in a firewall policy. This kind of effect is
called side effect and the analysis method of this problem is called side effect
analysis. This paper improves and generalizes the side effect analysis presented
in Refs. 15)–17), to detect conflicts caused by a combination of filters to another
filter by using their spatial relationships. In terms of the conflicts of firewall
policies, several other researches expressed it differently, such as errors in Ref. 1)
or misconfigurations in Ref. 4) and so on.

(2) Removal of Redundant Filters in Firewall Policies.
The literature 7),8) presents methods to reduce the number of filters without

changing the meaning of a firewall policy by removing the redundant filters.
Liu, et al. used a firewall decision tree (FDTs) to detect and remove all the
redundant filters 7). K. Matsuda proposed a model called “matrix decomposition”
which enables to analyze filters, and some firewall policy compression methods
(removable filters deletion, verbose filters revision and filters combination) by
using this model 8).

The goal of our research is to detect the conflicts caused by a combination of
filters which are not easily detectable by an administrator and show them to the
administrator. To accomplish this goal, we propose a conflict detection method
(CDM) and two RFC finding methods (RFM -T and RFM -B) which are based
on the spatial relationships between the filters.

For some reasons, an administrator can intentionally embed redundant filters,
which will conflict with the other filters in a firewall policy. In this case, we

will inform the administrator of the fact that there exist some conflicts in the
firewall policy instead of removing these redundant filters. Furthermore, to help
the administrator decide of what should be done (adding, deleting, or replacing
filters to deal with conflicts) according to his intentions, we classify the conflicts
and show him the contents of conflicts in detail. For the reason that we want
to inform the administrator about the conflicts, it is necessary to try getting rid
of filters that do not essentially contribute to causing conflicts. Therefore, we
proposed RFC finding methods (RFM -T and RFM -B) to reduce the number
of filters that have to be checked by the administrator.

(3) Interactive Analyzer of Firewall Policy.
Hazelhurst, et al. described a method of transforming a firewall policy written

in a Cisco-like access list language into a BDD (binary decision diagrams)9),10).
Their goal is to achieve fast lookup by using BDDs. Although this method can be
used to answer questions about the types of packets permitted or excluded by a
set of filters and even to find redundant filters of a firewall policy, it cannot be used
to find conflicts caused by a combination of filters to another filter and all RFCs.
Mayer, et al. developed a firewall analysis tool, Fang, to perform customized
queries on a set of filters and to extract the filters in a firewall policy 11),12). Wool,
et al. improved the usability of Fang by automating the queries to check whether
firewalls are configured according to the administrator’s expectations or not 13).
Eronen and Zitting presented an expert system based on Eclipse to verify the
functionality of filters by performing queries 14).

All these tools and methods help the administrator manually verify the cor-
rectness of a firewall policy. Unfortunately, they require a high degree of user
expertise to write proper queries to identify different firewall policies’ problems,
and they cannot be used to find conflicts caused by a combination of filters to
another filter.

4. Classification of Conflicts

4.1 Packet Space and Filter Space
When the number of header fields in a packet is m, the packet can be repre-

sented as a point in an m-dimensional space called a packet space. A filter is
represented as a sub-space of a packet space called a filter space, which includes

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3125 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

Fig. 3 Example filters 2. Fig. 4 Filter spaces in packet space.

all the points of packets that match the filter. The filter space of a filter, f , is rep-
resented as S (f). For example, all filters in the firewall policy of Fig. 1 contain
two predicates for two header fields, i.e., “SrcIP” and “DesIP” of packets. The
filter spaces of f1, f2, and g1 are represented as rectangles in a two-dimensional
packet space, and the filter space of g2 is the whole packet space, as we can see
in Fig. 4.

4.2 Spatial Relationships of Filters
The relationships between the filter spaces of filters f and g are called the

spatial relationships between filters f and g and are represented as R(f,
g), where R(f , g)∈{Disjoint, Equivalent, Inclusion1, Inclusion2, Correlation}.
R(f , g) is determined by the filter spaces of f and g, i.e., S (f) and S (g), and
is expressed as follows:

R(f, g) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Disjoint if S (f) ∩ S (g)=∅
Equivalent if S (f) = S (g)
Inclusion1 if S (f) ⊃ S (g)
Inclusion2 if S (f) ⊂ S (g)
Correlation otherwise

(1)

Fig. 5 (a)–Fig. 5 (e) show the images of the spatial relationships of {Disjoint,
Equivalent, Inclusion1, Inclusion2, Correlation} respectively. The hatching parts
of Fig. 5 (a)–Fig. 5 (e) show the common space of two filter spaces S (f) and S (g).

Fig. 5 Spatial relationships of filters f and g.

4.3 Combination of Filters
Let us introduce a notation, C[f1, f2, ..., fK], to represent a combination of

K filters, or a K -filters combination, where the K filters, f1 ∼ fK , all have
the same actions, and an individual filter f also can be seen as a combination
of K filters when K is equal to one. For simplicity, we use a symbol, CK , to
represent a combination of K filters, C[f1, f2, ..., fK]. We also define CK .action
to represent the action of a combination of K filters, and g.action to represent
the action of filter g. We define S ’(CK) and R’(CK , g) to denote the K -filters
combination space and the spatial relationships between the K -filters
combination and a filter, g , as follows:

S ’(CK) = S (f1) ∪ S (f2) ∪ ... ∪ S (fK). (K ≥ 2) (2)
S ’(C[f]) = S (f), f ∈ [f1, ...fK], (K = 1) (3)

R’(CK , g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Disjoint if S ’(CK) ∩ S (g)=∅
Equivalent if S ’(CK) = S (g)

Inclusion1 if S ’(CK) ⊃ S (g)

Inclusion2 if S ’(CK) ⊂ S (g)

Correlation otherwise

(K ≥ 2) (4)

R’(C[f], g) = R(f, g), f ∈ [f1, ...fK], (K = 1) (5)
4.4 Classification of Conflicts
We assume that a firewall policy consists of an ordered set of n filters, f1∼fn,

and a filter g, where if two filters, fi and fj (i, j∈[1, n], and i�=j), satisfy i < j, fi

is placed before fj , and the n filters are placed before the filter g. If we take out K

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3126 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

Fig. 6 R’(C[f1, f2], g)=Equivalent. Fig. 7 R’(C[f1, f2], g)=Inclusion1.

filters, f1∼fK , that have the same actions from the n filters, the possible conflicts
caused by CK to filter g can be classified as follows: These conflicts caused by a
combination of K filters were inspired by the classification of conflicts between
two different filters 2),3).
a). Shadowing error: When filter g is never executed because CK prevents g

from accepting or denying packets, we can say that filter g is shadowed by CK

and there exists a shadowing error between CK and g.
Figure 6 shows an example where the R’(C[f1,f2], g) is Equivalent, and Fig. 7

shows an example where R’(C[f1,f2], g) is Inclusion1. The hatching parts of
Fig. 6 and Fig. 7 are the common spaces of S ’(C[f1,f2]) and S (g). We assume
the action of C[f1,f2] is “accept” while the action of filter g is “deny”. For
the reason that all the packets satisfying filter g also satisfy C[f1,f2], all these
packets that should be denied by filter g will be accepted by C[f1,f2]. Therefore,
the action of filter g is never executed.

We generalized C[f1,f2] in Fig. 6 and Fig. 7 to CK and summarized the con-
ditions under which a shadowing error occurs as follows. The shadowing error
occurs between CK and filter g when any one of the following conditions is true.
(1). R’(CK , g) = Equivalent, and CK .action �= g.action.
(2). R’(CK , g) = Inclusion1, and CK .action �= g.action.
b). Redundancy error: When CK accepts or denies the same packets that
filter g wants to accept or deny, such that if filter g is removed from the firewall
policy, the firewall policy will not be affected. At this time, we can say that g is

Fig. 8 R’(C[f1, f2], g)=Inclusion2.

a redundant filter to CK and there exists a redundancy error between CK

and g. A redundant filter will unnecessarily increase the size of the filter list and,
therefore, increase the search time and space requirements for filtering packets.

We use the same example shown in Fig. 6 and Fig. 7, but we assume the actions
of C[f1,f2] and filter g are both as “accept”. At this time, the packets to be
accepted by filter g have already been accepted by C[f1,f2]. Therefore, if filter g

is removed, the packets to be accepted by filter g also can be accepted by C[f1,f2].
We generalized C[f1,f2] in Fig. 6 and Fig. 7 to CK and summarized the condi-

tions under which a redundancy error occurs as follows. The redundancy error
occurs between CK and filter g when any one of the following conditions is true.
(1). R’(CK , g) = Equivalent, and CK .action = g.action.
(2). R’(CK , g) = Inclusion1, and CK .action = g.action.
c). Generalization warning: Filter g is a generalization filter to CK and
there exists a generalization warning between CK and filter g when the fol-
lowing condition is true.
(1). R’(CK , g) = Inclusion2, and CK .action �= g.action.

If a generalization warning occurs, the specific combination of K filters, CK ,
generates an exception for the general filter, g, and filter g is only executed when
a certain range of packets arrive.

For example, Fig. 8 shows an example where the R’(C[f1, f2], g) is Inclusion2.
The hatching part of Fig. 8 is the common space of S ’(C[f1,f2]) and S (g). If
the actions of C[f1, f2] and filter g are different, filter g is a generalization filter

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3127 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

Fig. 9 R’(C[f1, f2], g)=Correlation.

to C[f1, f2], and a generalization warning occurs between C[f1, f2] and filter g.
d). Correlation warning: Filter g is a correlation filter to CK and there
exists a correlation warning between CK and filter g when the following con-
dition is true.
(1). R’(CK , g) = Correlation, and CK .action �= g.action.

If a correlation warning occurs, CK and filter g imply an action that is not
explicitly stated, and filter g is only executed when a certain range of packets
arrive.

For example, Fig. 9 shows an example where the R’(C[f1, f2], g) is
Correlation. The hatching part of Fig. 9 is the common space of S ’(C[f1,f2])
and S (g). If the actions of C[f1, f2] and filter g are different, filter g is a corre-
lation filter to C[f1, f2], and a correlation warning occurs between C[f1, f2] and
filter g.

The spatial relationship between the combination of K filters and filter g, i.e.,
R’(CK , g), is the important factor in deciding whether CK will cause conflicts to
filter g. How filters are represented in a spatial space and how spatial relationships
are calculated between the combination of K filters and filter g are described in
Sections 5.3 and 5.4.

5. Detecting Conflicts and Finding Combination of Requisite Filters

We present a conflict detection method (CDM) and two RFC finding methods
(the RFM -T and RFM -B), with the same combination of K filters CK and the

filter g described in Section 4.4.
5.1 Conflict Detection Method
The CDM (conflict detection method) uses a function DecideConflict(),

which receives CK and g as input, and outputs the kind of conflict between
CK and g. The complete algorithm is given in Fig. 10. In the algorithm, let
“CK” be a filter set to represent a combination of K filters, and “Conflict” be
the kind of conflict between CK and g.

The DecideConflict() firstly checks the spatial relationships between the com-
bination of K filters and filter g, i.e., R’(CK , g). If R’(CK , g) is Disjoint, “No
Conflict” is stored in the variable “Conflict”. Finally, the DecideConflict()
returns the “Conflict”. If R’(CK , g) is one of the {Inclusion1, Inclusion2, Gen-
eralization, Correlation}, the function decides the kind of conflict between CK

and g according to the actions of CK and g, and returns it as output.
5.2 RFC Finding Methods
When CK causes a shadowing error or redundancy error to filter g, in order

to identify whether CK is an RFC to filter g, we introduce two RFC finding
methods, i.e., RFM -T and RFM -B. If CK is not an RFC, the RFM -T and
RFM -B also can detect all RFCs that are made from the filters in CK . The
RFM -T is a top-down algorithm while RFM -B is a bottom-up algorithm.

5.2.1 RFM-T

The RFM -T identifies whether CK is an RFC and determines all RFCs. The
complete top-down algorithm is given in Fig. 11, and the meanings of variables
in the algorithm are defined in Table 1.

RFM -T has two functions: TopDown() and TopDown1(). When a combination
of K filters CK and filter g are given as input, TopDown(CK , g) is executed firstly.
The function TopDown(CK , g) obtains “RFCS” and “count” by execution of a
recursive function TopDown1(CK , g, RFCS, count) (line 4), and outputs them
(line 5).

The recursive function TopDown1(CK , g, RFCS, count) adds the CK to RFCS
in case K=1, because CK is an RFC (line 16). Then the function returns to the
caller TopDown(CK , g) (line 17).

In case K ≥ 2, TopDown1(CK , g, RFCS, count) makes K combinations of
(K − 1) filters by removing any one filter in CK , so that each combination of

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3128 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

Fig. 10 CDM : Conflict detection method. Fig. 11 RFM -T : Top-down algorithm
for detecting RFCs.

(K−1) filters constitutes a different filter set (lines 4–6). For each combination of
(K − 1) filters, CK−1, DecideConflict() is executed to set the kind of the conflict
between CK−1 and g into the variable “Conflict” (line 7).

If the kind of conflict caused by a combination of (K − 1) filters, CK−1, is
“Shadowing errors” or “Redundancy errors”, “flag” is set to be “1” (lines 9–10)

Table 1 Variables in RFM -T .

Name Data Tpye Meaning
RFCS Set of combinations To save all the detected RFCs
count Integer To save the number of combinations that

should be detected to find all RFCs
flag Boolean To mark whether a combination causes an er-

ror to filter g
newc Set of filters To represent a combination of filters

Conflict Conflict To save the result of DecideConflict() function

Fig. 12 All the combinations should be checked in the worst case of RFM -T .

to note that CK is not an RFC, where the “flag” is initialized to be “0” at the
beginning of TopDown1(CK , g, RFCS, count) (line 2). Then, TopDown1(CK−1,
g, RFCS, count) is called to check whether CK−1 is an RFC (line 11).

If the “flag” holds the initialized value “0” at the end of TopDown1(CK , g,
RFCS, count), it means that all the K combinations of (K − 1) filters do not
cause errors to filter g, and CK is determined to be an RFC, then CK is added
to RFCS (lines 15–16). At last, TopDown1(CK , g, RFCS, count) returns to the
caller TopDown(CK , g) (line 17).

When each individual filter, fi (i ∈ [1, K]), in a combination CK causes shad-
owing or redundancy error to filter g, the RFM -T will check all possible combi-
nations produced by filters f1 ∼ fK to find all RFCs. Such CK is in the worst
case of RFM -T . For example, when a combination of three filters C[f1, f2, f3]
and filter g are given, where each individual filter fi (i ∈ [1, 3]) causes shadowing
or redundancy error to filter g, to find all RFCs, the combinations that should
be checked (i.e., all the combinations generated by line 6 in the TopDown1 func-
tion) are shown as in Fig. 12. The checking sequence of them is the same as in
depth-first search 21):

When the given combination CK is an RFC to filter g, the top-down algorithm

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3129 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

Table 2 Variables in RFM -B.

Name Data Tpye Meaning
RFCS Set of combinations To save all the detected RFCs
count Integer To save the number of combinations that

should be detected to find all RFCs
newc Set of filters To represent a combination of filters

Conflict Conflict To save the result of DecideConflict() func-
tion

T[i] (i ∈ [1, K]) Temporary combination sets To save temporary combinations of i filters

only needs to check K combinations of (K − 1) filters to determine whether CK

is an RFC or not. Such a combination of K filters CK is in the best case of
RFM -T .

5.2.2 RFM-B

The RFM -B identifies whether CK is an RFC and determines all RFCs in a
bottom-up fashion. The complete algorithm is given in Fig. 14, and the meanings
of variables used in the algorithm are defined in Table 2. “T[i]” (i ∈ [1, K]) is
maintained to store a set of combinations of i filters. For example, “T[3]” is a
set of combinations of three filters like the following:

T[3]={ C[f1, f2, f3], C[f2, f3, f4], }.
RFM -B consists of two parts: lines 6–14, and lines 15–25 in the list of the

algorithm in Fig. 14.
The first part splits the CK into K combinations of one filter, C[fi] (i ∈ [1, K])

at first (line 6). Then, it determines whether each C[fi] (i ∈ [1, K]) causes an
error to filter g (line 8). If any of the C[fi] (i ∈ [1, K]) causes a shadowing or a
redundancy error to filter g, it will be directly added to “RFCS” because C[fi]
(i ∈ [1, K]) is an RFC to filter g (lines 10–11). If any of the C[fi] (i ∈ [1, K])
causes a generalization or a correlation warning to filter g, C[fi] is added to T[1]
(lines 12–13). After checking each C[fi] (i ∈ [1, K]), the first part finishes. Each
element in T[1] is a combination of one filter which causes a warning to filter g.

When T[1] is not empty, and each combination in T[1] is added to a filter,
some combinations of two filters may cause errors to filter g. The second part
checks, when T[s-1] is not empty (s ∈ [2, K]) and after adding a filter to each
combination in T[s-1], whether new combinations of s filters cause errors to filter
g (line 18). If a new combination of s filters causes an error to filter g, it will be

Fig. 13 All the combinations should be checked in the worst case of RFM -B.

added to RFCS because it is an RFC (lines 21–22). If it causes a warning to
filter g, it will be added to T[s] (lines 23–24).

When each individual filter in CK causes a generalization or a correlation
warning to filter g, and no other combinations produced by filters f1 ∼ fK

cause any shadowing or any redundancy errors to filter g in addition to CK ,
the RFM -B must check all possible combinations produced by filters f1 ∼ fK

to find all RFCs. Such CK is in the worst case of RFM -B. For example,
when a combination of three filters, C[f1, f2, f3], and filter g are given, all the
combinations that should be detected to find all RFCs (i.e. all the combinations
generated by line 6 and line 18 in the algorithm) are shown as in Fig. 13. And
the checking sequence is from the first combination C[f1] to the last combination
C[f1, f2, f3].

When each individual filter in a combination of K filters CK causes an error
to filter g, since the RFCs are each an individual filter, the RFM -B only needs
to check K combinations of one filter, i.e., C[fi] (i ∈ [1, K]), to determine all
RFCs, and such a combination CK is in the best case of RFM -B.

5.3 Calculation of Spatial Relationships between Filters
In Section 4.4, we introduced that conflicts caused by a combination of K filters

CK to filter g are determined by their spatial relationships, i.e., R’(CK , g) and
their actions. This section outlines how we calculate the R’(CK , g).

5.3.1 Cell
First, let us introduce the notation of a cell. A cell is a sub-space in a packet

space, and has the following characteristics:
(1) Disjoint: No pairs of cells have a common sub-space.
(2) Direct sum: The union of all cells equals the original packet space.
(3) Unitary range: A cell is a sub-space that can be represented by unitary
values that range from the first to the last dimension of a packet space.

5.3.2 Steps to Calculate Spatial Relationships between Filters
The shape and the number of cells depend on the method used to divide the

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3130 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

packet space. Our method to divide the packet space is based on SIERRA 16),17),
which is a Systolic filter Sieve Array used in a high-speed packet classifier 18).
The following steps introduce how R’(CK , g) is calculated when CK and filter
g are given.
Step 1: Represent K filters, f1 ∼ fK , and filter g as filter spaces S (f1) ∼ S (fK)
and S (g).
Step 2: Divide the whole packet space into disjoint sub-spaces in the first di-
mension at all the boundaries of all the filter spaces.
Step 3: Divide each sub-space obtained from the preceding dimensional division
in the next dimension at all the boundaries of all the filter spaces.
Step 4: Repeat step 3 until the last dimension of the packet space is reached.
Each divided sub-space of a packet space is a cell.
Step 5: Represent each filter space by a set of cells, and represent S ’(CK) by
the union of S (fi) (i=1 to K).
Step 6: Calculate R’(CK , g) by using the inclusion relationships of the cell set
of S ’(CK) and the cell set of S (g).

For simplicity, we used the firewall policy in Fig. 1. We also wanted to check
whether a combination of filters, f1 and f2, would cause conflict to filter g1 or
not. The execution of all steps is explained below.

Based on Step 1, all filters are represented as filter spaces. The filter spaces of
filters f1, f2, and g1 are the rectangles shown in Fig. 4.

Based on Step 2, the packet space is divided in the first dimension (SrcIP) at
all the boundaries of all the filter spaces. The packet space in Fig. 4 is divided
into seven sub-spaces, S0–S6, in the SrcIP dimension shown in Fig. 15.

Based on Step 3, all sub-spaces, S0–S6, are divided in the next dimension
(DesIP) at all the boundaries of all the filter spaces they are located in. For
instance, a part of S (f1) is in sub-space S1; therefore, S1 is divided at all the
boundaries of S (f1) in the DesIP dimension. Sub-space S1 is divided into three
sub-spaces, S10–S12, as shown in Fig. 16. In addition, sub-space S3 is divided
at all the boundaries of S (f1), S (f2), and S (g1). As a result, sub-space S3 is
divided into seven sub-spaces, S30–S36, as shown in Fig. 17.

Based on Step 4, after the packet space in Fig. 4 is divided in all the dimensions,
the entire packet space is divided into cells from e0 to e24, as shown in Fig. 18.

Fig. 14 RFM -B: Bottom-up algorithm
for detecting RFCs.

Fig. 15 Division in SrcIP
dimension.

Fig. 16 Division of S1 in DesIP
dimension.

Based on Step 5, each filter space is represented by the following cell sets:
S (f1)={ e2, e5, e6, e10, e11, e12, e17, e18 }
S (f2)={ e6, e7, e12, e13, e14, e18, e19, e22 }
S (g1)={ e11, e12, e13 }
S (g2)={ e0, e1,, e24 }

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3131 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

Fig. 17 Division of S3 in DesIP
dimension.

Fig. 18 Division of packet space in all
dimensions.

Then S ’(C[f1, f2]) is represented as follows:
S ’(C[f1, f2]) = S (f1)∪S (f2)

= {e2, e5, e6, e7, e10, e11, e12, e13, e14, e17, e18, e19, e22}
Based on Step 6, R’(CK , g1) is calculated by using the inclusion relationships

of the cell sets. The calculation of R’(CK , g1) is as follows:
S ’(C[f1, f2]) = S (f1)∪S (f2)

={e2, e5, e6, e7, e10, e11, e12, e13, e14, e17, e18, e19, e22}
S (g1)={ e11, e12, e13 }

Because S ’(C[f1, f2]) ⊃ S (g1), the R’(CK , g1) is equal to Inclusion1.
5.4 SIERRA Tree
We used a SIERRA tree data structure to obtain the cells. A SIERRA tree

consists of nodes and leaves, and the structure of a node in the SIERRA tree
is very similar to the structure of a node in a multi-way tree 20). As can be
seen in Fig. 19, each node contains j values (b1, b2, ..., bj) and j + 1 pointers
(P0, P1, ..., Pj). j values specify all the boundaries of all the filter spaces in one
dimension, and j + 1 pointers represent j + 1 sub-spaces after the entire packet
space has been divided at j boundaries. For example, since the boundaries of
all the filter spaces in the SrcIP dimension in Fig. 4 are {1, 2, 3, 4, 5, 6}, the
corresponding node to the SrcIP dimension is represented as shown in Fig. 20.

“Parent” is the pointer that connects the parent node to the current node.

Fig. 19 Node structure.

Fig. 20 Corresponding node.

Fig. 21 Leaf structure.

Fig. 22 SIERRA tree.

“Childi” (i ∈ [0, j]) is a child of the current node.
The structure of a leaf is very simple (Fig. 21) and each leaf represents a cell.

The set of filters in a leaf represents the corresponding cell to which the filters
belong. The SIERRA tree of the firewall policy in Fig. 1 is shown in Fig. 22.

In the SIERRA tree in Fig. 22, root node n0 represents the division of the entire
packet space in the first dimension (SrcIP) shown in Fig. 15. The entire packet
space in Fig. 15 is divided into seven sub-spaces, S0–S6, and these correspond to
seven child nodes, n10–n16, of root node n0 in the SIERRA tree.

Nodes n10–n16 represent the division of sub-spaces S0–S6 shown in Fig. 15 in
the second dimension (DesIP). For example, node n11 represents the division
of sub-space S1 in the DesIP dimension. Because sub-space S1 is divided into
three sub-spaces, S10–S12, at the boundaries of {1, 5} in the DesIP dimension in
Fig. 16, the values of node n11 are {1, 5}, and node n11 has three leaves L1–L3.

In this example, the DesIP dimension is the last dimension, and after sub-
spaces S0–S6 are divided, the sub-spaces obtained from the division in the DesIP

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3132 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

dimension are leaves. Leaves L0–L24 of the SIERRA tree correspond to cells
e0–e24 in Fig. 18.

Since every leaf in the SIERRA tree represents a cell, the filter space represented
as the cell set can be represented alternatively by a leaf set. The corresponding
leaf sets of S (f1), S (f2), S (g1), and S (g2) are as follows:

S (f1)={ L2, L5, L6, L10, L11, L12, L17, L18 }
S (f2)={ L6, L7, L12, L13, L14, L18, L19, L22 }
S (g1)={ L11, L12, L13 }
S (g2)={ L0, L1,, L24 }

In addition, R’(CK , g1) can be calculated by using the leaf sets the same as the
cell sets.

6. Experiments and Considerations

6.1 Prototype System
We implemented the proposed methods in two software prototype systems,

A and B. The two prototype systems were implemented on an Intel Celeron
(R) 3.06-GHz CPU with 512 MBytes of RAM. Each system contained two sub-
systems.

Prototype system A contained a generating SIERRA tree sub-system and an
RFM -T sub-system. The generating SIERRA tree sub-system generated the
SIERRA tree for all the given filters and represented each filter by using a set of
leaves. The RFM -T sub-system generated all the combinations that should be
assessed based on the top-down algorithm, and then determined which combina-
tion could cause conflict and whether any combination was an RFC.

Prototype system B contained a generating SIERRA tree sub-system and an
RFM -B sub-system. The generating SIERRA tree sub-system that was the same
as prototype system A’s. The RFM -B sub-system generated all the combinations
that should be assessed based on the bottom-up algorithm, and then determined
which combination could cause conflict and whether any combination was an
RFC.

6.2 Experiments and Considerations
We used three combinations of filters, C1–C3, and a filter, g, as the input for the

two prototype systems, and did two experiments to evaluate the two RFC finding

methods (RFM -T and RFM -B) and the conflict detection method (CDM).
C1: Combination C1 consisted of K filters, and each individual filter, fi

(i ∈ [1, K]), in C1 caused a shadowing or a redundancy error to filter g. This
combination of filters represents the worst case of RFM -T and the best case of
RFM -B.
C2: Combination C2 consisted of K filters, and each individual filter, fi

(i ∈ [1, K]), in C2 caused a generalization or a correlation warning to filter
g, and no other combinations produced by filters f1–fK caused any shadowing
or redundancy error to filter g in addition to C2. This combination of filters
represents the worst case of RFM -B and the best case of RFM -T .
C3: Combination C3 consisted of K filters, each filter caused an error or a warn-
ing or did not cause any conflict to filter g. The number of each kind of filters
is about a third of K. This combination of filters represents a practical firewall
policy.
Experiment 1: We wanted to compare the effectiveness of the two RFC finding
methods, i.e., RFM -T and RFM -B in this experiment. RFM -T and RFM -B
are algorithms that generate many combinations to find all RFCs to filter g from
a given K-filters combination. Hence, we think the effectiveness of RFM -T and
RFM -B is determined by the number of combinations that are generated by
them. Therefore, we executed prototype system A and B by using combinations
C1–C3 and filter g as input, and measured the number of combinations generated
by the RFM -T sub-system of prototype system A, and the number of combina-
tions generated by the RFM -B sub-system of prototype system B. The results
for both are shown in Fig. 23.
Considerations from Experiment 1: From the results obtained from experi-
ment 1, we found that if the combination C2 was used as the input for prototype
system A, the number of combinations generated by the RFM -T sub-system
was directly proportionate to the number of Ks. However, if the combination
C1 was used as the input for prototype system A, the number of combinations
shown in Fig. 23 increased very rapidly because the RFM -T generated duplicate
combinations.

If the combination C2 was the input for prototype system B, the number of
combinations did not increase as rapidly because RFM -B did not generate du-

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3133 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

Fig. 23 Number of combinations produced by both prototype systems.

plicate combinations. Further, if the combination C1 was the input for prototype
system B, the number of combinations generated by the RFM -B sub-system was
also directly proportionate to the number of Ks.

When both the input combinations were the best case for the RFM -T and
RFM -B sub-systems, the two sub-systems generated the same number of combi-
nations. When both the input combinations were the worst case for the RFM -T
and RFM -B sub-systems, the RFM -T sub-system generated combinations that
included many duplicate combinations, while the RFM -B sub-system generated
combinations that did not include duplicate combinations. Therefore, we think
the RFC finding method of RFM -B is better than that of RFM -T .
Experiment 2: We wanted to evaluate whether CDM could be used in a prac-
tical firewall policy in this experiment. Because we found that RFM -B out-
performed RFM -T according to the results from experiment 1, we executed
prototype system B by using the combination C3 and filter g as the input to

Fig. 24 CPU time, Memory usage, number of combinations, and average CPU time of
prototype system B.

evaluate whether CDM could be used in a practical firewall policy. Because the
following three items would be changed when the number of filters in C3 was
changed, we measured them and the results are given from the second line to
the fourth line in Fig. 24. The last line in Fig. 24 means the average CPU time
needed to determine whether a combination causes conflict and whether it is an
RFC.
Item 1: CPU time to execution prototype system B.
Item 2: Memory usage to make the SIERRA tree by generating SIERRA tree
sub-system.
Item 3: Number of combinations produced by RFM -B sub-system.
Considerations from Experiment 2: From the last line in Fig. 24, we found
that the calculation based on CDM to determine whether a combination causes
conflict and whether a combination is an RFC took 0.0014 seconds at most when
the number of filters in a combination ranged from 10 to 40. We think that these
results are acceptable. Since a practical firewall policy contains many disjoint
filters, the results for CPU time, memory usage, and the number of combinations
generated by RFM -B will be better than those in Fig. 24; therefore, we think
CDM and RFM -B can be applied in practical firewall policies.

7. Conclusion

We developed a conflict detection method (CDM) and two RFC finding meth-
ods (RFM -T and RFM -B) to determine whether conflicts are caused by a com-
bination of filters or not and to find all RFC s from a given combination of filters.
The experimental results indicated that CDM and RFM -B could be applied to
practical firewall policies to detect all RFC s. Our future research plans include

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3134 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

optimizing the top-down and bottom-up algorithms, and then extending the pro-
posed methods to detect conflicts caused by combinations of filters in distributed
firewall policies.

Acknowledgments This research was partially supported by the Ministry
of Education, Culture, Sports, Science and Technology, Scientific Research (C)
18500050 and by the Telecommunications Advancement Foundation.

References

1) Wool, A.: A Quantitative Study of Firewall Configuration Errors, Computer,
Vol.37, No.6, pp.62–67 (June 2004).

2) Al-Share, E. and Hamed, H.: Modeling and Management of Firewall Policies,
IEEE eTransactions on Network and Service Management, Vol.1-1 (Apr. 2004).
http://www.etnsm.org/

3) Al-Share, E., Hamed, H., Boutaba, R. and Hasan, M.: Conflict Classification and
Analysis of Distributed Firewall Policies, IEEE Journal on Selected Areas in Com-
munication, Vol.23, No.10, pp.2069–2084 (2005).

4) Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C.N. and Mohapatra, P.: FIREMAN:
A Toolkit for Firewall Modeling and Analysis, Proc. IEEE Symposium on Security
and Privacy, Oakland, CA (May 2006).

5) Baboescu, F. and Varghese, G.: Fast and scalable conflict detection for packet
classifiers, Computer Networks, Vol.42, No.6 (2003).

6) Hari, A., Suri, S. and Parulkar, G.: Detecting and resolving packet filter conflicts,
Proceedings of IEEE INFOCOM 2000, pp.1203–1212, Tel Aviv, Israel (Mar. 2000).

7) Liu, A.X. and Gouda, M.G.: Complete Redundancy Detection in Firewalls, Proc.
19th Annual IFIP Conference on Data and Applications Security, pp.196–209
(2005).

8) Matsuda, K.: A Packet Filtering Rules Compression by Decomposing into Ma-
trixes, IPSJ Journal, Vol.48, No.10, pp.3357–3364 (2007).

9) Hazelhurst, S., Fatti, A. and Henwood, A.: Binary decision diagram represen-
tations of firewall and router access lists, Technical Report TR-Wits-CS-1998-3,
Department of Computer Science, University of Witwatersrad, Sth. Africa (Oct.
1998).

10) Hazelhurst, S., Fatti, A. and Henwood, A.: Algorithm for improving the depend-
ability of firewall and filter rule lists, DSN’00: Proc. 2000 International Conference
on Dependable Systems and Networks (2000).

11) Mayer, A., Wool, A. and Ziskind, E.: Fang: A Firewall Analysis Engine, Proc. 2000
IEEE Symposium on Security and Privacy (May 2000).

12) Mayer, A., Wool, A. and Ziskind, E.: Offline firewall analysis, International Journal
on Information Security, Vol.5, No.3, pp.125–144 (2006).

13) Wool, A.: Architecting the Lumeta Firewall Analyzer, Proc. 10th USENIX Security
Symposium (Aug. 2001).

14) Eronen, P. and Zitting, J.: An Expert System for Analyzing Firewall Rules, Proc.
6th Nordic Workshop on Secure IT-Systems (NordSec 2001) (Nov. 2001).

15) Yin, Y., Bhuvaneswaran, R.S., Katayama, Y. and Takahashi, N.: Implementa-
tion of Packet Filter Configurations anomaly Detection System with SIERRA,
Proc. 7th International Conference on Information and communications Security
(ICICS2005), LNCS Vol.3783, pp.467–480 (Dec. 2005).

16) Yin, Y., Bhuvaneswaran, R.S., Katayama, Y. and Takahashi, N.: Inferring the
Impact of Firewall Policy Changes by Analyzing Spatial Relations between Packet
Filters, Proc. 2006 IEEE Int. Conf. on Communication Technology (ICCT2006),
ISBN: 1-4244-0800-8 Vol.I, pp.203–208, Nov. 27–30 (2006).

17) Yin, Y., Bhuvaneswaran, R.S., Katayama, Y. and Takahashi, N.: Analysis Methods
of Firewall Policies by Using Spatial Relationships Between Filters, 2007 IEEE
International Conference on Signal Processing, Communications and Networking
(ICSCN 2007). pp.348–354, Feb 22–24 (2007).

18) Takahashi, N.: A Systolic Sieve Array for Real-time Packet Classification, IPSJ
Journal, Vol.42, No.2, pp.146–166 (2001).

19) Comer, D.S.E.: Internetworking With TCP/IP, Vol.I, Principles, Protocols, and
Architecture 5th Ed.

20) Onald, D. and Knuth, E.: Art of Computer Programming, Vol.3: Sorting and
Searching (2nd Ed.), Addison-Wesley Professional, Boston, MA (1998).

21) Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C.: Introduction to Algo-
rithm, Second Edition, The MIT Press (Sep. 1, 2001).

22) The FreeBSD Documentation Project. Ipfw, http://www.freebsd.org/doc/
en-US.ISO8859-1/books/handbook/firewalls-ipfw.html

23) PF: Packet Filtering. http://www.openbsd.org/faq/pf/filter.html
24) Andereasson, O.: Iptables Tutorial.

http://iptables-tutorial.frozentux.net/iptables-tutorial.html

(Received November 30, 2007)
(Accepted June 3, 2008)

(Original version of this article can be found in the Journal of Information Pro-
cessing Vol.16, pp.142–156.)

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

3135 Detection of Conflicts Caused by a Combination of Filters Based on Spatial Relationships

Yi Yin was born in 1978. She received her B.E. in Computer
Information System Technique in 2001 from Southeast Univer-
sity, China, and the M.E. in Computer Science and Engineering
in 2005 from Nagoya Institute of Technology, Japan. She is cur-
rently pursuing her Ph.D. in the Department of Computer Science
and Engineering of Nagoya Institute of Technology, Japan. Her
research interests include firewall anomaly detection and network

security. She is a student member of IPSJ and IEICE.

Yoshiaki Katayama received his B.E., M.E, and D.E in com-
puter science from Osaka University. He worked at Informa-
tion Technology Center, Nara Institute of Science and Technology
(NAIST) from 1994 to 2003. He is now an associate professor of
Graduate School of Engineering, Nagoya Institute of Technology.
His research interests include distributed algorithms, network ap-
plications and ubiquitous computing. He is a member of IPSJ,

IEICE, ACM, and IEEE Computer Society.

Naohisa Takahashi is a Professor of the Department of Com-
puter Science at Nagoya Institute of Technology, a position he
has held since 2001. Prior to coming to NIT, he was engaged in
research on parallel processing, software engineering and network
computing at NTT Laboratories for 25 years. He received B.E.
and M.E. degrees in electrical engineering from the University of
Electro-Communications, Tokyo, Japan, in 1974 and 1976, respec-

tively. He received a doctorate in computer science in 1987 from Tokyo Institute
of Technology. His recent research interests are network computing, ubiquitous
computing, geographical information systems and e-learning systems. Dr. Taka-
hashi is a member of the IEEE, the Association for Computing Machinery, the
Information Processing Society of Japan, the Japan Society for Software Science
and Technology, and the Database Society in Japan.

IPSJ Journal Vol. 49 No. 9 3121–3135 (Sep. 2008) c© 2008 Information Processing Society of Japan

