
IPSJ SIG Technical Report

A Case Study of Calculation of Source Code Module
Importance

Takaaki Goto1,a) Setsuo Yamada2,b) Tetsuro Nishino1,c) Kensei Tsuchida†1,d)

Abstract: Open Source Software (OSS) has been widely used in software development. However, OSS often lacks
adequate documentation and as a result developers cannot obtain enough information to develop software with OSS.
The popularization of OSS, or free software, has enabled developers to more easily obtain source codes to improve their
coding skills. Developers read source codes in order to understand the architecture and behavior of OSS. However, it
is difficult for developers to find the information they need due to the lack of documentation .
In this paper, we propose a method for calculating the importance of source code modules based on the dependency of
the source codes. We target Java language, and we calculate the degrees from class dependency.

Keywords: open source software, software maintenance, source code reading

1. Introduction

As a result of the short-term nature of software development
and the creation of large software programs, creating and man-
aging many software documents poses problems. In recent years,
software development using Open Source Software (OSS) has in-
creased; however, developers find it difficult to obtain information
about OSS due to the lack of documentation. Therefore, develop-
ers have to read OSS source code that offers them less informa-
tion.

On the other hand, developers have found it easier to obtain
source codes with the popularization of OSS or free software.
They use this information to either revise the OSS or improve
their coding skills. However, it is difficult for developers to deter-
mine the order of reading source codes; and this is especially true
for primary developers.

Many research studies targeting source code summarization
[1], [2], [3] and source code mining [4], [5], [6] have been done.
Source code summarization helps developers to quickly under-
stand software. However, methods for reading source code mod-
ules are also important.

In this paper, we propose a method to calculate the importance
of source code modules, using the dependency of source codes.
Here we target Java programming, and calculate the importance
degree using class dependency.

1 Graduate School ofInformatics and Engineering, The University of
Electro-Communications, Chofu, Tokyo, Japan

2 Nippon Telegraph and Telephone Corporation, Japan
†1 Presently with Faculty of Information Science and Arts, Toyo Univer-

sity, Kawagoe, Saitama, Japan
a) gototakaaki@uec.ac.jp
b) yamada.setsuo@lab.ntt.co.jp
c) nishino@uec.ac.jp
d) kensei@toyo.jp

2. Source Code Reading

Developers develop various methods to read source codes.
Generalized methods for source code reading are as follows [7]:
(1) First, developers find the focus point for reading by keyword

searching, and then start reading the source code from the
located point.

(2) Developers start reading from the main function or the main
method.

(3) Developers use a debugger when they read source code.
They set break points to focus areas, after which the de-
bugger is executed. Developers can read source code with
various debugging information such as a variable’s value.

In addition to the methods listed above, it has been shown to
be effective for developers to read the source code module, which
is primarily obtained from other modules. Frequently accessed
source code may have an important function. As such, it is con-
sidered to be an effective method for reading and understanding
source code. Developers can detect the reading points from the
dependency of the source codes.

3. Class Dependency

In the Java program, each part of the source code refers to var-
ious classes. For instance, one class uses another class. If class A
uses class B, a relationship between class A and class B is estab-
lished, which is identified as “class A refers to class B”. Figure 1
illustrates the relationship.

In our method, dependency is computed by using other classes
in one class. However we do not consider usage frequency. For
example, if class A uses class B many times in one class, we only
count one relation between class A and class B.

Because some class dependencies arise from these referring re-
lationships among classes, developers can understand the links in

ⓒ 2013 Information Processing Society of Japan 1

Vol.2013-MPS-94 No.6
2013/7/22

IPSJ SIG Technical Report

ClassA
...
ClassB xx = new ClassB();
...

ClassB
...
...
...

Fig. 1 Classdependency relationship: “Class A refers to Class B”

the source code.
Some open source software have functions that enable devel-

opers to analyze class dependency. “ispace” [8] is one example
of such software. “ispace” is a plug-in software for eclipse, and it
provides a function that enables users to draw a class dependency
graph. Users can gain an understanding of class dependency in
source codes.

However, when users describe a large software program using
such tools, it is hard for users to understand dependency intu-
itively because of its complexity.

In this way, it is important for developers to have a function
that provides a guide for source code reading. Calculation of the
source code module importance is required. We propose such a
method in the next section.

4. Module Importance

When developers try to read source codes without software
documentation, they find it difficult to decide where to start read-
ing the source code when they have to refer to complicated class
dependency diagrams. Here, we propose a method that defines
the importance of source code modules using information ob-
tained from source code analysis. In this paper, we apply our
source code analysis method to Java.

Module importance is calculated by analyzing strings in source
codes. After the analysis, the reference and referenced relation-
ships are obtained. In this context, we refer to classes with a
large value of importance as “frequently-used” classes and these
are treated as important classes in the source code. Here, we show
an algorithm for obtaining module importance.
(1) Analyze input source code in order to collect tokens relevant

to classes or instances of classes.
(2) From obtained information, the reference and referenced

class numbers are counted.
(3) Sort classes in descending order of summation of reference

number and referenced number for each class. Sorting is
based on the following rules:
(a) If the summation of the reference numbers and the ref-

erenced number of the classes is equal, then the classes
should be sorted in descending order based on the ref-
erenced number.

(b) If the summation of the reference numbers and the ref-
erenced number is equal, and also the referenced num-
ber is equal, then the classes should be sorted in de-
scending order based on the reference number.

(c) If the summation of the reference number and the ref-
erenced number is equal, and also the reference number
and the referenced number are equal, then the classes
should be sorted in descending order based on the sum
of the reference number and the referenced number of
the neighboring class.

(d) If neighboring class values are equal, then it does not
matter which number (the reference number or the ref-
erenced number) you choose. Here neighbor means
classes that are connected to a focus class.

(e) If it is not possible to decide upon the precedence order
of the classes, then the antecedence classes are given
priority in the ordering.

Module importance serves as a guide for source code reading.
We defined it as, “frequently used classes are important.” There-
fore we designed the above algorithm. In order to sort the impor-
tance in detail in the case in which the summation of the reference
number and the referenced number is equal, the algorithm uses
the neighbor class’s value for sorting.

5. Case Study

Here, we show a case study of our method using a small Java
source code. The intended software is a template of image pro-
cessing software, which can be used by students in a practical
software development class to modify the software in order to
develop a more sophisticated program. The name of the template
software is “SimColorBase” [9], which can process file filtering
for images such as “brighten up” or “darken up”. Figure 2 shows
a SimColorBase screen shot.

Fig. 2 SimColorBasescreen shot

In this case study, we target classes included in SimColorBase
and do not cover classes provided by Java.

This software consists of two packages “dyschromatop-
sia” and “dyschromatopsia.filter”. The “dyschromatopsia”
package contains the following four classes: “ImageFile-
ChooserFilter.java,” “ImageOpenFile.java,” “ImagePanel.java,”
and “SimWindow.java”.

On the other hand, the “dyschromatopsia.filter” package has
“BrighterFilter.java” and“DarkerFilter.java” classes. We show
the package structure of the SimColorBase in Figure 3.

The ImagePanel class provides functions for image processing,
such as “brighten up” or “darken up”, by selecting radio buttons
on the Panel. This class is a core class of SimColorBase. The

ⓒ 2013 Information Processing Society of Japan 2

Vol.2013-MPS-94 No.6
2013/7/22

IPSJ SIG Technical Report

Table 1 Class dependency data for the SimColorBase class

Importance Class name Referenced class Refer class total
1 ImagePanel 1 2 3
2 ImageOpenFile 1 1 2
3 SimWindow 0 2 2
4 BrighterFilter 1 0 1
5 DarkerFilter 1 0 1
6 ImageFileChooserFilter 1 0 1

Fig. 3 Package structure of SimColorBase

SimWindow class contains the main method; that is, this class is
the entry point of this program. The SimWindow class includes a
setting for the menu bar and file processing codes.

The result of the source code analysis shows that the SimWin-
dow class creates an instance of the ImagePanel class and the Im-
ageOpenFile class ; that is, the relationship information indicates
that the SimWindow class refers to the ImagePanel class and the
ImageOpenFile class.

From the above the analysis, we can determine that the num-
ber of the “refer class” is two. We can also determine that the
ImagePanel class and the ImageOpenFile class are referred from
the SimWindow class; therefore, the number for each “referenced
class” is one. Those relationships are shown in Figure 4.

SimWindow

ImagePanel

ImageOpenFile

Fig. 4 Relationshipamong the three classes

We analyzed all the SimColorBase source codes using a simi-
lar procedure. We then tallied the“ refer class”numbers and the
“ referenced class”numbers and sorted them into a tabular form
(Table 1).

From Table 1, it can be seen that the ImagePanel class is the
most important class because the sum of the refer class num-
bers and referred class numbers was larger than the sum of the
refer class numbers and the referred class numbers for the Im-
ageOpenFile class and the SimWindow class, respectively. The
ImageOpenFile class and the SimWindow class have the same
value of importance; however, the ImageOpenFile class is lo-
cated on the second rank because of rule 3b (as noted above in
Section 4). In this case, the source code should be shown in the
following order: ImagePanel→ ImageOpenFile→ SimWindow
→ BrighterFilter→ DarkerFilter→ BrighterFilter.

A class dependency diagram of SimColorBase that is gener-
ated by ispace [8] is shown in Figure 5. The sum of the refer
class number and the referred class number conforms closely to
the degree of the corresponding node on the class dependency
diagram.

Fig. 5 Classdependency for the SimColor Base class

Here, we discuss the validity of our method using the result of
the case study. In the case study, the ImagePanel class was eval-
uated as the most important class. The ImagePanel class is the
core class of the SimColorBase application and defines the graph-
ical user interface of the SimColorBase. For practical purposes,
the ImagePanel class is the class for reading first if a developer
wants to understand the SimColorBase. Therefore, we find that
our method works in practice.

On the other hand, SimColorBase is an application for filtering
image files. However the importance of BrighterFilter and Dark-
erFilter classes that process filtering are low. Such frequently per-
formed classes can not be judged as important in our method. In
order to calculate importance in consideration of frequently per-
formed classes, dynamic analysis is required.

In this case study, we analyzed a small software program; how-
ever, when targeting large software programs, it is difficult to find
points for reading the source code due to the size of the source
code or the dependency graph. Our method can reduce the chal-
lenges developers face when analyzing source codes by enabling
them to calculate the importance of the source code modules. We
are also considering other methods for calculating the importance
of the dependency using natural language processing methods.

6. Presentation of important class

After calculating the importance of the source code module,
the source code is shown according to its order of importance.
The importance of the source code can be presented in two dif-
ferent ways. First, the source code can be identified by its ap-
propriate class. Second, the source code’s appropriate class can

ⓒ 2013 Information Processing Society of Japan 3

Vol.2013-MPS-94 No.6
2013/7/22

IPSJ SIG Technical Report

BrighterFilter

DarkerFilter

ImagePanelSimWindow

Fig. 6 Presentationof the ImagePanel class (focus class) and related classes

be shown with its related classes. In order to understand the pro-
gram, it is also important to understand the context of a class;
therefore, it is important to also identify the refer class and re-
ferred class for each class.

Figure 6 illustrates a case showing the ImagePanel class and its
related classes. As can be seen, the ImagePanel class is the focus
class. Figure 9 also includes information about the SimWindow
class , the BrighterFilter class and the DarkerFilter class. The
point of instantiation for the ImagePanel class in the SimWindow
class is also focused on.

7. Related works

To date, only research that has targeted supporting source code
reading has been done.

Karrer et al. [10] propose a method that presents a focus
method centered around a call graph. DeLine et al. [11] pro-
pose a source code navigation method. In that method, the source
code is displayed with a thumbnail and users can understand the
source code using the spatial memory of the entire code. In these
research studies, users move the focus point manually; on the
other hand, the focus points we propose are presented automat-
ically. Therefore, differences exist between the method we use
for detecting the focus class and the methods used by other re-
searchers.

Inoue et al. [12] proposed a component ranking model. In the
model, rank is computed using class inheritance, interface im-
plementation, abstract class implementation, variable declaration,
instance creation, field access, and method invocation. Moreover
the ranking model also considers similarity between the two com-
ponents. In our method, we restricted use to the appearance of
class names that can be obtained from the source code, we do not
consider similarity among classes.

8. Conclusion

In this paper, we proposed a method for calculating the impor-
tance of a source code module that supports a developer’s ability
to read source code. Moreover, we conducted a substantive ex-
periment using a small software program. In future works, we
have a plan to develop a system based on the proposed method.
Moreover, we will construct a source code reading support envi-
ronment and conduct a survey of software developers. A source
code reading support environment requires a supporting function

that shows the focus points which software developers are cur-
rently reading. As such, the Focus+Context presentation of the
source code must also be considered.

References

[1] Haiduc, S., Aponte, J. and Marcus, A.: Supporting program com-
prehension with source code summarization,Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Vol-
ume 2, New York, NY, USA, ACM, pp. 223–226 (online), available
from ⟨http://doi.acm.org/10.1145/1810295.1810335⟩(2010).

[2] Haiduc, S., Aponte, J., Moreno, L. and Marcus, A.: On the Use of
Automated Text Summarization Techniques for Summarizing Source
Code,Proceedings of 2010 17th Working Conference on Reverse En-
gineering (WCRE), pp. 35 –44 (2010).

[3] Rastkar, S., Murphy, G. C. and Bradley, A. W.: Generating natural lan-
guage summaries for crosscutting source code concerns,Proceedings
of 2011 27th IEEE International Conference on Software Maintenance
(ICSM), pp. 103 –112 (2011).

[4] Poshyvanyk, D., Marcus, A. and Dong, Y.: JIRiSS - an Eclipse plug-in
for Source Code Exploration,Proceedings of 14th IEEE International
Conference on Program Comprehension, 2006. ICPC 2006, pp. 252
–255 (2006).

[5] Enslen, E., Hill, E., Pollock, L. and Vijay-Shanker, K.: Mining source
code to automatically split identifiers for software analysis,Proceed-
ings of 6th IEEE International Working Conference on Mining Soft-
ware Repositories, 2009. MSR ’09, pp. 71 –80 (2009).

[6] Kobayashi, T. and Hayashi, S.: Recent Researches for Supporting
Software Construction and Maintenance with Data Mining,Computer
Software, Vol. 27, No. 3, pp. 313–323 (2010). (inJapanese).

[7] Matsumoto, Y.:How to read source code, No. Nikkei Software 2007,
January, Nikkei BP (2007). (in Japanese).

[8] ispace Team: ispace,http://ispace.stribor.de/index.php?n=
Ispace.Home.

[9] Repository, U. S.: Software development material Image processing
program SimColorBase,https://www.repository.uec.ac.jp/.

[10] Karrer, T., Kr̈amer, J.-P., Diehl, J., Hartmann, B. and Borchers, J.:
Stacksplorer: call graph navigation helps increasing code maintenance
efficiency,Proceedings of the 24th annual ACM symposium on User
interface software and technology, New York, NY, USA, ACM, pp.
217–224 (online), DOI: 10.1145/2047196.2047225 (2011).

[11] DeLine, R., Czerwinski, M., Meyers, B., Venolia, G., Drucker, S. and
Robertson, G.: Code Thumbnails: Using Spatial Memory to Navi-
gate Source Code,Visual Languages and Human-Centric Computing,
2006. VL/HCC 2006. IEEE Symposium on, pp. 11 –18 (online), DOI:
10.1109/VLHCC.2006.14 (2006).

[12] Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M. and
Kusumoto, S.: Ranking significance of software components based on
use relations,Software Engineering, IEEE Transactions on, Vol. 31,
No. 3, pp. 213–225 (online), DOI: 10.1109/TSE.2005.38 (2005).

ⓒ 2013 Information Processing Society of Japan 4

Vol.2013-MPS-94 No.6
2013/7/22

