
Acceleration of protein-ligand docking simulation
using graphics processing units

Takahiro Sasaki
Department of Computer Science

Tokyo Institute of Technology

Takurou Udagawa
Department of Computer Science
Graduate School of Information

Science and engineering
Tokyo Institute of Technology

Masakazu Sekijima
Department of Computer Science
Graduate School of Information

Science and engineering
Tokyo Institute of Technology

Global Scientific Information and Computing Center
Tokyo Institute of Technology

Abstract—The abstract goes here.

In modern drug development, it is important to obtain
ligand (small molecule) which binds specifically to a target
protein related to disease. A common structure-based screening
approach is to use molecular docking simulation to identify the
docking between a target protein and ligand. This approach
must simulate a docking to predict whether a target protein
binds to ligand for tens of millions compounds. Screening a li-
brary of compounds is enormously costly and time-consuming.
When three-dimensional (3-D) structure of the target protein is
already known, molecular docking simulation between a ligand
and a protein can be performed in order to search large ligand
libraries for drug-candidates: ligands that bind to this protein
with high affinity. In this paper, we show how AutoDock,
which is software for simulating the docking between a target
protein and ligand using a genetic algorithm, can calculate the
genetic algorithms scoring function in parallel. The methods
presented for parallelizing the workload result in an average
speedup of 3.3 times on a comparative CUDA enabled graph-
ics processing unit (GPU)(CUDA: Compute Unified Device
Architecture).

I. INTRODUCTION

In modern drug discovery, the identification of small
molecules that especially bind to a target protein is often
used in searching for drug candidates. Most proteins bind to
another molecule and then express their functions[1]. Recently,
virtual screening has been used to search for leading-candidate
compounds by screening a large library of compounds with a
computer quickly and comprehensively. The main objective
of virtual screening is to create useful compound library
for molecular design by screening likely lead compounds in
massive compound libraries.

Two commonly used approaches to virtual screening are
ligand-based screening and structure-based screening[2], [3],
[4]. Ligand-based screening searches for ligands that have
similar chemical properties and structures to ligands that is
known to bind to a target protein. In structure-based screening,
searching for lead compounds is based on structure of a
target protein. Docking simulation is commonly used docking
simulation between target protein and ligand as structure-based
screening. Docking simulation is costly and time consuming
because tens of millions of compounds must be examined
whether they bind to a target protein[5], [6], [7].

Docking simulation software such as DOCK[8],
AutoDock[9], or myPresto sievgene[10] is commonly
used to predict the binding mode between a protein and a
ligand. DOCK is the oldest docking simulation software.
Searching for binding mode is done to evaluate the energy
between the protein and ligand by a function based on the
force field of DOCK by assigning protein’s atom to a steric
lattice (grid). In AutoDock, the energy between the protein
and ligand is calculated by a scoring function based on
the AMBER force field[11]. A optimization of the energy
between the target protein and ligand is computed using
a genetic algorithm. This enables flexible docking to take
account of the flexibility of ligands. A method of myPresto
sievgene is to calculate the grid potential of a target protein
and, then screen the search space with rigid docking of the
ligand. The structure that has the best energy is selected
to optimize the energy. Finally, the score of the binding
mode is evaluated strictly In this paper, we present a method
for calculating the scoring function in parallel on graphics
processing units (GPUs) with AutoDock. The scoring function
can be computed in parallel, so we present a method for
calculating the scoring function in parallel using GPUs.

June 20, 2013

II. AUTODOCK

AutoDock[12], [13], [14], [15] was developed by and is
maintained by The Scripps Research Institute Olson Labo-
ratory. It can take full ligand flexibility into account while
treating the protein as a rigid compound during docking
simulation.

Prior to a docking calculation in AutoDock, a grid calcula-
tion is computed. This grid calculation involves computing the
energy of the target protein by assigning its atom to grid points.
In the docking calculation, the ligand is set to the energy
grid that represents the target protein: then search heuristically
the optimal solutions when the energy between protein and
ligand is minimum . A heuristic search algorithm such as
simulated annealing[16], hill climbing, swarm intelligence[17],
or a genetic algorithm[18] is used commonly to sample a large
solution space in AutoDock. Solutions produced by the genetic
algorithm execution are some-times analysed using clustering.

1ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-MPS-94 No.2
2013/7/22



A. Grid Algorithms

Most types of molecular docking simulation software use
a grid algorithm. First, a target protein is divided into a 3-
D cubic lattice. Second, the atoms of the target protein are
assigned to grid points in order to compute the energy value
by running a probe atom (protein atom assigned to a grid
point). In a docking calculation, AutoDock computes the sum
of the energy of the grid points which overlaps with ligand
atoms. This enables a docking calculation to be performed by
the grid algorithm without taking into account large binding
conformation.

B. Genetic Algorithm

A genetic algorithm (GA) is a heuristic search algorithm
inspired by the process of natural evolution. A genetic algo-
rithm efficiently searches for optimal solutions from a large
search space by iterating genetic operations such as selection,
crossover, and mutation. Selection is performed according to
the fitness of individuals that have data (candidate solutions)
represented by genes (chromosome). Fitness is calculated using
scoring function. The advantages of genetic algorithm are they
can obtain multiple solutions and are applicable to NP-hard
problems if the manner or representing genes is altered[19],
[20].

In AutoDock, the gene of each individual is represented
by a vector that describes the binding mode. It has a 3-
D translation (location of ligand in the energy grids) and
orientation (quaternion of real numbers) and torsions (angle of
ligand’s rotatable bond).

AutoDock’s genetic algorithm starts with a population of
solutions encoded in one of many ways. Its flowchart is as
follows:

1) Generate an initial population at random.
2) Select individuals according to fitness by calculating

the scoring function.
3) Produce the next generation from the selected indi-

viduals.
4) Crossover pair of individuals in this generation.
5) Mutate some genes of individuals in this generation.
6) If the termination condition is satisfied, finish; else

go to step 2.

AutoDock’s genetic algorithm’s termination condition is as
follows:

1) The difference between the energies of individuals in
a generation is less than threshold value.

2) The number of generations have reached a maximum.

The computation cost of a genetic algorithms is high
because this algorithm requires a large amount of itera-
tive calculation. To solve this problem, parallelized model
of genetic algorithms (parallel genetic algorithm) has been
studied[21], [22], [23]. The genetic operations in a genetic
algorithm have a high degree of parallelism. The basic view
of parallel genetic algorithm is to divide populations into some
sub-populations and compute a search calculation on each
processor. However this method must communicate among
the divided sub-populations: this data communication among
processes is called migration. Island model is often used as

communication model of parallel genetic algorithm. How to
communicate among processes is actively studied.

III. PARALLEL COMPUTATION USING GPUS

This section describes a method for calculation of scoring
function on GPUs. In genetic algorithms, the computation time
of the scoring function is important because this function
is computed in every generation. A profile of AutoDock
computation times shows that the computation time for GAs
accounts for most of the calculation: over 94% of the total.
Furthermore, it is clear that the scoring function is needed
for time consumption (about 70%) of the GA calculation in
AutoDock. The time consumed by each step of the GA in
AutoDock is shown in Table I. The figure in parentheses is the
percentage of each step in the genetic algorithm computation
time and the figure on the left of the parentheses is the
percentage of each step of the genetic algorithm of the whole
docking simulation’s computation time in occupation of the
column in TableI.

We used CUDA[26] which is an integrated develop envi-
ronment from NVIDIA to implement the parallelizing compu-
tation on GPUs. NVIDIA GPU hardware has many streaming
multiprocessor. A streaming multiprocessor is consisted of
some streaming processors. A streaming processor is device
that can calculate floating-point arithmetic in single precision
and integer arithmetic. Fermi architecture GPU device has
up to 16 streaming multiprocessors. In Fermi architecture, a
streaming multiprocessor is called CUDA core.

The CUDA programming model assumes that the all
threads execute on a physically separate GPU from CPU
running the application. CUDA-enabled GPUs have both on-
chip and on-board memory. Global memory lise in on-board
and shares in all the data of CUDA cores and memory access
of global memory is slow. How to efficiently access global
memory (coaleacing) is an essential requirement to CUDA
programming. Shared memory can be either 16 KB or 48 KB
per SM arranged in 32 banks that are 32 bits wide. Shared
memory is not as fast as register memory, but faster than global
memory beacause shared memory is on-chip memory.

Threads are managed hierarchically. Grid is consisted of
some blocks and thread block is a collection of multiple
threads. Thread block has identifier in grid and thread has
id in thread block. A thread scheduler assigns threads to
streaming processor. Each streaming processor in a streaming
multiprocessor executes the same instruction for different data
(Single-Instruction Multiple-Data).

In the scoring function’s parallelizing computation, we
assigned individuals in a generation to a thread block and each
ligand atom to a thread in order to calculate energy. Ligand
atom data is transferred into global memory for a while. Each
thread calculates the energy using ligand atom data which is
transferred from global memory into shared memory. When
the computation of all the threads has been completed, the
reduction in energy is calculated and stored results in global
memory.

The scoring function can be computed in parallel for
individuals. We implement the scoring function to calculate
it on GPUs.

2ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-MPS-94 No.2
2013/7/22



TABLE I. PROFILE OF AUTODOCK

Step Time (sec) Occupation (%)
AutoDock preprocessing 6.1 4.9

Genetic Algorithm 116.4 94.9
Scoring function 85.7 69.9 (73.6)

Selection 3.3 2.7 (2.8)
Crossover 2.3 1.8 (2.0)
Mutation 0.6 0.0 (0.0)

Sorting population 14.9 12.1 (12.8)
Others 9.2 7.5 (7.9)

Analysis 0.1 0.2
Total 122.6 100

A. Scoring Functions

The scoring function is computed using two kernels. The
atom coordinates necessary for the scoring calculation are
loaded from global memory and subsequently transferred into
shared memory. For two kernels of an execution configuration,
a thread block is assigned to individuals in the population. The
first kernel calculates the sum of the energy between a ligand
and a protein from energy grids using the trilinear interpolation
algorithm. All threads synchronously compute the reduction in
energy in each block. The energy computed by this kernel is
stored in global memory.

The second kernel is used to compute the intramolecular
energy between non-bonded ligand atoms. Each thread is
assigned to a non-bonded atom pair and computes the Coulomb
potential, van der Waals potential, and hydrogen bonding
energy. Finally, all the threads compute the reduction in energy
and store the results in global memory.

B. Data Copy Hiding

Since the CPU memory space is different from the GPU
memory space, data must be transferred between the CPU
and the GPU. A memory copy is generally performed syn-
chronously; namely, during a memory copy between CPU
and GPU, GPUs can not calculate until data transmission is
complete. In the case of an asynchronous memory copy, while
data is being copied, the kernel is executed on GPUs.

IV. RESULTS AND DISCUSSION

We performed experiments to compare the existing
method (performing the calculation in a CPU) and our new
method (using a GPU). In the case that the number of in-
dividuals in the genetic algorithm was 32 and 16,384, we
compared the time to compute the whole scoring function for
all the dataset. For the dataset known as 1HSG, we compared
the speedup in performance, i.e., the reduction in time taken
to compute the whole scoring function, when the number of
individuals was changed from 32 to 16,384.

A. Datasets

We used the datasets, listed in Table II, which were
downloaded from Protein Data Bank[27] to perform all the
comparative experiments.

B. Experiment Environment

These comparative experiments were performed on TSUB-
AME 2.0 supercomputer at Tokyo Institute of Technology. The
computation environment is described in Table III.

TABLE II. DATASET

PDB ID 1HSG 1ADB 3PTB 7ABP
Molecular weight 22221.4 81387.8 23484.7 33543.5

Number of residues 99 374 223 306
Number of ligand atoms 49 52 15 13

TABLE III. COMPUTATION ENVIRONMENT

CPU GPU
Model Intel Xeon X5670 NVIDIA Tesla M2050

Clock rate 2.93 GHz 1.14 GHz
Memory 56 GB 3 GB
Compiler gcc 4.3.4 nvcc 4.1

OS SUSE Linux Enterprise Server 11 SP1

C. Measurement method

We use the gettimeofday() function to measure the com-
putation time, which is the difference between the start time
and end time. The number of genetic algorithm executions in
AutoDock was 10. The computation time of scoring function
is defined as the time to compute the whole scoring function.

D. Computation Time

TABLE IV. TIME CONSUMPTION OF SCORING FUNCTION; NUMBER OF
INDIVIDUALS 32

PDB ID CPU (sec) GPU (sec) Speedup
3PTB 337 6,758 0.05x
7ABP 673 5,471 0.12x
1HSG 2,792 6,758 0.41x
1ADB 5,380 7,378 0.73x

TABLE V. TIME CONSUMPTION OF SCORING FUNCTION; NUMBER OF
INDIVIDUALS 16384

PDB ID CPU (sec) GPU (sec) Speedup
3PTB 680 431 1.58x
7ABP 1,228 861 1.43x
1HSG 5,372 1,631 3.29x
1ADB 6,537 2,256 2.90x

The computation times of the existing method (CPU) and
proposed method (GPU) when the number of individuals was
32 are shown in Table IV. For all the datasets, our method was
slower than the existing method. By contrast, when the number
of individuals was 16,384, out method was quicker than the
existing method, as shown in Table V. The speedup rate for
1HSG was about x3.3 it was the most quickly computed
among all of the datasets. Table VI compares speedup of the
scoring function computation time achieved by the existing
and proposed methods when the number of individuals was
changed from 32 to 16,384. When the number of individuals
was 32 and 64, out method was slower than the existing
method, but when the number of individuals was 128 or more,
our method was quicker. Furthermore, when the number of
individuals was 2,048 or more, the speedup rate was about 3.3
times, which represent saturation.

V. CONCLUSION

In this paper, we presented a method for calculating the
scoring function in genetic algorithms with AutoDock on
GPUs to reduce the computation time of AutoDock. The
scoring function is computed using two kernels. In both
kernels, atom coordinate data are loaded from global memory.

3ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-MPS-94 No.2
2013/7/22



TABLE VI. TIME CONSUMPTION OF SCORING FUNCTION; NUMBER OF
INDIVIDUALS 16384

Number of individuals Speedup
32 0.41
64 0.72

128 1.42
256 2.21
512 2.57
1024 2.98
2048 3.20
4096 3.22
8192 3.33
16384 3.33

When each kernel is computed, the atom coordinate data are
transferred from global memory into shared memory. Asyn-
chronous data transfer enables the data transfer between CPU
and GPU to be hidden by overlapping the kernel calculation
and data transfer.

We performed experiments to compare the time consump-
tion of AutoDock in CPU to that in the GPU. The experimental
results show small speedup when the number of individuals
was small but a larger speedup when the number of individuals
was large. We achieved an average speedup of 3.3 times with
1HSG as the dataset.

REFERENCES

[1] Marcotte, Edward M., Matteo Pellegrini, Ho-Leung Ng, Danny W. Rice,
Todd O. Yeates, and David Eisenberg. ”Detecting protein function and
protein-protein interactions from genome sequences.” Science 285, no.
5428 (1999): 751-753.

[2] Walters, W. Patrick, Matthew T. Stahl, and Mark A. Murcko. ”Virtual
screening-an overview.” Drug Discovery Today 3, no. 4 (1998): 160-178.

[3] Lyne, Paul D. ”Structure-based virtual screening: an overview.” Drug
Discovery Today 7, no. 20 (2002): 1047-1055.

[4] Walters, W. Patrick, Matthew T. Stahl, and Mark A. Murcko. ”Virtual
screening-an overview.” Drug Discovery Today 3, no. 4 (1998): 160-178.

[5] Shoichet, Brian K. ”Virtual screening of chemical libraries.” Nature 432,
no. 7019 (2004): 862-865.

[6] Bissantz, Caterina, Gerd Folkers, and Didier Rognan. ”Protein-based
virtual screening of chemical databases. 1. Evaluation of different dock-
ing/scoring combinations.” Journal of medicinal chemistry 43, no. 25
(2000): 4759-4767.

[7] DiMasi, Joseph A., Ronald W. Hansen, and Henry G. Grabowski. ”The
price of innovation: new estimates of drug development costs.” Journal
of health economics 22, no. 2 (2003): 151-186.

[8] Ewing, Todd JA, Shingo Makino, A. Geoffrey Skillman, and Irwin D.
Kuntz. ”DOCK 4.0: search strategies for automated molecular docking of
flexible molecule databases.” Journal of computer-aided molecular design
15, no. 5 (2001): 411-428.

[9] Morris, Garrett M., Ruth Huey, William Lindstrom, Michel F. Sanner,
Richard K. Belew, David S. Goodsell, and Arthur J. Olson. ”AutoDock4
and AutoDockTools4: Automated docking with selective receptor flexi-
bility.” Journal of computational chemistry 30, no. 16 (2009): 2785-2791.

[10] Omagari, Katsumi, Daisuke Mitomo, Satoru Kubota, Haruki Nakamura,
and Yoshifumi Fukunishi. ”A method to enhance the hit ratio by a com-
bination of structure-based drug screening and ligand-based screening.”
Advances and applications in bioinformatics and chemistry: AABC 1
(2008): 19.

[11] Jayaram, B., D. Sprous, and D. L. Beveridge. ”Solvation free energy
of biomacromolecules: Parameters for a modified generalized Born
model consistent with the AMBER force field.” The Journal of Physical
Chemistry B 102, no. 47 (1998): 9571-9576.

[12] Morris, Garrett M., David S. Goodsell, Ruth Huey, and Arthur J. Olson.
”Distributed automated docking of flexible ligands to proteins: parallel
applications of AutoDock 2.4.” Journal of computer-aided molecular
design 10, no. 4 (1996): 293-304.

[13] Morris, Garrett M., David S. Goodsell, Robert S. Halliday, Ruth Huey,
William E. Hart, Richard K. Belew, and Arthur J. Olson. ”Automated
docking using a Lamarckian genetic algorithm and an empirical binding
free energy function.” Journal of computational chemistry 19, no. 14
(1998): 1639-1662.

[14] Huey, Ruth, Garrett M. Morris, Arthur J. Olson, and David S. Goodsell.
”A semiempirical free energy force field with chargebased desolvation.”
Journal of computational chemistry 28, no. 6 (2007): 1145-1152.

[15] Goodsell, David S., Garrett M. Morris, and Arthur J. Olson. ”Automated
docking of flexible ligands: applications of AutoDock.” Journal of
Molecular Recognition 9, no. 1 (1998): 1-5.

[16] Aarts, Emile HL, Jan HM Korst, and Peter JM Van Laarhoven. ”Sim-
ulated annealing.” Local search in combinatorial optimization (1997):
91-120.

[17] Kennedy, James. ”Swarm intelligence.” Handbook of nature-inspired
and innovative computing (2006): 187-219.

[18] Holland, John H. ”Adaptation In Natural And Artificial Systems:
An Introductory Analysis With Applications To Biology, Control, And
Artific.” (1992): 211.

[19] De Jong, Kenneth A., and William M. Spears. ”Using genetic algorithms
to solve NP-complete problems.” In Proceedings of the third international
conference on Genetic algorithms, vol. 124, p. 132. Morgan Kaufmann,
San Mateo, CA, 1989.

[20] Joines, Jeffrey A., and Christopher R. Houck. ”On the use of non-
stationary penalty functions to solve nonlinear constrained optimization
problems with GA’s.” In Evolutionary Computation, 1994. IEEE World
Congress on Computational Intelligence., Proceedings of the First IEEE
Conference on, pp. 579-584. IEEE, 1994.

[21] Muhlenbein, Heinz. ”Evolution in time and space-the parallel genetic
algorithm.” In Foundations of genetic algorithms. 1991.

[22] Mühlenbein, Heinz, M. Schomisch, and Joachim Born. ”The parallel
genetic algorithm as function optimizer.” Parallel computing 17, no. 6
(1991): 619-632.

[23] Cantú-Paz, Erick. ”A summary of research on parallel genetic algo-
rithms.” (1995).

[24] Posp chal, Petr, Jiri Jaros, and Josef Schwarz. ”Parallel genetic algo-
rithm on the cuda architecture.” Applications of Evolutionary Computa-
tion (2010): 442-451.

[25] Li, Jian-Ming, Xiao-Jing Wang, Rong-Sheng He, and Zhong-Xian
Chi. ”An efficient fine-grained parallel genetic algorithm based on gpu-
accelerated.” In Network and parallel computing workshops, 2007. NPC
workshops. IFIP international conference on, pp. 855-862. IEEE, 2007.

[26] ”NVIDIA CUDA DEVELOPER ZONE” https://developer.nvidia.com/
[27] Protein Data Bank http://www.rcsb.org/

4ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-MPS-94 No.2
2013/7/22


