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In 2006, Bleichenbacher presented a new forgery attack against the signature
scheme RSASSA-PKCS1-v1 5. The attack allows an adversary to forge a sig-
nature on almost arbitrary messages, if an implementation is not proper. Since
the example was only limited to the case when the public exponent is 3 and the
bit-length of the public composite is 3,072, the potential threat is not known.
This paper analyzes Bleichenbacher’s forgery attack and shows applicable com-
posite sizes for given exponents. Moreover, we extend Bleichenbacher’s attack
and show that when 1,024-bit composite and the public exponent 3 are used,
the extended attack succeeds the forgery with the probability 2−16.6.

1. Introduction

In the rump session of CRYPTO 2006, held on August 2006, Bleichenbacher
presented a new forgery attack 1) against the signature scheme RSASSA-PKCS1-
v1 5 (PKCS#1v1.5 for short) defined in PKCS#1 7) and RFC 3447 9), a crypto-
graphic standard developed and maintained by RSA Laboratories 7). The attack
allows an adversary to forge a valid signature on an (almost) arbitrary message in
a very simple way, if an implementation of the signature scheme is loose, namely,
a format check in the verification is not adequate. In fact, several implementa-
tions of PKCS#1v1.5 including OpenSSL, Firefox2 and Sun’s JRE (Java Runtime
Environment) library had this vulnerability. In response to Bleichenbacher’s at-
tack, US-CERT published a vulnerability note on September 2006 2), and these
implementations resist the attack now.

Since Bleichenbacher’s presentation was limited to the case when the bit-length
of the public composite n (denoted by |n|) is 3,072 and the public exponent e
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is 3, applicability to other parameters was unclear. Though Tews showed the
applicability of the extended forgery attack when |n| = 1,024 and e = 3 10), other
cases such as e = 17, 65,537 have not been discussed yet.

In this paper, we analyze Bleichenbacher’s forgery attack and show applicable
composite sizes for given exponents. Then we propose the extended attack as-
suming the same implementational error, which is a generalization of the original
attack and Tew’s extended attack. For fixed n and e, the success probability of the
proposed attack is 2(|n|−15)/e−353 in the random oracle model. When |n| = 1,024
and e = 3, the proposed attack succeeds the forgery with the probability 2−16.6

which coincides with Tew’s experiment 10).
The rest of this paper is organized as follows: in Section 2, Bleichenbacher’s

forgery attack against PKCS#1v1.5 and analytic results are described. Then the
extended attack is proposed in Section 3. Some numerical examples of forged
signatures are in the appendix.

2. Bleichenbacher’s Attack

This section describes Bleichenbacher’s forgery attack 1) against RSASSA-
PKCS1-v1 5 (PKCS #1v1.5 for short) with the loose implementation. Let n

be an RSA composite whose size is denoted by |n| (in bit). In the following, a
variable in the typewriter font denotes an octet string and a variable in the
Roman font denotes an integer. Two variables in the same letter correspond to
each other, namely, A is an octet representation of an integer A, and vice versa.

2.1 RSASSA-PKCS1-v1 5
Let us introduce the signature scheme RSASSA-PKCS1-v1 5 defined in

PKCS#1 7) and RFC 3447 9). For a given public composite n (a product of
two large primes with the same size) such that |n| is a multiple of 8, a message
m (to be signed) is encoded to an integer M , an integer representation of an
octet string M defined by M = 00||01||PS||00||T||H (PKCS#1v1.5 message format)
where PS is an octet string with ff such that |M| = |n| (and |PS| ≥ 64), T is an
identifier of the signature scheme and the hash function (Table 1), and H is an
octet representation of the hash value H(m). Then, a signature s is generated
by s = Md mod n for the signer’s secret integer d.

On input the original message m, its signature s and the signer’s public expo-
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Table 1 Identifiers of the algorithm and the hash function 7).

Hash Function Length (bit) Octet String
MD2 144 3020300c06082a864886f70d020205000410
MD5 144 3020300c06082a864886f70d020505000410

SHA-1 120 3021300906052b0e03021a05000414 (= TSHA1)
SHA-256 152 3031300d060960864801650304020105000420
SHA-384 152 3041300d060960864801650304020205000430
SHA-512 152 3051300d060960864801650304020305000440

nent e, a verifier obtains an octet string M′ representing an integer M ′ = se mod n

and checks whether it satisfies the format
M′ = 00||01||PS||00||T||H′.

Then the verifier obtains a value H ′, an integer representation of the octet string
H′, and compares whether H ′ = H(m). If this equation holds, the signature is
accepted by the verifier.

In the implementation level, a part of the format check is sometimes inadequate
for various reasons. For example, when an octet string

00||01||PS||00||T||H′||garbage
(a garbage data is followed) is obtained by a verifier as a decoded message, it
should be rejected because it is in the illegal format. However, some implemen-
tations accept the string because they do not properly check the number of ff
(only check |PS| ≥ 64) and they stop the scan at the end of H’ (namely, they do
not notice the existence of the garbage). Such loose implementation is the target
of Bleichenbacher’s forgery attack described in the next subsection.

2.2 Outline of Bleichenbacher’s Attack
Next, let us introduce Bleichenbacher’s forgery attack 1) against PKCS#1v1.5.

Here we assume that the hash function SHA-1 and parameters |n| = 3,072 and
e = 3 are used 3). In the attack, an adversary chooses a message m̄ with arbitrary
bit-length such that

a = 2288 − (T × 2160 + H(m̄))
is divisible by 3, where T is an integer representation of the octet string TSHA1

(as in Table 1). Note that such m̄ can be obtained by generating m̄ randomly (3
trials are required on average). The adversary also computes two integers

{
g = a2/3 × 21087 − a3/27 × 2102,

s̄ = 21019 − a/3 × 234.

Observe that
s̄e = (21019 − a/3 × 234)3

= 23057 − a × 22072 + a2/3 × 21087 − a3/27 × 2102

= 23057 − 22360 + T × 22232 + H(m̄) × 22072 + g

= (2985 − 2288 + T × 2160 + H(m̄)) × 22072 + g.

Since an integer 2985 − 2288 + T × 2160 + H(m̄) corresponds to an octet string
00||01||ff...ff||00||T||H′ (the number of ff is different from that of the original
PS), s̄ is a forged signature on the message m̄, if an implementation of the verifi-
cation ignores the number of ff and the garbage g. In the forgery, the adversary
only requires to compute H(m̄), a and s̄. This is why the attack is called “the
pencil and paper attack” 1). Note that the adversary does not use modulus com-
putations and thus integers n, d are not required in the forgery.

A numerical example of Bleichenbacher’s forgery attack with a 3,072-bit com-
posite and e = 3 is shown in Table 5 in the appendix.

2.3 Analysis
This subsection analyzes Bleichenbacher’s forgery attack with general param-

eters. Only SHA-1 is considered in the following, however, similar attacks and
analysis can be obtained for other hash functions. For simplicity, we consider the
public composite n with arbitrary length (rather than a multiple of 8).

Firstly, we consider the case with general n but e = 3. Since the padding
00||TSHA1 is 128-bit and the hash value is 160-bit, we use the same a as in the
original attack, namely a = 2288 − (T × 2160 + H(m̄)) such that 3|a. Let

s̄(α, β) = 2α − a/3 × 2β,

be a forged signature. Then, we have

s̄(α, β)3 = 23α − a × 22α+β + g(α, β)

for the garbage g(α, β) = a2/3×2α+2β −a3/27×23β. Since s̄(α, β)3 should be in
the PKCS#1v1.5 format, we have 3α = |n|−15, namely, α = (|n|−15)/3 and |n|
should be divisible by 3. On the other hand, since the garbage should be smaller
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than 22α+β , we have 2α+β > 576+α+2β−log2 3, namely, β < |n|/3−581+log2 3.
By substituting β ≥ 0 in this inequality, we have a condition on n that

|n| > 1,743 − 3 log2 3 = 1,738.24....

Consequently, Bleichenbacher’s attack with e = 3 is applicable to the case with
|n| ≥ 1,739 with |n| is divisible by 3. More precisely, |n| can be parameterized
by |n| = 3k for k ≥ 580 and β is in a form β = 8� + 2 (0 ≤ � ≤ 55) since PS is a
repetition of the octet string ff.

Next, let us discuss with general n and e. Similar to the above discussion, we
set s̄(α, β) = 2α − a/e × 2β for a = 2288 − (T × 2160 + H(m̄)) such that e|a and
α = (|n| − 15)/e. Then, we have

s̄(α, β)e = 2eα − a × 2(e−1)α+β + g(α, β)

for the garbage g(α, β) = a2(e−1)/(2e)×2(e−2)α+2β+. . .. By the same discussion,
we have conditions on n that

|n| > 576e + 15 − e log2

(
2e

e − 1

)
and |n| − 15 is divisible by e. Also, we have 0 ≤ β < |n|/3 − 581 + log2 3 and
β ≡ 2 (mod 8) on β. Especially, we have |n| = 17k+15 (k ≥ 575) for e = 17, and
|n| = 65,537k + 15 (k ≥ 1,061) for e = 65,537. Consequently, Bleichenbacher’s
attack for general e is far from feasible. Even if e = 3, Bleichenbacher’s attack
cannot be applicable to 1,024-bit (since 1,024 is smaller than 1,739) or 2,048-bit
composites (since n − 15 = 2,033 is not divisible by 3, 17, 65,537).

2.4 Oiwa, et al.’s Variant
In 2007, Oiwa, et al. proposed a variant of Bleichenbacher’s attack 6). In the

message format 00||01||PS||00||T||H, T||H can be described by {{OID, PF}, H} in
ASN.1 language, where {, . . . , } denotes the enumerate type, OID is the hash
object ID and PF is the parameter field. In PKCS#1, PF is defined as NULL.
When PF is replaced by non-null data, though the message format is not accepted
in PKCS#1, it is acceptable by an ASN.1 parser. An idea of a variant attack by
Oiwa, et al. 6) is to insert the garbage into the parameter field rather than at the
end of the message format. If the message format is checked by generic ASN.1
parser, the forgery will be successful. In fact, they actually forged a signature
and found the vulnerability in GNUTLS ver 1.4.3 and earlier (though they are

resistant to Bleichenbacher’s attack).
By the same analysis, it is easily shown that Oiwa, et al.’s variant has the same

ability with regard to Bleichenbacher’s attack. Moreover, the same extension
proposed in the next section can be possible.

3. Extending Bleichenbacher’s Attack

The security of PKCS#1v1.5 relies on the hardness of factoring n and comput-
ing the e-th root mod n. A key idea of Bleichenbacher’s forgery is to set the forged
signature s̄ in the special form so that upper bits of s̄e are in the PKCS#1v1.5
message format by using the garbage g. In this scenario, an adversary computes
the e-th power only, however, because of the speciality of the forged signature,
the public composites should be large as described in the previous section. In
this section, we extend Bleichenbacher’s attack by using computers rather than
pencils and papers. Our strategy is to obtain a forged signature in non-special
forms. To do so, for a given hash value H(m̄), we search s̄e such that the e-th
root over integer exists, by computing the e-th root over real numbers (note that
the e-th root computation over real number is easy with computers).

3.1 Description of Proposed Forgery Attack
Let m̄ be a message and H(m̄) be its hash value by SHA-1. For given bit-length

of the composite |n| ≥ 369, define f as a function of m̄ by

f = 2|n|−15+ 15 × (2|n|−23 + . . . + 2|n|−79) + T × 2|n|−208+ H(m̄) × 2|n|−368

= (2192 − 2128 + T ) × 2|n|−208 + H(m̄) × 2|n|−368

where T denotes an integer representation of the octet string TSHA1 (Table 1).
Note that the integer 2192 − 2128 + T in the above equation represents an octet
string 00||01||ffffffffffffffff||00||T. Next, compute the e-th root e

√
f as a

real number and its ceiling
⌈

e
√

f
⌉
. If the difference g =

⌈
e
√

f
⌉e−f is smaller than

2|n|−368, the forgery succeeds, since the forged signature s̄ = e
√

f + g =
⌈

e
√

f
⌉

is
valid on the message m̄ with the garbage g. If g is not small, change the message
m̄ until the forgery succeeds (see Fig. 1).

Let us analyze the proposed forgery attack with general n and e. Assume that
upper (160− t) bits of H(m̄) and the corresponding part in � e

√
f�e coincides each

other (here, t is a parameter determined by n and e later). Since f is (|n|−15)-bit,
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Fig. 1 Outline of the proposed forgery attack.

the integer part of e
√

f is (|n|−15)/e-bit and � e
√

f�e is e · (|n|−15)/e-bit. By the
above assumption, we have a condition |n| > 208+(160− t)+(e−1)(|n|−15)/e,
namely,

|n| > (353 − t)e + 15. (1)
Here we implicitly used the random oracle assumption. Especially, when |n| =
1,024 and e = 3, this condition implies that t > 50/3 ≈ 16.6. That is, in
order to forge a signature with 1,024-bit composites, the proposed forgery attack
succeeds with the probability 2−16.6, namely, 216.6 messages are required to forge
a signature, which is feasible in practice. Note that the proposed attack is a
generalization of the extension by Tews 10) in which 275,992 ≈ 218.1 messages are
required in the experiment.

In the above construction, the number of the octet ff in f was fixed to 8 (this
is minimum for the forgery). Similar construction is possible with more octets
than 8, but requires larger composites instead.

As an example of the proposed forgery attack, a forged signature on the message
m̄ =“00002e36” (as a binary data with big endian) with |n| = 1,024 and e = 3
is shown in Table 2, where underlined octets correspond to the hashed value
H(m̄) and masked octets correspond to the garbage g. Here, the messages

Table 2 A forged signature by the extended forgery attack (1,024-bit, e = 3).

m̄ “00002e36”

H(m̄) 701f0dd6 f28a0bab 4b647db8 ddcbde40 1f810d4e

f 0001ffff ffffffff ffff0030 21300906 052b0e03 021a0500 0414701f 0dd6f28a
0bab4b64 7db8ddcb de401f81 0d4e0000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

s̄ 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 0001428a 2f98d728 ae220823
1fc5cff6 ac440735 9b078378 24846240 4cebfc71 5690f34c 7119d1da 99227fd0

s̄e 0001ffff ffffffff ffff0030 21300906 052b0e03 021a0500 0414701f 0dd6f28a

0bab4b64 7db8ddcb de401f81 0d4e06dd 391b3fd4 ace323ee de903694 dd78887f

5f8a73e0 5ea698ae 72a6bdfa cb7c359e 1f78cbee 96939eea 4d9b8f3e 47aebae3

90f4fe61 73ef7535 80c4cb88 edd95623 84b7e5ed ccc19fa3 ca64c0a2 a37e5000

were incrementally generated (as integers) from “00000000”, and 0x00002e36 =
11,830 = 213.53 messages were generated until the forgery succeeds.

3.2 Special Cases
Let us consider two special cases of the proposed forgery attack, namely t = 0

or t = 160 cases.
When we set t = 0, the forgery attack always succeeds. In this case, the

condition (1) implies
|n| > 353e + 15. (2)

Even when e = 3, this condition implies that |n| > 1,074 which is beyond 1,024.
Also, we have |n| > 6,017 for e = 17 and |n| > 23,134,577 for e = 65,537. Since
this case only uses the garbage space, it allows a forgery on arbitrary chosen
messages with smaller composites than the original attack. In particular, this
attack does not require a condition on the target message m̄ and the attack
always succeeds. As a numerical example, a forged signature on the message m̄

(“pkcs-1v2-1.doc” 8)) with |n| = 1,152 and e = 3 in Table 6 in the appendix,
which succeeds a forgery for e = 3. Note that Bleichenbacher’s original attack
cannot forge for 1,152-bit composites nor the exponent e = 3.

On the other hand, when we set t = 160, the attack becomes most powerful but
the adversary can not control the hash value at all. In this case, the condition
(1) implies
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Table 3 A comparison of forgery attacks.

Bleichenbacher’s Attack Proposed Attack
t = 0 General t t = 160

M(e) 576e + 15 − e log2

(
2e

e−1

)
353e + 15 (353 − t)e + 15 193e + 15

|n| − 15 is divisible by e

M(3) 1,740 1,075 1,075 − 3t 595

M(17) 9,790 6,017 6,017 − 17t 3,297

M(65,537) 37,683,790 23,134,577 23,134,577 − 65,537t 12,648,657

Success Probability 1 1 2−t 2−160

|n| > 193e + 15 (3)
which is obtained by substituting t = 160 into the condition (1). Consequently,
we have |n| > 595 for e = 3, |n| > 3,297 for e = 17 and |n| > 12,648,657 for
e = 65,537. However, since the adversary can not control the hash value, the
success probability (in the sense that the adversary obtains the target message
m̄) is 2−160 which is beyond feasible. Another forged signature on the hash value

H = 7fa66ee7 e5cc4a9f bd6e13a8 11d298c2 6b9b3302

with |n| = 4,096 and e = 17 in Table 7 in the appendix, which succeed a forgery
for e = 17, however, the success probability is 2−113. Note that Bleichenbacher’s
original attack cannot forge for 1,024-bit composites nor the exponent e = 17.

3.3 Comparison
A comparison between the original and proposed attacks are shown in Table 3,

where M(e) denotes the minimum bit-length of the composites to which the
attack succeeds with a general exponent e. Since exponents e = 3, 17, 65,537 are
widely used, corresponding values M(3), M(17), M(65,537) are also included in
the comparison. As in the table, the proposed attack with t = 160 forges with
smallest composites. In particular, it only forges for |n| = 1,024 (with e = 3).

4. Concluding Remarks

This paper analyzes Bleichenbacher’s forgery attack against the signature
scheme RSASSA-PKCS1-v1 5 (PKCS#1v1.5) with the implementation error,
and proposed an extended attack. Searching loose implementations which ac-
cept these forgeries is also required.

Table 4 RSA parameters (3,072-bit).

n d9057e4d 2e231c66 f0a35c2c b7eddb75 04b181d6 535b81b3 83eb4765 1d76950d
76c0c513 9efc0933 16255a5a a958007c 1b698c4c 2641418a dab6419f 8c8cf6a9
ac799a12 7b0ec916 b5837e9c 0ecb3dc3 9629427c 08b9b076 1014d3fb c2d6d26f
aade8a49 7aa8b03a 8e0fa396 6f6b54bd 2735a972 85cbaaed 4760ff5c 7c8b4fe2
3d6c053c 69d0fa64 ef3ec8ad 4fa03c16 9b8e5a68 466f7dbb 1f05f6ec caf9706c
d524b148 c41ccb67 512bcf40 b6456321 1a420f22 fedeaf1a 44ff940d eeec2117
9ce14bec 73b5b294 f0723d03 3a810ac3 a98dc56a a9e94eca 798c2033 3fa79eb8
ea10d25b cca36cc2 b14f4c53 3c42560c aafbb7c6 5d524591 68f8b4e0 99351f23
8f5fbf52 ee002fb8 240f7323 938207e3 59a17330 b7df56ef e8660f9a 5cc319ce
d3d93f25 84f5e42a 80f0acdd dec65d4d 629e2250 cbbb06f5 7ceab655 b22216d7
9120bdc9 216310be 4c3b81ea 92017a0b 8205e92d afb9c402 9b0f4603 2a847f67
ba0c271e a3c8f60d 5c48f4fe 22e0d3e9 3b72e9ce 1e5191bc 6167decd cde29c89

d 90ae5433 74176844 a06ce81d cff3e7a3 5876568e e23d0122 57f22f98 be4f0e08
f9d5d8b7 bf52b0cc b96e3c3c 70e555a8 12465d88 1980d65c 91ced66a 5db34f1b
c8511161 a75f30b9 ce57a9bd 5f32292d 0ec62c52 b07bcaf9 600de2a7 d739e19f
c73f06db a71b2027 095fc264 4a478dd3 6f791ba1 ae87c748 da40aa3d a85cdfec
28f2ae28 468b5198 9f7f3073 8a6ad2b9 bd09919a d99fa927 6a03f9f3 31fba048
8e187630 82bddcef 8b728a2b 242e4216 11815f6c a9e9ca11 83550d5e 9f48160e
83a1eb18 fd99ce23 eb14095c 333f0375 747bec29 cbe110e8 4aee7d3b 98b0e20a
53586ce9 319c9857 50fd3c8f 7cc6613f 773748a6 9aa5550c fb691771 f5921b52
dedacd6c cbcee703 1663f656 2019fcd7 2fcd66f5 2f6b5d86 f148f420 5eed94b1
170937ea 8cd536d2 932435c3 adb9d529 98ab1613 8a24f1e2 c9b1c7ad cd57713c
c08f4ccf d8a2dc47 681ef8c0 3fe709d9 52dd12ca edbba76c 21629613 fe8e0343
193e73a5 26533256 aedda14e 6517c092 52a66013 4a2acb98 2c5e2ec1 9fdd7cab

e 03
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0906052b 0e03021a 05000414 f7497dac 551ec010 2f0da8f1 bc8cad52 f93476c3
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10) Tews, E.: Real World Exploit for Bleichenbacher’s Attack on SSL, e-mail submitted
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ietf-openpgp/mail-archive/msg14307.html

s̄ 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
07ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe aaead6ea b6b2b18e
bd595822 b1555ac6 9f0ca790 717e556a e9678bec fb663c6e a19b4904 00000000

s̄e 0001ffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ff003021 30090605

2b0e0302 1a050004 14f7497d ac551ec0 102f0da8 f1bc8cad 52f93476 c3000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 2a9aa11c bb60cb35 cb569ddd 576c2729

34a1298d 905793b0 24ba9a39 7f041398 a7622310 78e8099f 87faed46 0fbb8f46

67ace20c a1940f81 bced58bf 9ac3671c a2551f73 4cb80ec1 7fffffff ffffffff

ffffffff fffffffd a285694c d9347ab7 528d15f9 d0dbf0cc 704f592f da3facc6

210397ee 5d034b6d 269467e8 329d478c 53a8e99d 80f0732a 05d709d4 00e7ada7

7ddc41a8 e640296f b2a8eae6 f4888211 591f0578 a07d6ec4 f147f08e ccb06340

4439cb38 fc8144b0 cb0e382b 65583078 a7e9b040 00000000 00000000 00000000

Appendix

A.1 Numerical Example of Bleichenbacher’s Forgery
We show a numerical example of Bleichenbacher’s original forgery attack 1).

For obtaining a valid signature, a 3,072-bit composite n and a secret key d were
generated by OpenSSL as in Table 4. We used the hash function SHA-1 and
a public key e = 3 and chose a digital file “pkcs-1v2-1.doc” 8) as a message m

(whose corresponding a is divisible by 3, fortunately).
A valid signature s on the message m, and a forged signature s̄ on the same

message m are shown in Table 5, where underlined octets correspond to the
hashed value H(m) and masked octets correspond to the garbage g. Comparing
se and s̄e in Table 5, all octets are same except the number of the octet ff and
the garbage. Thus, if an implementation ignores these differences, the forged
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Table 6 A forged signature by the extended forgery attack (1,152-bit, e = 3, t = 0).

m̄ “pkcs-1v2-1.doc”8)

H(m̄) f7497dac 551ec010 2f0da8f1 bc8cad52 f93476c3

s̄ 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
07ffffff ffffffff feaaead6 eab6b2b1 8e848b2b fc6229a1 298029f9 27529629
bb642126 87226bf8 913ab27d 52295002

s̄e 0001ffff ffffffff ffff0030 21300906 052b0e03 021a0500 0414f749 7dac551e

c0102f0d a8f1bc8c ad52f934 76c30000 008e30ab d25ce35d 65cd0c25 1fc29df3

37419efd 4d08694d f3b45d86 42970cbe ef3cb225 c0e88433 552da1d0 dc35aaa1

73f1189f e0b341fc 56d5c5ea 45db5483 15e79d2a 71b6235a 44891287 00bb02f9

ffabe940 83af15c8 eabb0c30 2fefc008

signature s̄ is accepted in the verification. Actually, OpenSSL 0.9.7f accepts the
forged signature s̄ on the message m.

A.2 Numerical Example of Proposed Forgery with t = 0
As an example of the proposed attack with t = 0, we show a forged signature

on the message m̄ (“pkcs-1v2-1.doc” 8)) with |n| = 1,152 and e = 3 in Table 6.
Note that this case succeeds a forgery for 1,152-bit composites while the original
attack cannot. Also note that a certificate with |n| = 1,152 and e = 3 is used in
practice 5).

A.3 Numerical Example of Proposed Forgery with t = 160
As an example of the proposed attack with t = 160, we show a forged signature

on the hash value H(m̄) with |n| = 4,096 and e = 17 in Table 7. Note that this
case succeeds a forgery for e = 17 while the original attack cannot. However, the
adversary cannot obtain the message m̄ in practice.

(Received November 27, 2007)
(Accepted March 4, 2008)

(Original version of this article can be found in the Journal of Information Pro-
cessing Vol.16, pp.122–129.)

Table 7 A forged signature by the extended forgery attack (4,096-bit, e = 17, t = 160).

H(m̄) 7fa66ee7 e5cc4a9f bd6e13a8 11d298c2 6b9b3302

s̄ 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00010aa7 58ccbbf7 7d970c35 9e1c3dc0 f20d32ad 2cf9e18a 463ea7c6 346e7f90

s̄e 0001ffff ffffffff ffff0030 21300906 052b0e03 021a0500 04147fa6 6ee7e5cc

4a9fbd6e 13a811d2 98c26b9b 3302448a 78e5e262 89a4190f 7d18916a 7aaaf897

feeb1e94 5866a030 208c1f48 2c906901 5f70eb66 97253c87 49790ff7 c175fc06

bddf8bb4 d2ba1cdd c626336a dda2165c dc3f425a 12cc59bc be11883e bbccc73a

0d130b94 83ac2a29 19850778 f066ff4f 374e7a96 f4fb3343 fd397d9c f7a1b8ce

16340da6 f9876f1f cca76cb4 7bfb368b a95a5842 e99c0bfb a2de62cf dbf2c635

c2c268f3 2dc228f7 2f0ebfe2 776dae35 3b82b9d9 474777ed c85eed79 e147fa2b

7500f1d4 23189a7b 9b08abb6 0df908f0 7c1c0fbb 528b3e22 df358b24 8bef05b8

f2449d0b f3fb6dc6 31a809ed 31000210 3df7ae2e 80f3f822 ae5a9f69 2948a2b5

a4529bf0 2b30fc99 1874a25f 28b5de4d 4f9c76cc 419a6848 4536e2fe 2771af8b

989e5fef 1a3aaeea f1694ebf 36e8685c 7f65eff8 b99d956b 676b5a5d f68c4519

330b4b7b 82037bd7 502d7823 4e952ba7 b9662cc2 e4389d00 76e16a47 e3dad8af

e7f86e37 f164aa90 b377dfbc 9d5cc1a4 e1a966fe 3902fea5 2526240b 99ecf6b3

ced8e16e 2d085131 e5ca1676 25459ca0 0821ff8e 03cde17d 3509de96 cbe40f6f

97d5dd5b b7c977fa be2be4f5 79abcbf7 7093ad52 c346371b 5b2708fc 8b831412

9a023cfc 6b2ff020 105db3ac ef80a605 e3c1ea94 d0af9790 00000000 00000000
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