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Abstract: A novel simplification method for GPS trajectory is presented in this paper. Trajectory simplification can
greatly improve the efficiency of data analysis (e.g., querying, clustering). Based on the observation of information
content contained by sampling data, we assume that (1) the sampling points on the boundary of MBR (Minimum
Bounding Rectangle) contain more information content, (2) the bigger the area of MBR is, the more the points should
be stored. We applied these two assumptions in our method to simplify trajectory online. Two main components of
this method (i.e., divide/merge principle and selection strategy), are elaborated in the paper. Moreover, we define a
new error metric — enclosed area metric — to evaluate the accuracy of simplified trajectories, which is proven more
robust against the uncertainty of GPS. To implement this measure, we devise a practical algorithm of area calculation
for self-intersecting polygons. Through comparing with other methods in a series of experiments over huge dataset,
our method is proven effective and efficient.
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1. Introduction

Nowadays, GPS-enabled devices, ranging from smart phones
to vehicles, are drastically increasing. Moreover, Location-based
services and applications built from GPS-equipped mobile de-
vices is a rapidly expanding consumer market, e.g., fleet manage-
ment, traffic analysis and scientific investigations [1]. In addition,
recently there has been a promising application called opportunis-
tic or participatory sensing by smartphones [2], [3]. We can col-
lect many rich and useful data, e.g., noise, illumination and tem-
perature, just by normal users who travel with smartphone in daily
life. These sensor data is usually generated along with trajectory.
Although data generated from GPS devices are commonly used in
a variety of businesses, these efforts will be hindered by the mas-
sive volumes of data, which creates the problem of storing, trans-
mitting, and processing [4]. Storing the data is difficult because
the sheer volume of data can rapidly overwhelm available data
storage. For instance, if data is collected at 30 seconds intervals
for 400 users with GPS-equipped smartphone, the volume will be
up to 1.1 GB in a month. In addition, these trajectories will cause
a heavy load for network transferring which costs highly in view
of money and time. The cost of sending large volume of data over
remote networks can be prohibitively expensive, normally rang-
ing from 5 to 7 per megabyte [5]. The foremost issue is that the
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enormous volume of data can easily overwhelm human analysis
and further computing. For example, towards querying and clus-
tering trajectories, the performance will exponentially decrease
due to the number of position data [6], [7].

The above restrictions motivate the need to reduce data vol-
ume. Moreover, trajectory data is usually collected in a random
manner; consequently a part of information is redundant and re-
ducible. Hence, numerous compression methods have been pro-
posed to reduce the size of trajectory data sets [8], [9]. However,
these methods often either lose some contextual information or
are computation-expensive. Besides, conventional compression
methods, such as LZ (used in zip) or DCT (Discrete Cosine Trans-
formation) can compress the data volume, whereas it does not im-
prove the data processing efficiency (e.g., querying, clustering) as
data should be uncompressed to original volume before process-
ing. In this paper, we present a novel compression method to
quickly simplify the trajectory before the position data is trans-
mitted to the server from GPS terminals. Our contributions can
be summarized as follows:
( 1 ) We propose a simplification method based on MBR of infor-

mation content, which can largely keep as same information
content as counterpart of original trajectory.

( 2 ) We also introduce a new error metric based on enclosed area
to measure the displacement between original trajectory and
simplified one.

( 3 ) Through simulation, enclosed area metric is proven more ro-
bust against GPS uncertainty comparing to distance metric.

( 4 ) Evaluate the accuracy with other typical simplification meth-
ods in terms of perpendicular distance, synchronized Eu-
clidean distance and enclosed area. In addition, we estimate
the effect of parameters over the performance of our method.

The next section describes related work about compressing tra-
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jectories. In Section 3 our method is described in detail. The
evaluation of our method and other algorithms with 3 error met-
rics including newly introduced metric is described in Section 4.
Finally, discuss experimental results and future work.

2. Related Work

In the literature various simplification methods exist [10], [11],
[12] and Lawson et al. conducted a very comprehensive survey
for them [4]. Most widely used methods are uniform sampling,
dead reckoning method and Douglas Peucker method, which also
are the comparison targets in our paper. We will introduce these
existing methods and analyze their advantages and disadvantages
here.

2.1 Uniform Sampling
Uniform sampling is a naive method which sparsely selects

the point to store by every given time interval or distance in-
terval but discards remained points. In some applications, this
method is modified by storing the average value of all points
within given interval, which is called piece-wise aggregate ap-
proximation. Even though uniform sampling may provide a sim-
ple and cost-effective solution, it is distinctively insensitive to the
spatio-temporal characteristics of the trajectory as well as to its
sequential nature. Hence, we can’t expect the consistent quality
just since it is too sensitive to the case, though the result is satis-
factory in some case.

2.2 Dead Reckoning Method
It is a localized processing routine which make use of the char-

acteristics of the immediate neighbouring coordinate points in de-
ciding whether to retain the current point. As shown in Fig. 1, P3

and P4 are in the same trend with the line segment consisted of
P1 and P2. However, since P5 exceeds the threshold of Euclidean
distance predefined, the prior point of P5 will be retained in the
simplified trajectory so that the maximum distance displacement
does not go beyond the predefined ε. This method has two advan-
tages: (1) it can process the data at local client (mobile terminals)
(2) its time complexity is O (n), namely linear. Therefore, it is
popular in car navigation though it accumulates the error in bad
case. There are also some variants of this method [8], [13].

2.3 Douglas Peucker Method
DP method was proposed by Douglas and Peucker [14], which

is widely used in cartography related software like AUTOCAD.
“Many cartographers consider it to be the most accurate simpli-

Fig. 1 Dead reckoning simplification.

fication algorithm available, while others think that it is too slow
and costly in terms of computer processing time” [15]. In any
case, it is the most famous line simplification algorithm till now.
The method recursively selects two points to represent the line
segment within a specified tolerance value (see Fig. 2). Firstly, it
attempts to simplify the trajectory with

−−−−→
PaPb, but it discards this

attempt when calculate perpendicular distance from every point
to line

−−−−→
PaPb and find Pc is out of the predefined threshold ε. Then,

it chooses Pc as new anchor point and repeats the attempts with−−−→
PaPc and

−−−→
PcPb respectively.

As described above, the algorithm of Douglas Peucker is sim-
ple and easy to program. It is extremely efficient because it
globally exhibits the least distance error under a given toler-
ance. Thus, it is recognized as the one that delivers the best
perceptual representations of the original lines [16]. Moreover,
Douglas Peucker Method is applicable to both 2D line and 3D
line in terms of any shape of line. Besides, as its basic idea is
universal, it has been independently proposed in other contexts,
i.e., image processing, computational geometry, and there is also
many work that try to improve this method [17]. Nevertheless,
this method loses its power when the trajectory includes self-
intersection points. In addition, this method is very computing-
expensive in some cases. A straightforward implementation re-
quires O (n) time to find the furthest point from line. Since the
iteration depth is linear, the worst-case running time is O (n2).

2.4 Other Methods
Aside from these conventional methods, recently researchers

also presented other interesting methods. Yukun Chen et al. [18]
proposed such a method to simplify trajectory for LBS network-
ing services. The method focuses on keeping speed and direction
change information as much as possible. Hence, they defined the
attributes of line segments, including heading direction, neighbor
heading change, accumulated heading change, heading change
which is the sum of the neighbor heading change and accumulate
heading change, and neighbor distance. Then, the method assigns
the weight on point in terms of the product of the average head-
ing change and the neighbor distance. Lastly, the method selects
the points with high weight to represent all the sampling points.
Their approach is said to outperform Douglas-Peucker method in
walking mode trajectories with some constraints. In any case, it
is a global process routine so we will not compare it with ours
since the purpose of our method is to process data online at the
mobile terminal.

Besides, the STTrace algorithm [8] is designed to preserve spa-
tiotemporal heading and speed information in a trace. A hybrid
between an online and offline approach, STTrace defines a safe

Fig. 2 Douglas Peucker simplification.
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Fig. 4 Error metrics.

Fig. 3 SQUISH simplification.

area by using the previous two points in the trajectory. A vector
which defines the speed and heading between the two locations is
used to predict the position of the next point. It uses two input pa-
rameters to make this prediction. One of these parameters is the
speed threshold which defines how much the speed can vary while
still remaining in the predicted range. The other input parameter
is the heading threshold that defines how much the heading can
vary while still remaining in the predicted range. STTrace is sim-
ilar to dead reckoning method while it uses the predicted area
to filter not the fixed point as in DR method. Although it can
overcome complications caused by error propagation, which im-
proved the demerit of DR method, its processing time is far worse
than the threshold-based methods.

In addition, Jonathan Muckell et al. [9] proposed a method
called SQUISH to simplify trajectory using a priority queue. As
shown in Fig. 3, the method sets a buffer for processing points
in which all points will be assigned a weight. The weight value
is determined based on estimating the amount of synchronized
Euclidean distance introduced into the compression if that point
was removed from the trajectory. It is straightforward to delete
the points with the lowest weight in order to keep the shape of
trajectory as same as possible, whereas it is a little confusing to
add the deleted point’s weight on the neighbor point. For exam-
ple, P2 with the lowest weight is moved out from the buffer, but
the weight of P3 cannot be simply obtained by adding the weight
of P2. The experiment of this method demonstrates a good result
comparing with other methods when the compression rate is not
large, otherwise it lost the lead.

All these methods are data-loss methods, though there are data-
lossless compression methods in other fields [19]. Usually data-
lossless compression is computing-expensive, and for trajectory
to some extent, data-loss is acceptable in most cases. Hence, the
point is to diminish the data-loss under arbitrary compression ra-
tio. That is, the data-loss measures or error metrics are also ex-
tremely important.

However, all existing methods try to approximate trajectory
based on distance measure, including perpendicular distance and
synchronized Euclidean distance (see Fig. 4, formal definitions
are stated in Section 4). As it can be seen in Fig. 4, in some cases,
e.g., between Ps(k) and Ps(k+1) there are two long parallel lines,
even when the distance displacement is slight, the enclosed area
displacement will be quite remarkable. Moreover, occasionally
GPS position is quite inaccurate so that certain points have large
displacement, and discrete metric is extremely sensitive to these
contingent errors but continuous metric is more resistant to them.
It motivates us to develop our method based on enclosed area. In
the later section, we will fully prove that enclosed area is a more
accurate error metric while considering GPS uncertainty.

3. Proposed Method

There is a wide variety of sensors built in smartphone, and An-

droid SDK support tens of sensors including accelerometer, am-
bient temperature, gravity, gyroscope, light, magnetic field, ori-
entation, pressure, proximity, relative humidity, etc. Aside from
them, GPS, Bluetooth and Wi-Fi are also available. By making
use of these sensors, we launched a project called trajectory sens-

ing to sense the physical environment (including ambient noise,
light via microphone and light sensor) and human activities (via
accelerometer, orientation sensor). We developed a tool based on
Android operating system (see Fig. 5).

3.1 Problem Statement
Participants take smartphone installing this tool during their

commuting routes by walking, bike or car. Finally the data is
transmitted to back-end server via cellular network. The ultimate
goal of our project is to learn human activities under particular
physical environment by sensing and then to discover knowledge.
However, the problem we plan to solve in this work is trajectory
simplification (i.e., data reduction) in real-time before data anal-
ysis.

Trajectory is obtained by recording the successive positions of
which a moving object takes across time. Recently, researchers
try to enrich trajectory (called semantic trajectory) by adding
background geographic information to discover meaningful pat-
terns [20]. To extend this concept further, we redefine semantic

trajectory T as:

T = {pt = [X(t),Y(t), Z(t), S m(t)] | t ∈ R} (1)

Here, pt is a tuple from one data point recorded as time t, in-
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Fig. 6 A sample data of trajectory with MBR.

Fig. 5 Trajectory sensing tool.

cluding spatial position (X(t),Y(t), Z(t)) and semantic attributes
(S m(t)). Spatial position usually refers to latitude, longitude and
altitude, and semantic attributes refers to light, noise, temperature
and so on. On the other hand, after data reduction a simplified tra-
jectory T ′ can be defined as:

T ′ = {pt = [X(t),Y(t), Z(t), S m(t))] | t ∈ R ∩ Δ(t) > ε)} (2)

In fact, we can describe the nature of data reduction problem
as constructing a threshold function Δ(t) to achieve the least data
loss within favourable or given compression ratio. Our method,
just like the existing method is also expected to reach this goal.

After data reduction, the amount of data points decrease but
data value and the order are never changed, that is, reduced
data meets Eqs. (3) and (4). We call these two properties value-

invariance and order-invariance respectively.

∀p′ ∈ T ′ ⇒ ∃!p ∈ T : p′ = p (3)

∀p′, q′ ∈ T ′ ∧ t(p′) < t(q′) ⇔ ∃!p, q ∈ T :
(p′ = p, q′ = q) ∧ t(p) < t(q)

where t(x) is the temporal order o f x

(4)

3.2 Observation
Our Method is derived from such an observation. In Fig. 6,

there is a sample of GPS trajectory from our trajectory sensing
project, and data points are divided into 20 groups with same
points - N. We can draw minimum bounding rectangle (blue rect-
angle) called MBR on each group. In addition, we divide each
MBR into cells of equal size (grey grid) to calculate the informa-
tion content of MBR. Sum of information content of one MBR is
calculated as:

xn∑

i=1

yn∑

j=1

− log(pi j) (5)

where pi j is the frequency of data points within the cell [i,j] (see
bottom-right part of Fig. 6).

Finally we calculated the area of each MBR and the sum
of information content of each MBR as described in Table 1.
From Table 1, we can find a strong positive correlation between
MBR area and sum of information content. In fact, we calculate
the correlation coefficient for them over huge real data and the
value is up to about 0.8. Return to our goal of data reduction,
it is to achieve the minimal data loss, which means keep infor-
mation content as same as possible comparing to original data.
Therefore, we claim this assumption: The bigger the area size
of MBR of IC (Minimum Bounding Rectangle of Information
Content) is, the more the sampling points should be stored
(see MBR 8 in Fig.6). Otherwise, we can omit more sampling
points (see MBR 7).

Based on the analysis above, we developed a trajectory sim-

c© 2013 Information Processing Society of Japan 43



IPSJ Transactions on Databases Vol.6 No.3 40–49 (June 2013)

Table 1 Information content and MBR area.

MBR No. MBR Area Sum of Information Content
1 208.4 49.2
2 177.8 45.3
3 107.5 27.9
4 140.3 31.4
5 140.3 41.7
6 252.0 53.0
7 36.5 41.7
8 271.9 53.0
9 98.2 28.1

Fig. 7 The illustration of IC MBR method.

plification method called IC MBR which consists of divide and
merge principle and selection strategy described in detail in
Section 3.3 and Section 3.4 respectively.

3.3 Divide and Merge Principle
Based on the assumption stated in Section 3.2, the following

principle is employed: we divide the bigger MBRs while merge
the smaller MBRs so as to keep the nearly uniform size of MBR.
There is an example shown in Fig. 7. Initially, 4 MBRs are drawn
on it by every 4 points (the number is an input parameter given
by user), and then merge MBR 2 and MBR 3 because their area
is far less than the standard MBR, while split MBR 4 because it
is far bigger than the standard MBR (standard MBR is an input
parameter which is referred to comparing individual MBR). The
size of the standard MBR can be obtained by users experience
or specific requirements, which as well as its points number di-
rectly affect accuracy and compression ratio of trajectory that will
be discussed in later section. Another technique to determine an
appropriate standard MBR (called adaptive MBR) is to dynami-
cally adjust the value by calculating area size within a tuning pe-
riod (e.g., take the moving average value of all MBRs). To keep
the consistent accuracy, an adaptive MBR is more effective in
the case of multi-transportation mode, since the area is subject to
variations depending on walk mode or driving mode. Assuming
that the original sampling interval is a fixed time interval, stan-
dard MBR area is supposed to be assigned as a greater value in
driving mode yet a less value in walking mode. Hence, if the area
or points number of standard MBR is dynamically programmed
with the consideration of both transportation mode and sampling
interval, the result may be more satisfactory.

Table 2 Points selection strategy.

No. Condition Selection Criteria
1 MBR(N) ⊂ [S t MBR ∗ 2,∞) Divide MBR
2 MBR(N) ⊂

[S t MBR, S t MBR ∗ 2)
4 points: x(min), y(min),
x(max), y(max)

3 MBR(N) ⊂ [S t MBR ∗
0.5, S t MBR)

2 points: x(0), x(N − 1)

4 MBR(N) ⊂ [S t MBR ∗
0.25, S t MBR ∗ 0.5)

1 point: x(median)

5 MBR(N) ⊂ [0, S t MBR∗0.25) 0.5 point: Merge MBR or
x(median)

Algorithm 1 IC MBR method
1: function Dvide Merge(S t MBR Pts Num, S t MBR Area, Tra j)

2: Num← S t MBR Pts Num

3: for all point in Tra j do

4: if Num = Bu f .Count then

5: rlt ← S electPoints(Bu f )

6: if rlt is f alse then � Merge MBR

7: Num← Num ∗ 2

8: end if

9: else

10: Bu f .Add(point)

11: end if

12: end for

13: end function

14: function SelectPoints(Bu f )

15: Area← CalcArea(Bu f ) � MBR or Polygon area

16: Learn(Area, S t MBR Area) � Adjust standard MBR area

17: if Area > S t MBR Area ∗ 2 then � divide MBR

18: S electPoints(Bu f /2) � first half of Buf

19: S electPoints(Bu f /2) � second half of Buf

20: else if Area < S t MBR Area/4 then return false

21: else � by selection strategy

22: S avePoints()

23: end if

24: end function

3.4 Selection Strategy
Through dividing or merging MBRs, every resulted MBR will

contain the comparatively uniform information content. Hence,
we take such a strategy to extract points based on such an as-
sumption that points on the boundary of MBR contain more infor-
mation content and it is advantageous to choose boundary points
for the sake of lowering area error. As shown in Table 2 (call
4-2-1-0.5 rule), the points to be stored are determined by com-
parison with the standard MBR area. For instance, select 4 points
on boundary of MBR when the MBR meets condition 2 (see Ta-
ble 2), select the first point and the last point when meets condi-
tion 3, and select the median point when meets condition 4. In
the case of the condition 5, if the MBR is a divided MBR then
select the median point; or merge the MBR (which is explained
in Section 3.3 and rule 1 of Table 2).

After integrating the divide/merge principle with the selec-
tion strategy, algorithm of IC MBR method can be described as
Algorithm 1. This method adapts bottom-up and top-down strat-
egy simultaneously, which recursively approximate line segments
within a rectangle. Incidentally, in the 15th line, area is calculated
by minimum bounding rectangle or polygon, and in the later sec-
tion we will discuss the performance of both of them. Besides,
our method’s time complexity is O (n/β · β log(β)) = O (n log(β))
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Table 3 Time complexity comparison.

Method Name Normal Case Worst Case
Uniform sampling n/β n/β
Dead reckoning n 2n

Douglas-Peucker n log(β) nβ
IC MBR (Ours) n log(β) 2n log(n)

where β is the point number of buffer. In Table 3, we compare
our method with conventional methods (adjusted to online pro-
cess) in terms of time complexity, and in normal case our method
is the same as Douglas-Peucker method which is the favorable
method in many fields.

4. Evaluation Methods

To evaluate the accuracy of each method in terms of perpen-
dicular distance (PD), synchronized Euclidean distance (SED)
and enclosed area (EA), we implement IC MBR method, uniform

sampling method, dead reckoning method and Douglas-Peucker

method which is slightly modified to adapt to online processing.
It is important to note that even though DP method is an offline
method, we add a buffer for local processing so that we can com-
pare these methods under fair conditions. Obviously, this addi-
tional parameter may affect the initial performance to some extent
while improve the time cost.

4.1 Two Conventional Error Metrics
Two conventional error metrics: average perpendicular dis-

tance and average synchronized distance are uniformly defined
as:

m1,2(T o, T s) =
1
N

N∑

i=1

d2
i (6)

Here, N is the total points of original trajectory. PD refers to
perpendicular distance between the point of original trajectory
and the line segment of simplified trajectory (see solid arrows in
Fig. 4), which is obtained by the following equation:

di =
|(xs(k+1) − xs(k))(ys(k) − yi) − (ys(k+1) − ys(k))(xs(k) − xi)|√

(xs(k+1) − xs(k))2 + (ys(k+1) − ys(k))2

(7)

where Ps(k+1) = (xs(k+1), ys(k+1)) ∈ T s, Ps(k) = (xs(k), ys(k)) ∈ T s

and Pi = (xi, yi) ∈ T o.
SED calculates the distance from original point to virtual sim-

plified point which is at identical timestamp (see dot circles in
Fig. 4). It considers the temporal attribute of the point sequence,
thus it is thought as a better error metric. The virtual simplified
point is missing in simplified trajectory, whereas it can be ob-
tained as follows:

Pi = Ps(k) +
Ps(k+1) − Ps(k)

ts(k+1) − ts(k)
ti (8)

4.2 New Error Metric
Although PD and SED are widely used in the literature, there

are two drawbacks as follows:
( 1 ) As stated in Section 2.2, in some cases, the distance-based

error is small while the area error is huge. Hence, it will
mismatch the real trajectory and simplified trajectory.

( 2 ) In addition, the point of trajectory is not an accurate position
since GPS accuracy is uncertain. If one point has an un-
exceptional change due to GPS uncertainty, distance-based
error is subject to this sort of burst error while area metric is
robust from the viewpoint of uncertainty tolerance.

Therefore, we introduce a continuous 2-dimensional error metric
— enclosed area.
4.2.1 GPS Errors Analysis

We will discuss the GPS error sources to justify the necessity
of our new error metric. The accuracy of GPS depends on a com-
plicated interaction of various factors.

To analyze the effect of errors on accuracy, a fundamental as-
sumption is usually made that the error sources can be allocated
to individual satellite pseudo-ranges. The effective accuracy of
the pseudo-range value is termed the user-equivalent range error
(UERE). There are the major error sources in GPS which de-
velop error budgets for UERE: satellite clock error, ephemeris er-
ror (position of satellites), atmospheric effects (ionospheric and
tropospheric delay), receiver noise and resolution, and multi-
path/shadowing effects [21].

The position error that results from UERE depends on the
user/satellites relative geometry, which is called geometric dilu-
tion of precision (GDOP). If the satellites viewed from user lo-
cation is close together (or in a line), the GDOP factor will be
higher. Loosely speaking, error in the GPS solution is estimated
by the formula [21]:

σp = GDOP · σUERE (9)

where σp is the standard deviation of the positioning accuracy,
σUERE is the standard deviation of the satellite pseudo-range mea-
surement error and GDOP is the geometry factor of the satellites
for a specific location and time of day.

Usually, the error components are considered independent, and
the composite UERE for a satellite is approximated as a zero
mean Gaussian random variable where its variance is determined
as the sum of the variance of each of its components. UERE
is usually assumed to be independent and identically distributed
from satellite to satellite. However, the position error in a con-
secutive trajectory is not fully independent. As we see from
the error factors described above, GDOP and multipath depend
on the specific location, which are the major errors in a short
time period while other factors don’t fluctuate wildly in a small
space-time and be compensated by calibration to some extent. If
a user moves in a street, then the GDOP factor and multipath
effect caused by blocking by surrounding buildings will be al-
most constant unless the surrounding is changed abruptly. That
is why we assume the GPS error follows Gaussian distribution
in later simulation, whereas we claim the case of Fig. 4 is neces-
sary to be solved yet not be properly answered by existing error
metrics. In fact, we found there are considerable cases (i.e., tra-
jectory with large area displacement yet small distance displace-
ment) from our collected trajectories. Figure 8 shows a GPS tra-
jectory in which the blue trajectory is obtained by GPS while the
light-yellow one is the real moving trajectory. As the buildings
along the road is homogeneous, the GDOP and multipath effect
are identical, which resulted in the same distance error. Of course,
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Fig. 8 A real GPS trajectory with large area displacement.

Fig. 9 A self-intersecting polygon.

Algorithm 2 Area Calculation of Arbitrary Polygon
1: function CalcAreaOfPolygon(Polygon, PointsNum)

2: for all point pi in Polygon do

3: List.Add(pi, 0) � 0: original point

4: for j = 0; j < i − 1&&i > 1; j + + do

5: P← CrossPoint(pi, pi+1, p j, p j+1)

6: if !List.Find(p′i ) then � after pi

7: List.Insert(p′i ← P, 1) � 1: cross point

8: end if

9: if !List.Find(p′j) then � after p j

10: List.Insert(p′j ← P, 1) � 1: cross point

11: end if

12: end for

13: end for

14: anchor ← 0

15: for i := 0→ List.Count do

16: if List[i].flag == 1 then

17: CalcAreaO f S implePolygon(List.Range(anchor, i))

18: anchor ← i

19: end if

20: end for

21: CalcAreaO f S implePolygon(List.Rage(anchor, i))

22: end function

this sort of case is common in urban area while the situation is
different in other area.
4.2.2 Enclosed Area

Enclosed area which is a polygon confined by original trajec-
tory and simplified trajectory (the dashed area of Fig. 4). Al-
though EA is obviously advantageous, its calculation is quite
troublesome [22], [23] provided that the polygon contains self-
intersection (see Fig. 8). Nevertheless, we devised such an algo-
rithm to solve this problem (see Algorithm 2):
(1) The intersection point is obtained by geometry formula.
(2) If exist cross point, it will be sequentially inserted into a
list which consists of original points, but do not insert two or
more intersection points on the same line segment. Take the
Fig. 9 as an example, finally the list in Algorithm 2 will be

Fig. 10 Error metric under GPS uncertainty.

(P1, P1′, P2, P′2, P3, P′3, P4, P′4, P5, P1).
(3) The sub sequence of the list split by intersection point is a line
segment or a simple polygon whose area can be easily obtained
as follows - by outer product of vector:

Qj =
1
2
|

K∑

i=1

−→pi × −−→pi−1 | (10)

According to this algorithm, the nested area (see Fig. 9) will be
accumulated two or more times, whereas it is reasonable. Then,
we formally define the third error metric - average enclosed area
as:

m3(T o, T s) =
1
N

J∑

i=1

area(Qj) (11)

4.2.3 Uncertainty Tolerance
GPS system has intrinsic error of approximately from several

meters to tens of meters. For a specific location, the inaccu-
racy is not constant and it can be seen as normal distribution,
which means some particular points reach large displacement
while most points are within slight error range (but in commercial
GPS system these slight errors may be eliminated by smoothing
techniques). Note that the errors in a series of consecutive loca-
tions within a short time are dependent to a large extent as anal-
ysed in Section 4.2.1. We want to explore the different effect be-
tween distance-based metric and area-based metric while taking
the GPS uncertainty into account.

As shown in Fig. 10, P1 · · · Pi · · · PN is the GPS points of orig-
inal trajectory, and the dot line between P1 and PN is the sim-
plified trajectory. In addition, we assume Pk has a large error
whose corresponding real position is P′k, while other points have
only slight error. We define uncertainty tolerance which indi-
cates how significant the uncertain (wrong) position affects the
simplification process. For distance-based simplification, the un-
certainty tolerance is Td =

|du−dr |
dr

, where du is the distance from
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Fig. 11 Difference of uncertainty tolerance.

GPS point to simplified trajectory, and dr is the distance from
real position to simplified trajectory. On the other hand, the un-
certainty tolerance of area-based simplification is TQ =

|Qu−Qr |
Qr

,
where Qu is the area enclosed by GPS points, and Qr is the area
enclosed by points of real position. In Fig. 10, Qu is the area of
polygon (P1, · · · , Pi, · · · , Pk−1, Pk, Pk+1, PN), and Qr is the area
of polygon (P1, · · · , Pi, · · · , Pk−1, P′k, Pk+1, PN). For simplifying
calculation, here we assume GPS points with slight errors as real
position while distinguish the point (i.e., Pk) with the largest er-
ror from real position (i.e., P′k). Note that, the higher the value
of uncertainty tolerance, the weaker it is against uncertainty. In
Fig. 10, suppose there are only 3 points (P1, Pk, PN), then Qu =
1
2

du|P1PN | and Qr =
1
2

dr |P1PN |. The uncertainty tolerance TQ

is |Qu−Qr |
Qr

=
|du−dr |

dr
= Td, which indicates distance-based metric

performance as same as area-based metric in the case of 3 points.
We conduct the experiment by simulating 10,000 times for

each pattern (combination of GPS points and GPS error). Fig-
ure 11 shows the result. The vertical axis (Z) is the value of
(Td−TQ). We can find in the case of 3 points the difference is zero
which is consistent with our theory. In generally, distance-based
metric performs worse in terms of uncertainty tolerance, and as
the GPS error increases, the performances of distance-based met-
ric deteriorates. The same trend can be seen in terms of GPS
points of polygon.

5. Experimental Results and Discussion

In this work a series of experiments are conducted by using
the data collected through our trajectory sensing project. Aside
from it, we also make use of Microsoft GeoLife [24], [25] dataset
that consists of 178 users in a period of over four years (from
April 2007 to October 2011). Various transportation modes are
included in the data set, including walking, driving, train travel
and etc. Experimental data files are selected by different file size,
different transportation modes and different trajectory shapes so
that we can compare the performance to draw a general conclu-
sion.

5.1 Performance Comparison
Trajectories are compressed with 3%, 10%, 20% and 50% and

are measured by 3 error metrics (namely EA, PD and SED). Here,
compression ratio (CR) is defined as the number of original points

Fig. 12 Average EA with 10% and 20% compression ratio.

divided by the number of compressed points. From Fig. 12 (the
results of compression ratio 10% and 20% are shown while other
compression ratio results are skipped, but a complete compari-
son is described later), we can find that (1) accuracy gets worse
as compression ratio decreases; (2) accuracy also greatly varies
due to different trajectory files which mean different shape of tra-
jectories; (3) uniform sampling produces an uncertain output, in
other words, its performance drastically fluctuates. In addition,
our method can meet different compression ratios and error tol-
erances by adjust the parameters (points of standard MBR and
its area). Generally speaking, these two parameters are similar
to distance threshold in DP or DR method, that is, lessening the
value of them will earn better accuracy but high compression ra-
tio.

Figure 13 shows the normalized error (the value is scaled to
[0,1]) of EA, PD and SED in different compression ratio. As a
result, our method holds an absolute advantage in terms of EA

metric and competitive performance in SED metric but poor per-
formance in PD. The reason is that we measure displacement di-
rectly by enclosed area, and there is an inherent relation between
area and distance. Our method filters point based on information
contents that is measured by area in 2-dimensional plane, which
resulted in a good performance in EA.

5.2 Parameters Analysis
In our method there are two important user-specified parame-

ters which are the points number of standard MBR and the area
of standard MBR. Besides the area of standard MBR is also sub-
ject to the adaptive MBR or fixed MBR. Since the performance
is significantly affected by these factors, we will explore the rela-
tionship between them and EA accuracy.

In the left part of Fig. 14, it employs the moving average to ad-
just standard MBR area. We can find: as the points of standard
MBR increases, the EA error increases and the compression ratio
decreases simultaneously. In fact, there is a positive linear rela-
tionship between the points of standard MBR and EA error but a
negative linear relationship between the points of standard MBR
and compression ratio. (Note that although the figure shows a
power relationship, actually it is linear relationship since the hor-
izontal axis is also power-scaled.) Hence, we need a trade-off
between compression ratio and EA error, and in most cases the
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Fig. 13 Normalized error of EA, PD, SED.

Fig. 14 Parameters effect over accuracy.

number of points of standard MBR ranging from 8 to 20 is advis-
able.

In the middle part of Fig. 14, we fix the points of standard MBR
as 16 but adjust standard MBR area manually. It shows that the
compression ratio slightly decreases as the area of standard MBR
increases. Besides, the EA fluctuates along with area of standard
MBR. However, in a real-time mode it is hard to determine the
optimal area of standard MBR to get the smallest error.

In the right part of Fig. 14, we observe the change of EA with
parameters in adaptive adjustment mode when the user specifies
the compression ratio. From the figure (here CR is fixed at 10%),
we find that along with the increase of points of standard MBR,
the EA error increases. At the same time, the area of standard
MBR increases too.

Our method is based on area metric, whereas we calculate not
the area of polygon (the actual enclosed area) but the area of
MBR instead during divide/merge MBR. The reason is that there
is a strong correlation between polygon area and its correspond-
ing MBR area. In addition, to calculate polygon area is much
more computation-intensive than to calculate MBR area. In fact,
the time complexity of our method with polygon calculation is:

O(n/β∗
β∑

j=1

j( j + 1)
2

) = O(n/β∗ 1
2

(
β(β + 1)

2
+
β(β + 1)(2β + 1)

6
)) =

O(n ∗ β2) where β is the point number of buffer. Comparing to
the method with MBR calculation (O(nlogβ)), the scale of time
complexity is different. We actually compared these two ways,
and find that by calculating polygon area the accuracy can be im-
proved by 2.7 times while the computation time may increase by
34.3 times. Due to the requirement of real-time simplification,
we choose the simple way — MBR calculation — but sacrifice
the accuracy.

In addition, we calculated the correlation of MBR area and in-
formation content of MBR, to explore its relation with the EA ac-
curacy. As a result, there is no strong correlation between them,
namely the strong correlation of MBR area and information con-

tent of MBR does not necessarily indicate good accuracy. Note
that this result does not go against our method’s efficiency since
our method is finally evaluated by error metrics as above.

6. Conclusion and Future Work

In this paper, we proposed a novel scheme: divide/merge
principle and selection strategy to reduce data for spatial tra-
jectory. To measure displacement correctly, we newly introduced
enclosed area metric which is proven more robust against GPS
uncertainty. Although DP method still outperforms other meth-
ods from the perspective of whole performance (by comparing
the average value of all 3 metrics), our method is the most effi-
cient method in terms of EA metric — the most convincing mea-
sure. Furthermore, our method is a pure online procedure which
can be readily installed at the mobile terminal to preprocess tra-
jectory before sending it to back-end server. On the other hand,
the transformed online DP method needs a big enough buffer to
guarantee the accuracy and compression ratio.

However, our method as well as existing methods merely takes
geometric feature (linear or areal displacement) into account,
which may lead to the loss of other information (e.g., speed).
Besides, in the second component of our method (i.e., selection
strategy), we just intuitively save boundary points for achieving
the least areal displacement. Consequently, this selection can’t
exhibit the optimal simplification and it is sensitive to the shape
of trajectory.

In the future, we consider extending the MBR of IC idea to
Minimum Bounding n-dimensional Cube so as to compress mul-
tidimensional trajectory. Furthermore, it would be extremely
challenging and meaningful to explore the relationship between
the accuracy and the features of trajectory, eventually to seek op-
timal input parameters (points of standard MBR and area of stan-
dard MBR) and better selection strategy.
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