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Abstract: Web-based malware attacks have become one of the most serious threats that need to be addressed urgently.
Several approaches that have attracted attention as promising ways of detecting such malware include employing one
of several blacklists. However, these conventional approaches often fail to detect new attacks owing to the versatility of
malicious websites. Thus, it is difficult to maintain up-to-date blacklists with information for new malicious websites.
To tackle this problem, this paper proposes a new scheme for detecting malicious websites using the characteristics of
IP addresses. Our approach leverages the empirical observation that IP addresses are more stable than other metrics
such as URLs and DNS records. While the strings that form URLs or DNS records are highly variable, IP addresses
are less variable, i.e., IPv4 address space is mapped onto 4-byte strings. In this paper, a lightweight and scalable
detection scheme that is based on machine learning techniques is developed and evaluated. The aim of this study is
not to provide a single solution that effectively detects web-based malware but to develop a technique that compen-
sates the drawbacks of existing approaches. The effectiveness of our approach is validated by using real IP address
data from existing blacklists and real traffic data on a campus network. The results demonstrate that our scheme can
expand the coverage/accuracy of existing blacklists and also detect unknown malicious websites that are not covered
by conventional approaches.
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1. Introduction

Web-based malware attacks have become one of the most se-
rious threats that need to be addressed urgently. Some mali-
cious websites steal users’ confidential information, which may
include login IDs, passwords, and personal information. Other
malicious websites enforce users to download malicious software
(malware).

Web-based malware attacks target vulnerabilities that exist in
web browsers and several plugins such as Flash players, Java
VMs, and PDF plugins [2]. These vulnerabilities are exploited
by compromising the browser so that malware is downloaded and
run on the targeted system. Such attacks are often called drive-

by-download attacks [3].
Computers are subjected to conventional attacks when they are

connected to the Internet or external devices such as a USB mem-
ory that is infected with malware. In contrast, drive-by-download
attacks are triggered by users’ access to certain websites. Fig-
ure 1 illustrates the procedure of a typical drive-by-download at-
tack. When a browser accesses a compromised landing site, the
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Fig. 1 Procedure of a drive-by-download attack.

HTTP connection is redirected to a hopping site. A hopping site is
a website that contains a redirect instruction code that redirects an
HTTP connection to the next hopping site or an exploit site. Af-
ter a connection has been redirected to an exploit site, the browser
is forced to download malware from a malware distribution site.
An exploit site is a website that actually exploits vulnerabilities
of users’ web browsers.

Owing to the complexity of the infection procedure shown
above, the detection of infection by web-based malware is often
complex. Authors of malware use several techniques that redi-
rect users to actual malware distribution sites by masquerading
them as exciting and fun themes on social networking websites
or e-mails [4]. The redirection sites can be easily updated. Sev-
eral intermediate redirection URLs are effective for one-time ac-
cess only. Moreover, they employ various obfuscation techniques
such as encryption, polymorphism, and tunneling to evade detec-
tion. Therefore, conventional approaches often fail to detect new
attacks owing to the versatility of malicious website deployment,
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which is discussed in Section 2. To resolve this problem, this pa-
per presents a new scheme for detecting malicious websites using
the characteristics of IP addresses.

This paper proposes a scheme for detecting communication
associated with web-based malware using the features extracted
from structures of IP addresses in order to prevent users from ac-
cessing even unknown malicious websites. Our approach lever-
ages the empirical observation that IP addresses are more stable
than other metrics such as URLs and DNS records. While the
strings that form URLs or DNS records are highly variable, IP ad-
dresses are less variable, i.e., IPv4 address space is mapped onto
4-byte strings. In this paper, a lightweight and scalable detection
scheme that is based on machine learning techniques is developed
and evaluated. Note that the goal of this paper is not to provide a
single solution that effectively detects web-based malware but to
develop a technique that compensates for the limitations of exist-
ing approaches. The effectiveness of our approach is validated by
using real IP address data from existing blacklists and real traf-
fic data on a campus network. The results demonstrate that our
scheme accurately differentiates between the IP addresses used
for benign websites and malicious websites. In addition, this pa-
per illustrates that our scheme expands the coverage/accuracy of
existing blacklists and detects even unknown malicious websites
that are not covered by conventional approaches.

The rest of this paper is organized as follows. First, Section 2
reviews related works and discusses their limitations. Next, our
detection scheme is presented in Section 3. Then, Section 4 illus-
trates the experimental results using actual web traffic data col-
lected on a large-scale campus network. Finally, Section 5 con-
cludes our study.

2. Related Work

This section reviews related works and discusses their limita-
tions. The systems proposed in these works are divided into three
categories: blacklists and reputation systems, intrusion detection
systems (IDS), and client honeypots.

2.1 Blacklists and Reputation Systems
So far, blacklists and reputation systems have been the most

popular solutions that prevent users from accessing malicious
websites. Blacklists can be applied to both network-side and
client-side filtering. Network-side filtering can be used with DNS
blacklist or blocklist (DNSBL) [5], [6], [7] and commercial secu-
rity appliances. Client-side filtering can be included in current
web browsers [8], [9].

In reputation systems, reputation is based on various types of
information present in each IP address or domain and is applied
to prevent users from accessing malicious websites. Criteria for
reputation include features retrieved from domains, WHOIS in-
formation, and link structures. Antonakakis et al. [10] developed
a dynamic reputation system called Notos. The system collects
information from multiple sources such as DNS zones, border
gateway protocol prefixes, and Autonomous System (AS) infor-
mation to model network and zone behaviors of benign and ma-
licious domains. Then, it applies these models to calculate a rep-
utation score for each domain name. Felegyhazi et al. [11] pro-

posed domain-based proactive blacklisting. It utilizes a small set
of known malicious domains to predict other malicious domains
using registration and name server information. Ma et al. [12]
proposed a supervised learning approach for classifying URLs
as benign or malicious using both lexical structure of URLs and
host-based features such as WHOIS records and geographical in-
formation. Yadav et al. [13] focused on algorithmically generated
malicious domain names and found that such domains were quite
different from legitimate ones. They utilized this characteristic to
develop their detection method based on statistical learning.

Although these approaches are widely employed, they often
fail to keep up with the transient nature of malicious activi-
ties. For instance, it was demonstrated that maintaining up-
to-date blacklists is not easily accomplished because new ma-
licious domain names can be easily and continuously gener-
ated [14], [15], [16]. Furthermore, it has been reported that at-
tackers frequently change domain names to evade detection by
reputation systems [2]. In addition, Shin et al. [17] showed that
only 17% of worm/bot victims are covered by several blacklists
and they pointed out that better ways to detect future emerging
malware are needed.

In summary, existing blacklist-based approaches are prone to

failure with respect to detecting versatile web-based malware.

2.2 Intrusion Detection Systems
IDS can be used to block users from accessing malicious web-

sites. It can be classified into two types: signature-based IDS and
anomaly-based IDS. Signature-based IDS such as Bro [18] and
Snort [19] monitor network traffic and search packets that corre-
spond to predefined attack signatures. Because attack signatures
are generated by known attacks, signature-based IDS cannot de-
tect unknown attacks. Anomaly-based IDS learns normal net-
work behavior and uses this information to detect attacks. There-
fore, it has the potential for detecting unknown attacks [20]. How-
ever, there is a high probability of anomaly-based IDS falsely
regarding normal traffic as attacks, namely false positives. More-
over, malicious websites often contain obfuscated scripts to evade
such IDS. As shown later in Section 4.5, detecting malicious
websites with IDS is not readily performed in real environments.
Therefore, it is recognized that IDS has limitations with respect
to blocking all kinds of malicious websites.

In summary, existing IDS-based approaches may fail to detect

obfuscated malware.

2.3 Client Honeypots
Recent studies have proposed client honeypot systems that aim

to detect and analyze drive-by-download attacks [3], [21], [22],
[23], [24]. A client honeypot is a system that crawls websites and
detects malicious websites. Client honeypots can be classified
into two types: low-interaction honeypots and high-interaction
honeypots. Low-interaction honeypots such as HoneyC [21] in-
clude an emulator of a browser to crawl websites. Therefore,
there is no risk that honeypots themselves will be infected with
malware. High-interaction honeypots such as Capture-HPC [22]
and BLADE [23] include a real web browser and system; there-
fore, they can collect more information such as malware behavior
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after exploitation. One clear drawback of high-interaction hon-
eypots is the risk of malware infection because they actually run
exploit codes. Akiyama et al. proposed a state-of-the-art high-
interaction honeypot called Marionette [3], [24] that overcomes
the risk of malware infection. Marionette has a real vulnerable
web browser and plugins that can detect attacks without being
infected with malware.

However, client honeypots still have three major problems that
affect their detection of all malicious websites. One problem is
the lack of scalability. At present, attackers generally deploy a
large number of malicious websites [16], whose URLs change
within a short time period [15]. Thus, it is not feasible to study
the entire set of malicious URLs with client honeypot systems.
Another problem is that even if websites are benign while be-
ing investigated, they may be attacked afterwards and vice versa.
Therefore, it is necessary to shorten the intervals between inves-
tigations. However, because of time and cost limitations, it is not
feasible to investigate all URLs several times. In addition, mali-
cious websites utilize cloaking techniques to hide their malicious
contents from particular IP addresses used by honeypots [25].
This cloaking makes it more difficult for client honeypots to crawl
and detect malicious websites [2].

In summary, existing client honeypot-based approaches have

some problems: lack of scalability and versatility, and failure to

detect cloaking techniques.

3. Detection Scheme

In this section, a high-level overview of our detection scheme
is presented first in Section 3.1. Next, the effectiveness of our
approach is shown in Section 3.2. Then, Section 3.3 illustrates
several feature extraction techniques. Finally, Section 3.4 shows
how a machine learning approach can be applied to our detection
scheme.

3.1 High-level Overview
Our detection scheme is based on two intrinsic characteris-

tics of IP addresses: (1) stability with time [26] and (2) address
space skewness [27], [28]. First, although attackers can change
URLs and DNS records at a low cost, it is much more diffi-
cult to change IP addresses, which are essentially associated with
malicious activities. Thus, the characteristics of an IP address
should be more stable compared with other metrics. Second,
IP addresses associated with malicious activities are likely to be
concentrated in certain network address spaces, as reported by
previous measurement studies [27], [28]. In the following Sec-
tion 3.2, our preliminary experiments show that IP addresses
of web-based malware also have these characteristics. To the
best of our knowledge, the approach presented here is the first
IP address-based approach against malicious websites that em-
ploy drive-by-download attacks. On the other hand, approaches
against botnets, phishing, and spam mails have been widely stud-
ied, as in Refs. [26], [27], [28].

Basically, our approach blocks users’ access to malicious web-
sites by extending existing blacklists. The unique feature of our
scheme is that it can evaluate IP addresses that are not listed in ex-
isting blacklists. To complicate analysis and detection attempts,

Fig. 2 Overview of our detection scheme.

Table 1 Training dataset.

Data Period #URLs #IP addresses

TRN B Apr. 30, 2011 10,000 10,372

TRN M Jan. 1, 2009–Apr. 30, 2011 63,694 14,171

drive-by-download attacks lead users to an actual attacking web-
site via multiple stepladder sites by redirecting users’ browsers
many times. Therefore, blocking access to the IP address of a
destination malicious website can protect users from malware in-
fection.

Our detection scheme involves the following four steps: 1) col-
lecting IP addresses, 2) extracting feature vectors, 3) building a
trained model, and 4) detecting malicious IP addresses. Our key
technical contribution is building a novel feature extraction meth-
ods (step 2), which is described in Section 3.3. Section 3.4 shows
our supervised machine learning technique that is employed for
step 3 and step 4. Figure 2 outlines our detection scheme.

3.2 Effectiveness of IP Address-based Approach
This section illustrates the effectiveness of our IP address-

based approach to detect malicious websites. Two preliminary
experiments using real IP address data are conducted to show sta-
bility with time in malicious networks and address space skew-
ness.
3.2.1 Training Dataset

To evaluate the effectiveness of IP address-based approaches,
IP addresses of both benign and malicious websites are collected.
Table 1 shows the collected training dataset. Note that this train-
ing dataset is also used for building a trained model in step 3,
which is described later in Section 3.4.

Our benign training dataset TRN B comprises URLs of the top
10,000 websites on the Alexa traffic ranking list [29] on April 30,
2011. From these URLs, 10,372 IP addresses are resolved. Do-
main names in the ranking list include those to which multiple IP
addresses are assigned for load balancing, using DNS round robin
and content delivery networks (CDNs). Therefore, the number
of IP addresses in the ranking list exceeds the number of URLs,
which correlate with domain names. The Alexa ranking is calcu-
lated from a combination of the average number of daily visitors
and page views during the month [29]. Therefore, it contains both
benign sites and less benign sites such as pornographic and file-
sharing sites.

Our malicious training dataset TRN M consists of IP addresses
selected from the malware domain list (MDL) [30]. Note that
MDL contains some malicious websites on web hosting servers,
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Table 2 Top 5 malicious AS in TRN M.

AS #URLs #IP addresses

AS #1 1,389 482

AS #2 2,422 400

AS #3 1,061 355

AS #4 761 280

AS #5 1,047 275

Fig. 3 Lifetime of malicious AS in TRN M.

which utilize the same IP address for multiple domain names.
Therefore, the number of URLs is greater than that of IP ad-
dresses. TRN M contains 14,171 unique malicious IP addresses
collected over a period of more than two years from January 1,
2009 to April 30, 2011.
3.2.2 Stability with Time in Malicious Networks

To evaluate stability with time in malicious networks, mali-
cious IP addresses of TRN M as shown in Table 1 are analyzed.
In this preliminary experiment, IP addresses are treated per AS.
Table 2 shows analyzed AS, whose AS numbers are masked
for security. From the day when IP addresses are observed in
TRN M, the elapsed days since Jan 1, 2009 are calculated. Fig-
ure 3 represents the cumulative distribution function (CDF) of IP
addresses observed in each AS. This result illustrates that mali-
cious IP addresses tend to be contained in certain AS. Moreover,
such AS is continuously used for malicious activities for over two
years.

Unlike IP addresses, malicious URLs change within a short
time period [15]. For example, more than 60% of URLs con-
tained in TRN M or the malware domain list (MDL) were active
for less than one month [16]. Furthermore, attackers create a lot
of new malicious URLs one right after the other to avoid being
blacklisted [2], [16]. Our analysis indicates that IP addresses are
more stable than URLs in terms of time, i.e., IP addresses have
less variability over time.
3.2.3 Address Space Skewness

In this preliminary experiment, IP addresses are projected on
a Hilbert curve [31] to visually confirm the locality of malicious
IP addresses. Hilbert curve is a recursively defined space-filling
curve. A space-filling curve maps points on to a d-dimensional
space so that the closeness among the points is preserved. In this
study, any consecutive IP addresses will be projected onto a sin-
gle contiguous part on the curve [27], [32]. Figure 4 shows an
example of IP address mapping on a Hilbert curve. In Fig. 4, the

Fig. 4 Example of IP address mapping on a Hilbert curve.

Fig. 5 Visualization of IP addresses on A.B.0.0/16.

squares are ordered according to the Hilbert curve where a single
square represents a /24 network block. This technique has also
been applied in some existing research to visualize IP address
positions of the entire IPv4 address space. For example, Hao
et al. [27] utilized the Hilbert curve to display the IP addresses
of spam mail senders and Cai et al. [32] showed block-level IP
address usage patterns using the Hilbert curve. Figure 5 visu-
alizes the IP addresses of A.B.0.0/16, the first and the second
octets of which are masked with A and B for security and pro-
jected into the Hilbert space using the training dataset in Table 1.
The gray square represents a benign /24 network block, and the
black square represents a malicious /24 network block. Figure 5
demonstrates that the IP addresses of malicious websites are con-
centrated in certain network blocks.

3.3 Feature Extraction Methods
As described in Fig. 2, step 2 projects an IP address space onto

a feature space that reflects the relationship between IP addresses
and the network structure for interpretation by machine learning
algorithms. This paper proposes three methods to extract a fea-
ture vector from an IP address: octet-based extraction (Octet),
extended octet-based extraction (ExOctet), and bit string-based

extraction (Bit).
Octet-based Extraction (Octet):

Octet constructs an M = 28 × N-dimensional feature vector
represented as a sparse bit sequence {b0, · · · , bM−1} from the most
significant N octets of an IPv4 address, where N is a natural num-
ber, ranging between one and four that is used as a parameter. The
initial value for each bit {b0, · · · , bM−1} is zero. A feature vector
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Fig. 6 Example of Octet-based Extraction (Octet).

is represented by the following equation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
bk = 1 (k in

N⋃
n=1
{28 · (n − 1) + Xn})

bk = 0 (otherwise),

where k is an index set of feature vectors.
Let b28(n−1)+Xn

= 1 when the n-th (1 ≤ n ≤ N) octet of an IPv4
address is represented as Xn (0 ≤ Xn ≤ 28 − 1) in decimal nota-
tion. Figure 6 shows an example of feature vectors correspond-
ing to the IPv4 address 198.51.100.88 with Octet. The upper half
of Fig. 6 illustrates the correspondence between the parameter N

and feature extraction coverage. A feature vector uses the first
octet of an IP address when N = 1; the first and second octets
when N = 2; the first, second, and third octets when N = 3; and
the first, second, third, and fourth octets when N = 4. The lower
half of Fig. 6 lists the feature vectors extracted by parameter N.
For example, when N = 3, k consists of 198, 307 (= 256 + X2),
and 612 (= 512 + X3).
Extended Octet-based Extraction (ExOctet):

ExOctet extends Octet’s feature vector to construct an M =

28× (N+2)-dimensional feature vector represented as a sparse bit
sequence {b0, · · · , bM−1} from the most significant N octets of an
IPv4 address, where N is a natural number greater than or equal
to three. The initial value for each bit {b0, · · · , bM−1} is zero. A
feature vector is represented according to the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = 1 (k in
N⋃

n=1
{28 · (n − 1) + Xn})

bk = 1 (k in
N+1⋃

m=N≥3
{28 · m + (

m−1∑
i=1

Xi) mod 28})

bk = 0 (otherwise).

Let b28(n−1)+Xn
= 1 when the n-th (1 ≤ n ≤ N) octet of an IPv4

address is represented as Xn (0 ≤ Xn ≤ 28−1) in decimal notation.
ExOctet adds b28 ·3+(X1+X2) mod 28 = 1 and b28 ·4+(X1+X2+X3) mod 28 = 1
when N = 3. Figure 7 shows an example of feature vectors cor-
responding to the IPv4 address 198.51.100.88 with ExOctet. The
upper half of Fig. 7 illustrates the correspondence of the extended
coverage that is different from that of Octet. The lower half of
Fig. 7 lists feature vectors extracted when N = 3. A feature vec-
tor uses the first, second, and third octets of an IP address when

Fig. 7 Example of Extended Octet-based Extraction (ExOctet).

Fig. 8 Example of Bit String-based Extraction (Bit).

N = 3, which is the same as Octet. Moreover, a feature vector is
extended with a combination of the first and second octets, and
the first, second, and third octets.
Bit String-based Extraction (Bit):

Bit constructs a k-dimensional feature vector represented as a
bit sequence {b1, · · · , bk} from a 32-bit binary form of the IPv4
address, where k is a natural number used as a parameter. The
value for each bit {b1, · · · , bk} is equivalent to the first k bits of
a binary-formatted IPv4 address. A feature vector is represented
according to the following equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩bk = 1 (when the k-th bit value of IPv4 address is 1)

bk = 0 (otherwise).

Let bk = 1 when the k-th bit value of binary-formatted IPv4 ad-
dress is 1. Figure 8 shows an example of feature vectors corre-
sponding to the IPv4 address 198.51.100.88 with Bit. The upper
half of Fig. 8 illustrates the correspondence between parameter k

and feature extraction coverage, and the lower half lists the fea-
ture vectors extracted by parameter k.

3.4 Application of Machine Learning
As shown in Fig. 2, step 3 applies machine learning to the fea-

ture vectors extracted in step 2. Several options exist for machine
learning classifiers such as k-nearest neighbors (k-NN), neural
networks, and support vector machines (SVMs) [33]. K-NN are
methods for classifying test data based on proximity between test
data and training data in the feature space. Due to their high cal-
culation complexity, k-NN are not suitable for high-speed classi-
fication [33]. Also, typical k-NN cannot accurately handle high-
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dimensional data such as our IP address-based feature spaces.
Neural networks, especially feedforward multi-layer neural net-
works, are computational models that can be used for data classi-
fication. Neural networks need a lot of parameters to perform and
they cannot find global optimum solutions [33]. SVM is a pop-
ular machine learning method for classification. Unlike k-NN,
SVM can appropriately handle high-dimensional feature spaces.
Moreover, the number of parameters in SVM is small and SVM
can find a global optimum solution [33], [34]. In addition, it has
been reported that SVM works very well for various problems
in a lot of areas [34]. Our scheme is intended to be an accurate
and lightweight detection method. Therefore, SVM is selected
to demonstrate the effectiveness of our approach. As shown in
Section 4, our detection scheme with SVM works successfully
for real datasets. Note that our scheme is generic and can lever-
age any type of classifier that fits our problem formulation. A
key contribution of this paper is the building of effective feature
vectors that can be input into supervised classifiers.

Table 3 shows an example of a training dataset used in this
study. The feature vectors in this example are extracted using
Bit when k = 16. The training dataset comprises N input vec-
tors x1, · · · ,xN with corresponding target label values t1, · · · , tN ,
where tn ∈ {−1(benign),+1(malicious)}.

Now the way to train SVM classifiers using the training dataset
is described below. SVM uses the concept of a margin, which is
defined to be the smallest distance between the decision boundary
and any of the samples. The decision boundary is chosen to be the
one whose margin is maximized. Figure 9 illustrates a concep-
tual image of SVM’s feature space. The discrimination function
of SVM is defined as follows:

y(x) = wTφ(x) + β,

where w denotes the parameter to move the decision boundary,
wT is the transposed matrix of w, φ(x) denotes the feature space
transformation function, and β is a bias parameter. Using the dis-
crimination function above, the label C of a sample with feature

Table 3 Example of a training dataset.

Label tn IP address Feature vector xn

+1 198.51.100.88 {1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1}
−1 192.0.2.1 {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
−1 203.0.113.24 {1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}
· · · · · · · · ·

Fig. 9 Conceptual image of SVM’s feature space.

vector x can be inferred as

Ĉ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 (y > 0)

−1 (y < 0).

In SVM, parameters w and β are trained so that margins are max-
imized. The optimization problem is formulated as follows:

argmaxw,β

{
1
|w| min

n

[
tn(wTφ(xn) + β)

]}
.

To numerically derive the solutions, sequential minimal optimiza-
tion [35] is applied. For the kernel function, our scheme selects
the Gaussian kernel: k(x, y) = φ(x)Tφ(y) = e−γ||x−y||. To obtain
the best parameters, γ and β, our scheme performs grid search
with cross-validation tests. To estimate the probability of SVM’s
binary output, the technique proposed by Platt in Ref. [36] is ap-
plied. The key idea is to apply the logistic sigmoid function to the
discrimination function of SVM, y(x). The score is calculated as
follows:

score = P(t = 1|x) = σ(Ay(x) + B), (1)

where σ(a) is the logistic sigmoid function defined by σ(a) =
1/(1+ exp(−a)). The values for parameters A and B are found by
minimizing the cross-entropy error function defined by a train-
ing dataset consisting of pairs of values y(xn) and tn. The scores
assigned to each IP address are used for controlling the risk of
various errors, which are discussed in Section 4.4.

4. Experiments

This section illustrates the experimental results using real IP
addresses data obtained from existing blacklists and actual web
traffic data collected on a large-scale campus network.

4.1 Test Dataset
Test dataset is created from both benign and malicious web-

sites, which include web traffic data captured on a campus net-
work. Table 4 shows the test dataset used to evaluate our scheme.

Our benign test dataset TST B consists of HTTP traffic data
captured on a campus network for two weeks in May 2011. The
campus network is a production network with /16 prefix lengths
and is used by more than 50,000 students and faculty members.
The average throughput of the campus traffic is approximately
300–400 Mbps, and that of HTTP traffic is up to about 25 Mbps.
To minimize the probability that malicious websites are contained
in TST B, all URLs in the captured data are checked with the
Google Safe Browsing API [9]. Google Safe Browsing is con-
stantly updated with blacklists of suspected phishing and malware
related websites. As a result, 2,515 URLs that are suspected of
being malicious sites are excluded.

Our malicious test dataset consists of IP addresses selected
from the malware domain list (MDL) [30], which is the same

Table 4 Test dataset.

Data Period #URLs #IP addresses

TST B May 1, 2011–May 14, 2011 96,597 57,190

TST M ACTIVE May 1, 2011–May 14, 2011 11,223 2,450

TST M NEW May 1, 2011–May 14, 2011 455 161
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data collection source as our malicious training dataset TRN M.
Note that the collection period of our malicious test dataset is
different from that of TRN M. The malicious test dataset are
divided into two subsets: TST M ACTIVE and TST M NEW.
TST M ACTIVE contains 2,450 unique active malicious IP ad-
dresses observed for two weeks from May 1 to May 14, 2011.
TST M NEW consists of 161 malicious IP addresses that are un-
known to the trained model. To evaluate the generalization abil-
ity of the trained model, any IP addresses that are also contained
in TRN M are eliminated from TST M NEW. Moreover, from
TST M NEW, any IP addresses for which the top three octets are
equal to those of an IP address contained in TRN M are elimi-
nated. Therefore, TST M NEW contains IP addresses that have
never been observed. They can be seen as the IP addresses that
are not covered by blacklists, yet.

4.2 Evaluation Method
In the following experiments, the training dataset shown in Ta-

ble 1 is used for the SVM’s trained model as explained in Sec-
tion 3.4. Then, our scheme is evaluated with the test dataset of
Table 4.

This paper defines the correct classification of an actually mali-
cious IP address into a malicious category as a true positive (TP),
the incorrect classification of an actually benign IP address into a
malicious category as a false positive (FP), the incorrect classifi-
cation of an actually malicious IP address into a benign category
as a false negative (FN), and the correct classification of an actu-
ally benign IP address into a benign category as a true negative
(TN). Table 5 shows the relationships among these terms.

Our scheme is evaluated using the following criteria: accuracy,
false positive rate (FPR), false negative rate (FNR), receiver oper-
ator characteristic (ROC) curve, and area under the curve (AUC).
Accuracy, FPR, and FNR are calculated as follows:

Accuracy = (T P + T N)/(T P + FP + FN + T N)

FPR = FP/(FP + T N)

FNR = FN/(FN + T P).

The ROC curve is a graphical plot of the true positive rate (T PR =

T P/(T P+FN)) vs. FPR for every possible cut-off point. The cut-
off point relates to score, as described in Section 3.4. Each point
on the ROC curve represents a (FPR, TPR) pair corresponding to
a particular decision cut-off point. Therefore, if the curve rises
rapidly towards the upper left corner, it means that the overall test
result is good. AUC is the area under the ROC curve that is used
to score a binary classifier. AUC is calculated as follows:

AUC =
∑
i∈Ω
δiFNR(i),

where δi is FPR(i + 1) − FPR(i), and FPR(i) and FNR(i) are the
false positive rate and false negative rate for the i th parameter set-
ting, respectively. Ω is the parameter space to be explored. Note

Table 5 Relationships among terms.

Actual value

Malicious Benign

Prediction
outcome

Malicious True Positive (TP) False Positive (FP)

Benign False Negative (FN) True Negative (TN)

that FPR(i) is sorted in ascending order. AUC ranges from 0.0
(worst) to 1.0 (best).

4.3 Experiment 1: Comparing the Detection Performance
of Feature Extraction Methods

This experiment evaluates the detection performance of our
feature extraction methods. As an implementation of SVM, our
scheme uses LIBSVM [34], which is currently one of the most
widely used SVM software tool for many disciplines. In this
experiment, 0.0 ≤ score < 0.5 is considered as benign and
0.5 ≤ score ≤ 1.0 as malicious, which is equivalent to the cut-off
point 0.5. This is the default configuration of binary classifica-
tion using SVM. Our scheme is evaluated with two kinds of test
dataset combinations.

The first set of tests was conducted with the test dataset com-
bination TST B and TST M ACTIVE. Table 6 shows the eval-
uation results and Fig. 10 shows the ROC curves. In the Octet
method, the accuracy increases to 0.885, AUC increases to 0.989,
and FPR decreases to 0.119, as N increases to 3, where N is the
parameter for the Octet method. However, when N = 4, the ac-
curacy and AUC decrease and FPR increases. FNR decreases
linearly with increasing N. ROC curves improve as N increases
to 3. In particular, the ROC curves for both N = 3, 4 are closer
to the upper left corner and have the potential to be ideal for bi-
nary classification. In the ExOctet method, which prioritizes the
upper octets of IP addresses, the best results obtained are as fol-
lows: accuracy of 0.905, AUC of 0.994, and FPR of 0.098. The
obtained ROC curve is also better than those of all other meth-
ods. In the Bit method, the accuracy increases to 0.857 and FPR
decreases to 0.148 as k increases to 24, where k is the parameter
for the Bit method. However, when k = 32, the accuracy de-
creases and FPR increases. AUC increases linearly with increas-

Table 6 Detection performance with the test dataset combination
TST B and TST M ACTIVE.

Method Accuracy AUC FPR FNR

Octet (N = 1) 0.751 0.788 0.253 0.151

Octet (N = 2) 0.862 0.878 0.138 0.140

Octet (N = 3) 0.885 0.989 0.119 0.024

Octet (N = 4) 0.860 0.988 0.145 0.016

ExOctet (N = 3) 0.905 0.994 0.098 0.020

Bit (k = 8) 0.751 0.790 0.253 0.151

Bit (k = 16) 0.847 0.874 0.154 0.136

Bit (k = 24) 0.857 0.979 0.148 0.026

Bit (k = 32) 0.835 0.991 0.172 0.017

(a) Octet and ExOctet (b) Bit

Fig. 10 ROC curves of detection performance with the test dataset
combination TST B and TST M ACTIVE.
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ing k, whereas FNR decreases linearly with increasing k. The
ROC curves improve as k increases and the curves obtained when
k = 24, 32 are excellent. These test results indicate that the top
three octets of IP addresses prove to be effective in discriminat-
ing between benign and malicious websites. We believe that the
reasons are (1) IP address allocation policies [37] provide locality
to IP addresses and (2) most of the networks are based on the /24
subnet.

The second set of tests was conducted with the test dataset
combination of TST B and TST M NEW. Table 7 shows the
evaluation results and Fig. 11 shows the ROC curves. Note that
the TST M NEW dataset does not contain any IP addresses that
are used in the training stage as known IP addresses. This paper
first notices that our scheme successfully detects unknown ma-
licious IP addresses that could be missed by existing blacklists.
Now this test evaluates the performance in detecting unknown
malicious data. In the Octet method, the accuracy increases to
0.880, AUC increases to 0.897, FPR decreases to 0.119, and FNR
increases to 0.335 as parameter N increases to 3. However, when
N = 4, the accuracy, AUC, and FNR decrease and FPR increases.

Table 7 Detection performance with the test dataset combination
TST B and TST M NEW.

Method Accuracy AUC FPR FNR

Octet (N = 1) 0.747 0.768 0.253 0.180

Octet (N = 2) 0.861 0.834 0.138 0.304

Octet (N = 3) 0.880 0.897 0.119 0.335

Octet (N = 4) 0.855 0.885 0.145 0.217

ExOctet (N = 3) 0.902 0.914 0.098 0.292

Bit (k = 8) 0.747 0.762 0.253 0.180

Bit (k = 16) 0.846 0.804 0.154 0.304

Bit (k = 24) 0.851 0.893 0.148 0.205

Bit (k = 32) 0.828 0.878 0.172 0.261

(a) Octet and ExOctet (b) Bit

Fig. 11 ROC curves of detection performance with the test dataset
combination TST B and TST M NEW.

(a) TST B (b) TST M ACTIVE (c) TST M NEW

Fig. 12 Histograms of scores with the test dataset TST B, TST M ACTIVE, and TST M NEW.

The ROC curves improve as N increases to 3. However, when
N = 4, the ROC curve worsens slightly. In the ExOctet method,
an accuracy of 0.902, AUC of 0.914, and FPR of 0.098 are the
best results. The ROC curve is also the best result among all
the methods. In the Bit method, the accuracy increases to 0.851,
AUC increases to 0.893, and FPR decreases to 0.148 as parameter
k increases to 24. However, when k = 32, the accuracy and AUC
decrease and FPR increases. FNR is the lowest when k = 24,
whereas the ROC curve is the best when k = 24. The reason for
the best results when N = 3 or k = 24 is considered to be the
same as that of the first set of tests, i.e., most of the networks are
based on the /24 subnet.

For comparing the evaluation results of the two kinds of test
dataset combinations, FNR with tests using TST M NEW is
higher than that using TST M ACTIVE. Furthermore, the ROC
curves for the test using TST M NEW is worse than that obtained
using TST M ACTIVE. This is because TST M NEW contains
only IP addresses that are sufficiently valid for the evaluation of
our scheme, as described in Section 4.1. It should be noted that
our scheme can classify unknown malicious IP addresses with
high accuracy and low FPR. These results prove that IP addresses
are effective indicators for determining whether a website is ma-
licious.

4.4 Experiment 2: Evaluating the Distribution of the Score
This experiment evaluates the distribution of the scores as-

signed to IP addresses by our scheme. Figure 12 shows his-
tograms with cumulative frequency curves illustrating the distri-
bution of scores for each test dataset: TST B, TST M ACTIVE,
and TST M NEW, with the ExOctet (N = 3) model showing the
best results in Section 4.3.

Figure 12 shows that for TST B, our scheme assigns low
scores to benign IP addresses. Moreover, for TST M ACTIVE,
our scheme gives significantly high scores to malicious IP ad-
dresses that were active during the observation term. This means
that our scheme can accurately determine whether an IP address
is malicious. TST M NEW shows that our scheme can assign
high scores to even unknown malicious IP addresses. As de-
scribed in Section 4.1, the first, second, and third octets of IP
addresses in TST M NEW do not match any IP addresses in the
training dataset TRN M. This indicates that the IP addresses in
TST M NEW first appeared during the observation period.

Now, our scheme introduces multiple thresholds to control the
risk of incorrect classification. In a real environment, the risk
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should be configurable under various security policies such as
minimizing the number of false positives and false negatives.
This paper discusses a way to follow these security policies. For
example, it is possible to decrease the number of false positives
and false negatives by setting two kinds of thresholds: th b and
th m. th b determines whether an IP address is benign and th m

determines whether an IP address is malicious. An IP address
whose score is lower than or equal to th b is considered benign,
whereas an IP address whose score is greater than or equal to
th m is considered malicious. An IP address whose score is be-
tween th b and th m is classified as being in a gray area. Fig-
ure 13 shows an example of the relationship between the score
and the two thresholds when th b = 0.2 and th m = 0.8, i.e.,
0.2 < score < 0.8 is the gray area.

Table 8 shows the result when setting the two kinds
of thresholds for the test dataset combination TST B and
TST M ACTIVE. Table 9 shows the result with the two
kinds of thresholds for the test dataset combination TST B and
TST M NEW. Table 8 and Table 9 show that there were 5,476
false positives when th b = th m = 0.5. In this case, th b = th m

is equivalent to setting a single threshold without any gray areas.
Extending the gray area decreases the number of IP addresses
that result in false positives or false negatives. As an example,
compare the cases between multiple thresholds (th b = 0.2 and
th m = 0.8) and a single threshold (th b = th m = 0.5). When us-
ing multiple thresholds, our scheme does not determine whether
the IP address for which the score is 0.2 < score < 0.8 is benign
or malicious but classifies it as being in the gray area. This de-
creases the likelihood of false positives and false negatives com-
pared to the case of a single threshold; however, there are a num-
ber of gray IP addresses that cannot be determined as being be-
nign or malicious. These results indicate that our scheme can
control these two kinds of thresholds to decrease the number of

Fig. 13 Example of the relationship between score and two kinds of thresh-
olds.

Table 8 Setting two kinds of thresholds with the test dataset combination
TST B and TST M ACTIVE.

th b th m
# IP addresses

in gray area
# IP addresses of

false positives
# IP addresses of
false negatives

0.5 0.5 0 5,476 50

0.4 0.6 5,824 3,282 33

0.3 0.7 12,696 1,847 24

0.2 0.8 20,840 842 9

0.1 0.9 30,965 233 3

Table 9 Setting two kinds of thresholds with the test dataset combination
TST B and TST M NEW.

th b th m
# IP addresses

in gray area
# IP addresses of

false positives
# IP addresses of
false negatives

0.5 0.5 0 5,476 48

0.4 0.6 5,829 3,282 26

0.3 0.7 12,701 1,847 19

0.2 0.8 20,839 842 9

0.1 0.9 30,964 233 3

false positives and false negatives.

4.5 Experiment 3: Applying Conventional IDS to Our Data
In this experiment, conventional IDS is applied to two kinds

of data. The purpose of this experiment is to compare the detec-
tion performance of our scheme with that of conventional IDS to
demonstrate the superiority of the proposed scheme. As a con-
ventional IDS, the latest Snort [19] and its rule sets are selected.
Snort is one of the most famous open source signature-based IDS.
The Snort signatures applied in this experiment consisted of only
eight Priority 1 signatures as shown in Table 10 and Table 11.

The first test was conducted with our benign dataset TST B.
As mentioned in Section 4.1, TST B contains benign HTTP traf-
fic data. However, as shown in Table 10, a number of false pos-
itive alerts were output from Snort. In this case, false positive
means the incorrect classification of actually benign traffic into
the malicious category by Snort. Table 10 lists many shellcode-
related alerts. The reasons for these alerts are broadly classified
into two categories: upload of executable files and HTTP com-
pression. Upload of executable files to online file storage services
or web-based e-mail services is considered a shellcode-related
alert by Snort. HTTP compression, which reduces the file size of
HTTP data by using gzip and deflate algorithms [38], also outputs
shellcode-related alerts.

The second test was conducted with the D3M 2010 dataset
from MWS 2010 [39] and the D3M 2011 dataset from MWS

2011 [40]. These datasets were provided by the anti Malware

engineering WorkShop (MWS) [41] project in Japan to facilitate
data analysis in the security research area. The D3M datasets
(D3M 2010 and D3M 2011) contained malicious communication
data when the client honeypot Marionette [3] accessed URLs in
MDL [30]. Marionette inspected websites corresponding to the
URLs in MDL to determine whether they were malicious or not
at the time of inspecting [16]. From inspected URLs, 840 URLs
are selected for the D3M datasets by the MWS project [41]. Both

Table 10 Snort alerts in benign dataset TST B.

Snort signature # alerts

SHELLCODE x86 inc ecx NOOP 272,180

SHELLCODE x86 NOOP 811

SHELLCODE base64 x86 NOOP 585

SHELLCODE x86 inc ebx NOOP 425

SHELLCODE x86 setuid 0 18

SHELLCODE x86 setgid 0 11

# total Snort alerts 274,030

# flows inspected by Snort 145,985,724

Table 11 Snort alerts in malicious dataset D3M.

Snort signature # alerts

SHELLCODE x86 NOOP 40

SHELLCODE x86 inc ebx NOOP 1

SHELLCODE x86 inc ecx NOOP 1

POLICY Suspicious .cn DNS query 2

# total Snort alerts 44

# URLs in D3M data 840

# flows inspected by Snort 11,393
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the D3M datasets and our malicious training dataset TRN M use
the same MDL [30]. Therefore, the 840 URLs are a subset of the
63,694 URLs in TRN M. Table 11 lists three types of shellcode-
related alerts and suspicious DNS query alert output from Snort,
but the number of correct detection by Snort is small.

These two kinds of test results indicate that Snort IDS is prac-
tically incapable of detecting malicious websites because there
were too many false positive alerts. Comparison of Table 10 with
Table 11 reveals that the same types of alerts are output for both
benign and malicious data. In real environments, there is access
to both benign and malicious websites. Therefore, the detection
of malicious websites with Snort IDS is not readily performed, as
demonstrated in this experiment.

For reference, the 840 malicious URLs in the D3M datasets are
tested by our scheme. Our scheme detects 805 URLs correctly,
so the detection accuracy is 0.958 (= 805/840), and FNR is 0.042
(= 35/840). This result shows that our scheme can compensate
for the limitations of conventional IDS.

4.6 Experiment 4: Comparing the Processing Time
This experiment compares the processing time between our

scheme and existing approaches. The processing time is mea-
sured under the same Linux machine with an Intel Xeon 2.40 GHz
CPU and 4 GB RAM. Table 12 shows the results of this experi-
ment.

In our scheme, the processing time is divided into training time
and test time. Training time is the time for building a trained
model using the training dataset shown in Table 1. Test time is
the total time for checking all IP addresses in the D3M 2010 and
D3M 2011 datasets shown in Section 4.5. Test speed is the num-
ber of processable addresses per second, which is calculated from
test time. Note that our scheme does not need to build a trained
model every time and the same trained model can be used re-
peatedly. In the Octet method, the training time and the test time
increase linearly with increasing N. In the ExOctet method, the
training time is shorter than that of the Octet (N = 3) method,
but the test time is longer than that of the Octet (N = 3) method.
In the Bit method, the training time and the test time increase
linearly with increasing k.

Existing approaches include network-side blacklists and
signature-based IDS. As a network-side blacklist, rblcheck [42]
is used for measuring the test time for checking IP addresses in
the D3M datasets. Rblcheck is a tool for performing lookups in

Table 12 Processing time with the test dataset D3M.

Method Training [sec] Test [sec] Test speed [addresses/sec]

Octet (N = 1) 15.6 0.57 1486

Octet (N = 2) 18.1 0.59 1415

Octet (N = 3) 31.5 0.67 1249

Octet (N = 4) 44.2 1.12 752

ExOctet (N = 3) 24.8 0.78 1074

Bit (k = 8) 18.1 0.70 1194

Bit (k = 16) 24.7 0.73 1146

Bit (k = 24) 45.1 1.20 698

Bit (k = 32) 65.8 2.04 412

Rblcheck − 23.60 36

Snort − 3.98 211

multiple DNSBL services. Using more DNSBL services takes
a longer time. Therefore, only one of the DNSBL services is
selected for comparing the processing time fairly. As shown in
Table 12, the test time of rblcheck is up to 41 times longer than
that of our scheme. The reason is that rblcheck contacts external
DNSBL servers to check IP addresses using the DNS protocol.
As a signature-based IDS, Snort (see Section 4.5) was selected.
The test time of Snort with the D3M datasets is longer than any of
our schemes. It is because Snort is checking not only IP addresses
but also the entire packet payload.

For comparing the processing time, the test speed of our
scheme is faster than that of existing approaches. Our scheme
is based on only the IP address structure, so it is more lightweight
than other approaches. Therefore, our scheme can be combined
with existing approaches to compensate for their drawbacks.

4.7 Analysis of False Positives in Our Scheme
This section analyzes why our scheme incorrectly determines

some of the actually benign IP addresses as malicious, namely
false positives. The targets of the analysis are the IP addresses in
TST B, whose score is in the top 100. The analysis shows that
83 IP addresses were used for websites on hosting services, 2 IP
addresses were used for CDN, and the other 18 IP addresses were
not used at that time and could not be investigated. This result
indicates that because it uses only IP addresses, our scheme is
likely to falsely regard benign IP addresses used on hosting ser-
vices as malicious. When at least one of the websites deployed
on a hosting service is malicious, the other benign websites are
falsely considered as malicious, namely as FPs, although they are
benign.

5. Conclusion

In this study, a new scheme to detect malicious websites by
learning the IP address features has been developed and evalu-
ated. Our experimental results have indicated that features ex-
tracted only from IP addresses are distinct indicators that enables
us to compensate for the limitation of existing approaches; i.e.,
our scheme can detect even unknown malicious websites with low
errors. However, our scheme incorrectly considers some benign
websites as malicious mainly because they are on the same web
hosting services that are utilized by malicious websites. This war-
rants a more thorough investigation of our scheme for hosting ser-
vices as part of our future work. Moreover, this paper considers
only IPv4 addresses structure because the number of malicious
websites using IPv6 addresses is much less than that of using IPv4
addresses at the present time of writing. Thus, applying our IPv4
address-based approach to IPv6 address environment will be our
future work in the near future. Nonetheless, the newly developed
scheme will allow us to significantly enhance the detection per-
formance when applied to existing network security systems.
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