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Abstract: The technologies used by attackers in the Internet environment are becoming more and more sophisticated.
Of the many kinds of attacks, distributed scan attacks have become one of the most serious problems. In this study,
we propose a novel method based on normal behavior modes of traffic to detect distributed scan attacks in darknet
environments. In our proposed method, all the possible destination TCP and UDP ports are monitored, and when a
port is attacked by a distributed scan, an alert is given. Moreover, the alert can have several levels reflecting the relative
scale of the attack. To accelerate learning and updating the normal behavior modes and to realize rapid detection, an
index is introduced, which is proved to be very efficient. The efficiency of our proposal is verified using real darknet
traffic data. Although our proposal focuses on darknets, the idea can also be applied to ordinary networks.
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1. Introduction

1.1 Background
The frequency and extent of damages caused by network at-

tacks have increased greatly in recent years, despite the many
approaches for avoiding and detecting attacks proposed by the
network security community. The basic reason for this is that the
technologies used by attackers are also becoming more sophisti-
cated.

A common difficulty of research in the network security field
is the fact that real traffic data in many companies and other or-
ganizations are often not available to researchers because of the
strict rules and laws (e.g., those for protecting personal or the
company’s privacy). Fortunately, it has been confirmed by many
studies that global trends in network threats can be observed by
monitoring darknets [1], [2], [3], [4]. A darknet is a set of unused
IP addresses [5], in which no actual services (web, mail, and so
on) exist, since these addresses have not been distributed to any
legal users. Thus, except for misconfigurations in the sources, all
traffic to darknets can be regarded as anomalies.

Collaborative attacks are well known among sophisticated at-
tacks, and are often launched by multiple attackers (i.e., human
attackers or criminal organizations). They are referred to as
next generation cyber-attacks in Ref. [6], although the distributed
denial-of-service (DDoS) attacks that already exist can be seen
as simple examples of collaborative attacks, in that they involve
many compromised computers. It has been stated that existing
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DDoS attacks from botnets have caused the most serious losses
in the modern Internet environment. Thus, how to detect and
avoid collaborative attacks has become one of the most important
topics.

Scan attackers try to find servers or services with vulnerabili-
ties [7]. Scan attacks are often classified into the following four
distinct groups. 1) Vertical scan: a single source sequentially
scans many or all ports of one destination IP address. The at-
tacker is interested in a particular host, and wishes to characterize
the services on it. 2) Horizontal scan: a single source sequentially
scans a single destination port of many destination IP addresses.
The attackers are interested in finding any hosts that expose some
service. Thus, they scan the port of interest on all IP addresses
within a certain range of interest. This has become one of the
most common types of port scan [8]. Because such attacks of-
ten use a range of destination hosts instead of a single host, they
often drop into darknets. 3) Distributed vertical scan: multiple
sources sequentially scan many ports of one destination IP ad-
dress. 4) Distributed horizontal scan: multiple sources sequen-
tially scan a single destination port of many IP addresses. Note
that in distributed scans, the actual IP addresses of attackers could
change frequently to make detection difficult.

The last two kinds of scan attacks are related to collaborative
attacks. The third one in darknets means that multiple attackers
simultaneously “shoot” at a specific unused IP address, which, we
think, only happens when attackers have misconfigured their sys-
tems. In other words, there are no actual distributed vertical scans
in darknets. Thus, henceforth in this study, the term distributed
scan in darknets refers to a distributed horizontal scan (i.e., the
fourth kind of scan mentioned above).

1.2 Our Goal
In this study, we attempt to detect the above-mentioned dis-
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Fig. 1 Traffic data distribution in a darknet (2009.5.1 to 5.31, TCP).

Fig. 2 Locally enlarged image of Fig. 1.

tributed scan attacks efficiently, i.e., detect the attacks in which
multiple sources collaboratively attack one port, possibly on dif-
ferent destination IP addresses. The problem of multiple sources
collaboratively attacking multiple ports on multiple destination
IP addresses can be simply solved by monitoring all the ports to
detect the distributed scan attacks. In fact, all possible destination
ports are monitored in this study. Note that henceforth, ports refer
to destination ports.

Visualization of an example can help to understand distributed
scans. For this purpose, we investigated all the TCP packets sent
to the /24 darknet of our campus network between May 1st and
May 31st (one month) in 2009 (a total of 2,187,086 TCP packets).
The investigation results are shown in Fig. 1, where the x-axis de-
notes all the possible destination TCP ports (0–65,535), the y-axis
represents the time units, and the z-axis indicates the different
source IP addresses. Note that in this investigation, 1) one time
unit is 10 minutes, which means that the packets are accumulated
every 10 minutes, and 2) all the IP addresses are locally num-
bered. Concretely, the source IP addresses are numbered from
0 according to the order they occur in each time unit. The dif-
ferent IP addresses are given different numbers in the same time
unit. However, the numbering processes in different time units
are independent. Figure 2 is a locally enlarged image of Fig. 1.

From Fig. 1 and Fig. 2, we can clearly see that at a certain num-
ber of time units, a destination port was seemingly attacked by
more than 100 sources. The details of the detection results are
discussed in Section 4. In this study, it is not regarded as an
anomaly if the number of sources sending packets to one port
in a single time unit is not large. As mentioned above, all the
packets coming to darknets are generally dubious. However, con-
sidering the possibility of misconfiguration of the sources and the
huge scale of potential sources, it should be tolerated if only a
few sources send packets to the monitored ports in a time unit.
Note that the extent to which we can tolerate this can be adjusted

Fig. 3 Example of behavior-based methods.

by the user. Of course, zero tolerance can also be realized. It is
certainly regarded as a distributed scan attack if the number of
sources suddenly increases markedly in a certain time unit, such
as the vertical “poles” in Fig. 1 and Fig. 2. Our goal in this study
is merely to detect such distributed scans using a behavior-based
method.

1.3 Behavior-based Method
Figure 3 shows an example of a behavior-based method. In

this figure, the horizontal axis represents the time while the ver-
tical axis denotes, for example, the number of sources sending
packets to a port in each time unit. In Fig. 3, h can be regarded
as the normal range of the number of sources sending packets to
the monitored port in a single time unit. However, the traffic in
the circle is seemingly an anomaly. If we can extract the normal
behavior mode from the data over a relatively long time period,
then this normal behavior mode can be used to detect anomalies.

Normal behavior modes can be obtained if we have sufficient
clean learning data. In this study, because we do not have such
clean data, we propose an algorithm for detecting outliers in the
learning data, which will give our learning phase a self-cleaning
ability to some extent.

1.4 Our Contributions
In this paper, a practical solution is presented for the first time

based on normal behavior modes of traffic to detect distributed
scan attacks in darknets and the performance of our proposal is
verified using actual traffic data in the darknet of our campus net-
work. Although our proposal focuses on darknets, this approach
can, in fact, also be used in ordinary networks. Our approach
mainly has the following advantages. 1) All the 65,536 possible
TCP and 65,536 possible UDP ports are monitored and an alert is
given when a port is attacked via a distributed scan attack. More-
over, in our proposal, it is easy to associate an anomaly score
(called the alert level in this study) with a detection instance. The
alerts may have different levels reflecting the relative scales of the
attacks to the normal behavior modes of the corresponding ports.
2) For each port, a normal behavior mode learned from histori-
cal data is used to determine if a distributed port scan attack has
occurred, unlike existing methods that simply use a predefined
threshold. 3) An index structure (called the BH-index) is intro-
duced to accelerate the learning and detection phases. All the
necessary data for all the ports are managed through this index.
When the information of one port is needed, only one leaf node
has to be accessed and the others can be skipped, thereby accel-
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erating the learning and detection phases (see Section 3.6 for the
details).

This paper is organized as follows. After the related work is in-
troduced in Section 2, the details of our proposal are explained in
Section 3. Then, in Section 4 we present our experimental results.
Finally, in Section 5, we state our conclusions.

2. Related Work

To detect network attacks, many approaches have been pro-
posed, including signature-based methods [9], volume-based
methods [10], histogram-based methods [11], [12], and so on.
However, as is known, signature-based methods are not efficient
for new variants or new kinds of attacks, because they can only
detect anomalies stored in the database in advance. Volume-based
methods cannot detect low-rate attacks because such attacks can
hide themselves in normal traffic [13]. Histogram-based methods
often have very high false negative rates [13].

Several methods based on information theory have also been
proposed [14], [15]. These, however, suffer from the follow-
ing disadvantages: their performance is highly dependent on the
choice of the information theoretic measure, they are efficient
only when there are a significantly large number of anomalies
present in the data, and it is difficult to associate an anomaly
score with a test instance [16]. Stoecklin et al. [17] presented a
novel technique for detecting traffic anomalies based on network
flow normal behavior modes built into different traffic features.
In addition, to detect low-rate attacks, Fukushima et al. [18] tried
to find anomalies by classifying the traffic from various different
viewpoints. Another study [19], [20] proposed a signature-based
method for detecting low-rate attacks.

Kim et al. [21] proposed a method for finding scan attacks and
TCP SYN flood attacks by detecting change-points based on the
characteristics of the packets, IP addresses, and ports. The ses-
sion information based on the actions of communication proto-
cols such as TCP and UDP was also used in Ref. [22] to detect
scan attacks, DoS, DDoS, and backscatter. Eto et al. [1] created
a system called Nicter, which detects network attack threats by
monitoring darknets. The number of IP addresses in the darknet
monitored by Nicter has reached 140,000.

Behavior-based methods have two important advantages:
1) the false negative rate is low, and 2) detection is fast because
the detection process is merely a simple value-comparison be-
tween the counting result in the latest time unit and the nor-
mal behavior mode of the current port. Despite the large num-
ber of methods already having been proposed, no behavior-based
method exists for detecting distributed scans. In our previous
work [13], a method based on normal behavior modes was pro-
posed to detect outbreaks of low-rate attacks. The method de-
termined whether the packets sent from each of the sources to
the monitored port in a single time unit was a low-rate commu-
nication. Thereafter, if the number of sources sending low-rate
packets was greater than normal (as learned from historical data),
an outbreak of low-rate attacks was deemed to have occurred. In
the current study, if the number of sources sending packets to the
corresponding port is greater than the normal behavior mode of
this port then an alarm is given, which is similar to the work [13].

However, in this study, all the possible ports are automatically
monitored, distributed port scan attacks in darknets can be de-
tected, and an index structure is introduced to implement fast
learning and rapid detection. Thus, it can be said that the ap-
proach in Ref. [13] is extended in this study and adapted to detect
distributed scans in darknet environments.

Generally, approaches based on normal behavior modes have
several disadvantages: 1) much time is needed to construct the
normal behavior modes for all the ports, and 2) the normal be-
havior modes need to be updated sometime, which is also time
consuming. These two disadvantages are overcome in the cur-
rent study by using an index, which proves to be very efficient. A
further disadvantage is that normal behavior modes are often dif-
ficult to obtain if there are no clean learning data. To overcome
this problem, we propose an algorithm, which has a self-cleaning
ability to some extent, for extracting normal behavior modes.

Existing port scan detection approaches can be divided into
three categories: threshold-based, algorithmic, and visual. Visual
approaches focus on presenting the data to users in some visual
manner so that they can recognize a scan by the pattern it gener-
ates. An algorithmic approach was proposed in Ref. [23] to detect
port scanning activities. This approach generates graphs repre-
senting the communication patterns observed in a network, where
the traffic added to a particular graph is determined based on sim-
ilarity in time and network geography. Events can be identified
based on the topography of the graphs. However, threshold-based
approaches are still the mainstream methods. All three intrusion
detection systems in the public domain, namely Snort, Bro and
NSM, use threshold-based approaches for detecting port scans.
For example, Snort observes connections to determine whether a
scan is occurring. By default, Snort is configured to generate an
alarm only when 20 different ports are observed within 60 sec-
onds, although this can be adjusted manually. Note that, Snort
does not detect distributed port scans [24], [25]. Another exam-
ple is the study in Ref. [26], which defined distributed port scans
as being “scans from multiple sources (5 or more) aimed at a par-
ticular port of destinations in the same /24 subnet within a one
hour window.” In the threshold-based methods, the thresholds
have to be determined in advance and play a key role in detection
efficiency. However, since there is no easy way of determining
these thresholds, users have to consider the actual networks and
rely on their own experiences.

3. Our Proposal

An overview of our proposal is given in Table 1. The first four
steps constitute the general learning method, while step 5 con-
siders how to speed up the learning phase using an index. This
process is explained step by step in this section.

Table 1 Overview of the proposed method.

Steps Descriptions

1 Collect and arrange the traffic data

2 Extract a source number vector for each port

Learning 3 Create the frequency distribution for each port

4 Learn the normal behavior mode for each port

5 Use an index to speed up the learning phase

Detection Count and compare (see Section 3.5 for the details)
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3.1 Collect and Arrange the Traffic Data
Two parameters, namely, time unit and observation period

must be determined in advance. The time unit denotes a short
time period (e.g., 10 minutes), in which packet data are accumu-
lated for each port. The observation period indicates the length of
time for collecting data from which the normal behavior modes
are extracted.

Then, the number of sources sending packets to each of the
monitored ports is counted separately in each time unit during a
single observation period. That is, in each time unit, one pair of
(destination port, number of sources) for each of the monitored
ports is obtained. Figure 4 illustrates the process of data collec-
tion.

3.2 Extract a Source Number Vector for Each Port
As discussed in Section 3.1, for each port, the number of

sources sending packets to the port is counted in every time unit.
Thus, for each of the monitored ports, a vector reflecting the num-
ber of sources in every time unit can be obtained. In other words,
an element in this vector denotes the number of sources that sent
packets to this port in the corresponding time unit. For exam-
ple, a source number vector like (25, 69, · · ·, 300) indicates that
25, 69, and 300 sources sent packets to this port in the 1st, 2nd,
and last time unit, respectively. Note that the number of elements
in this vector is equal to the number of time units in the entire
observation period.

3.3 Create Frequency Distribution for Each Port
For each of the monitored ports, a distribution of the number of

its sources in a time unit can be obtained from its source number
vector. Figure 5 shows an example. The horizontal axis rep-
resents the quantized number of sources, while the vertical axis
denotes the number of time units, that is, in how many time units

Fig. 4 Number of sources for each port is counted in each time unit.

Fig. 5 Frequency distribution and behavior mode of one port.

the number of sources for this port corresponds to the current bin.
Note that the frequency distribution of each port is expressed as a
vector, which is called the FD vector in this study. Each element
in the FD vector denotes the value of the corresponding bin.

3.4 Learn Normal Behavior Mode for Each Port
In this study, the normal behavior mode of a port denotes the

maximum number of sources sending packets to this port in one
time unit in normal time. An example is shown in Fig. 5, where
the normal behavior mode of this port is the upper bound of
the left group. In this distribution, the small groups located on
the right far from the largest group are regarded as outliers (the
anomalies in the learning data), which obviously should be dis-
carded. After all the outliers have been discarded, the range of
the remaining bins on the x-axis is regarded as the normal range
of the number of sources in one time unit. In this study, only the
upper limit of the normal range is used. That is, if the number
of sources in the current time unit exceeds this upper limit, an
alert is given, denoting that a distributed scan has possibly oc-
curred. Note that for each of the monitored ports, one frequency
distribution is created, from which one normal behavior mode is
extracted. In the case that several normal behavior modes need to
be built for one port from different learning data, one frequency
distribution is necessary for building each normal behavior mode.
Of course, if the normal behavior modes need to be updated, the
learning phase is repeated. See Section 3.7. An algorithm for
finding outliers from the frequency distribution is given in Ta-
ble 2.

In the process of determining the normal behavior mode for a
port after the outliers have been discarded, the following special
cases must be considered.

1) If no packets were sent to this port during the whole observa-
tion period, that is, no normal behavior mode can be constructed
for this port, a default value is used as the normal behavior mode
of this port. This default value should be decided according to the
actual network and how strictly we wish to detect attacks.

Table 2 Algorithm for finding outliers in a frequency distribution.

Steps Descriptions

· The bins are checked one by one starting from the
rightmost bin in the frequency distribution (see Fig. 5).
· The checked bins are placed in Ω.

1 · Let dn be the distance from the bin that was just
checked, to the next bin.
If there is no next bin, use the distance from the current bin
to the y-axis as dn.

Check the next bin if it exists.
If ((dn > α

1))) and (the area2)) in Ω is less than β%3) of
the total area)) then

2 the bins in Ω are regarded as outliers and are discarded
go to step 1 // to find other outliers

else
put the current bin in Ω
go to step 2 // this group is not finished

1) Here α is a threshold.
2) The area denotes the number of time units.
3) β is another threshold, used to avoid the case where most of the bins

are regarded as outliers.
Note that: if dn is large enough (e.g., larger than 2α), β is ignored,
which means that if a bin cluster is far enough from the y-axis, it will be
regarded as an anomaly even if this cluster has a large enough area.
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Fig. 6 General structure of the BH-tree.

2) If the learned normal behavior mode is smaller than the
above-mentioned default value, then the default value is used.

3.5 Detection
After all the normal behavior modes for the possible ports have

been prepared, detection is simple. Concretely speaking, all the
possible ports are monitored and, in the current time unit, the
numbers of sources that sent packets to each port are counted
separately. Once a time unit has finished, the counted number for
each port is compared with its normal behavior mode obtained in
the learning phase. If the former is larger, then an alert is given
indicating that a distributed scan has possibly occurred for this
port. Moreover, according to the comparison result, the alert can
be associated with a level, indicating the relative scale of the at-
tack to the normal behavior mode of the port.

3.6 Indexing
As mentioned above, in order to monitor all the possible 65,535

TCP ports and all the possible 65,535 UDP ports, accelerating the
learning and detection phases is necessary. For this purpose, we
introduce an index, referred to as the BH-index in this study.
3.6.1 General Structure of the BH-index

The BH-index is illustrated in Fig. 6, and consists of two parts:
the upper part is like a B+-tree [27], while the lower part com-
prises a list of FD vectors. This index manages all the monitored
ports including their FD vectors and their normal behavior modes.
The information of all the ports is stored in the leaf nodes of the
upper part in ascending order of ports.

Concretely, each entry in a leaf node is a tuple containing the
(port, normal behavior mode, pointer), where the pointer points
to the FD vector of this port. In addition, to access the informa-
tion of all the ports in a quick succession (which is necessary in
the learning phase) without following the BH-index from the root
node each time, all the leaf nodes are linked from left to right.
3.6.2 Use in the Learning Phase

In step 1 of the learning phase (see Table 1), in every time unit,
a pair comprising (port, number) is obtained for each of the moni-
tored ports. Here number is the number of sources that sent pack-
ets to the port in the current time unit. Then, using the algorithm
given in Table 3, all these pairs are inserted into the BH-index at
the end of the time unit. Note that the index is empty at the start
and it grows as the (port, number) pairs are inserted one by one.
This algorithm is explained step by step below.

Step 1: Determine the leaf node. First the root node is checked.
The branch that should be followed is determined by comparing
the port and the key values in the root node. Then the corre-
sponding child node is checked. This process is repeated until a

Table 3 Index insertion algorithm.

Objective: inserting (port, number)

Steps Descriptions

Start

1 Determine the leaf node.

2 Check if the current port exists in this leaf node.
If so, go to step 3. If not, go to step 4.

3 Update the FD vector and go to step 5.

4 Insert one new entry into this leaf node.

5 End.

leaf node is reached.
Step 2: Check if the current port, port, exists in this leaf node.

If it does, go to step 3, otherwise go to step 4.
Step 3: Update the FD vector. Since port already exists in this

leaf node, this port has occurred previously. In this case, we can
find its FD vector. The bin position corresponding to the number
is then fixed in the FD vector. Thereafter, the value of that bin is
increased by one, which means that one more time unit is located
in that bin.

Step 4: Insert one new entry for port. Because no same port
exists in the leaf node, this is the first time port has occurred, and
therefore, a new entry should be added in the leaf node. Adding
a new entry includes the following three actions. First, port is
inserted as a new key in the appropriate location of the current
leaf node, retaining the order of keys in the node. Second, an
empty FD vector (in which all the elements are zero) is created
for port. Finally, the bin corresponding to number is set to one.
Importantly, if the number of entries in this leaf node overflows
(exceeds a certain limit), this leaf node is split into two leaf nodes
and a new entry is inserted in the parent node. Note that the split
may be recursively applied upwards, with even the root node pos-
sibly being split (in this case the index height increases by one).
The index grows in this way.

Once all the (port, number) pairs in every time unit in the
learning data have been inserted into the BH-index, one FD vec-
tor has been created automatically for each port. Then, the normal
behavior modes of all the ports can be extracted using the method
in Section 3.4. In this process, the FD vectors of all the ports
can be accessed from the leftmost leaf node to the rightmost leaf
node by making use of the horizontal pointers in the leaf nodes
(see Fig. 6).

After the learning phase has terminated, the learned normal be-
havior mode for each port is also stored in the leaf nodes of the
BH-index. These are used in the detection phase. Again, every
entry in the leaf nodes has three values: a port number, normal
behavior mode, and a pointer pointing to the relevant FD vector.
3.6.3 Use in the Detection Phase

After all the normal behavior modes of the monitored ports
have been extracted and stored in the leaf nodes of the BH-index,
detection is easy.

In the current time unit, the number of sources is counted for
each of the monitored ports. At the end of each time unit, a
(port, number) pair is obtained for each port. We can find the nor-
mal behavior mode of port in the BH-index, by repeating steps
1 and 2 in Table 3. Then, a simple comparison is made between
number and the normal behavior mode of port. If the former is
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greater, then this port was seemingly attacked in this time unit by
a distributed scan. The BH-index is helpful in finding the corre-
sponding normal behavior modes quickly. If the current port does
not exist in the BH-index, which means that this port did not ap-
pear in the learning data, a default value is used. See Section 3.4
for the details.

3.7 Update of Normal Behavior Modes
Obviously, the normal behavior modes need to be updated

sometimes. Because the learning phase is so fast, the normal
behavior modes can be updated using new learning data at any
time. In addition, if necessary, several normal behavior modes
for different cases can be prepared for one port.

3.8 Alert Level
In our proposal, it is easy to associate an anomaly score (called

the alert level in this study) to a test instance. The alerts may have
different levels reflecting the relative scales of the attacks to the
normal behavior modes of the corresponding ports. In this study,
the alerts are divided into three levels. Specifically, in the current
time unit, if the actual number of sources for one port is greater
than that of its normal behavior mode, but less than twice that of
the normal behavior mode, the level is set to 1. If this number is
between two and three times that of the normal behavior mode,
the level is set to 2. If this number is greater than three times that
of the normal behavior mode, the level is set to 3. Note that the
criteria for setting the alert levels can be adjusted freely. For ex-
ample, we could use 4 or more levels. In fact, the alert levels are
merely different expressions of the scales of suspicious attacks.

3.9 Advantages of Our Proposal
Our approach has three main advantages over existing related

works. 1) All the possible TCP and UDP ports are monitored and
it is easy to associate an anomaly score (i.e., the alert level) with
a test instance. 2) The normal behavior modes of all the ports are
obtained by a learning phase using historical data of each port.
Thus, the normal behavior modes can reflect the individual fea-
tures of the ports. In fact, it is generally impossible to manually
decide thresholds for each of all the possible ports. If we use the
same thresholds determined in advance for all ports, problems
related to high false positive or false negative rates are likely to
occur. Moreover, the identical thresholds could cause high false
positive rates for some ports and high false negative rates for oth-
ers. 3) An index is applied to accelerate the learning phase and to
realize rapid detection.

4. Experiments

4.1 Data Description
The traffic data of the /24 darknet of our campus network were

used in this study. Concretely, three pairs of datasets shown in
Table 4 were used. One of the two datasets in each pair was for
learning and the other for testing.

4.2 Parameters
4.2.1 Parameters of the BH-index

When the BH-index is created, the capacity of a single node

Table 4 Datasets used in our experiments.

Data Number of packets

Pair 1 Learning 2009.4.1–30 1,322,270

(TCP) Testing 2009.5.1–31 2,187,086

Pair 2 Learning 2010.4.1–30 143,518

(UDP) Testing 2010.5.1–31 113,682

Pair 3 Learning 2010.6.1–30 2,431,333

(TCP) Testing 2010.7.1–31 2,404,247

(a) First maximum number of sources in each time unit.

(b) Third maximum number of sources in each time unit.

Fig. 7 General structure of the BH-tree.

(i.e., the maximum number of entries in a node, known as the
fanout in this study) needs to be determined in advance. For a
disk-resident index, the node size should be the page size. How-
ever, in this study, the BH-index resides in main memory. The
merit of using the BH-tree is that, when accessing the informa-
tion of one port, only one leaf node and a very few of index nodes
(non-leaf nodes) need to be accessed and all the other nodes are
skipped. Thus, the advantage of using the BH-tree is obvious.
If we were to choose a larger fanout, the tree possibly becomes
shorter, which may lead to a smaller number of index nodes
that have to be accessed. However, more comparisons would be
needed when the nodes were accessed. We set the fanout to 5, 8,
and 15. All the three BH-trees make the learning and detection
phases very fast without noticeable difference among them (less
than 5%). We also found that, when the fanout is 8, the response
time is slightly better than the other two cases. The fanout is set
to 8 in this study.
4.2.2 Parameters for Constructing the FD Vectors

When the FD vectors are constructed in Section 3.3, the num-
ber of bins and the width of a bin must be determined. Based
on a large number of experiments, the number of sources sending
packets to a single port in one time unit is not large (this is con-
firmed by the investigation shown in Fig. 7). Thus, the width of a
bin should be small to differentiate different ports. In this study, it
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is set to 2 because we wish to observe the details of the frequency
distributions of the ports. The number of bins is set to 21 mak-
ing the starting number of the rightmost bin 40. In other words,
all the time units with more than 40 sources will be allocated to
the rightmost bin. The starting number of the rightmost bin must
be much larger than (greater than twice in our experiments) the
default value that is used in Section 3.4 and discussed in Sec-
tion 4.2.3. This is because there must be enough space between
the rightmost bin and the normal behavior mode to efficiently find
the outliers.

Figure 7 shows an investigation result of the number of sources
for a single port in one time unit between 2009.5.1 and 2009.5.31
in the darknet of our campus network. Figure 7 (a) shows the first
maximum number and Fig. 7 (b) the third maximum number of
sources among all the ports in each time unit. From Fig. 7, we
can observe that, in the majority of the time units, the first maxi-
mum number of sources among all the ports is several hundreds.
However, if we see the third maximum number, it drops to a small
number, which means that, in most time units, most of the ports
have a small number of sources.
4.2.3 Parameters for the Learning Phase

In Section 3.4, we refer to three parameters: α, β, and a de-
fault value. α is the upper bound of the distance whereby two
subgroups with a distance less than α can be thought of as one
group. By intuition, 20–30% of the total number of bins in the
frequency distributions is appropriate for α. Thus, we set α to 5.
β is used to avoid the case where too many bins are regarded as
outliers and is set to 40% in the experiments. This means that
if the area of a bin group is large enough (greater than 40% of
the total area) and is not very far from the y-axis, this group will
not be regarded as an outlier. The default value is used for ports
for which no normal behavior modes have been obtained in the
learning phase (i.e., ports that did not occur in the learning data)
or ports whose normal behavior modes are too small. Generally,
the default value should be determined according to how strictly
we wish to detect attacks. It is set to 15 in this study. Obviously,
it can be adjusted easily. If a smaller default value is used, more
suspicious attacks may be detected and the false positive rate pos-
sibly increases. However, a greater default value may lead to a
high false negative rate.
4.2.4 Time Unit and Observation Period

In the experiments the time unit was set to 5 minutes and 10
minutes, respectively. Only the detection results for a time unit
of 10 minutes are presented in this paper because the results are
similar for both. The observation period was set as one month,
which means that the normal behavior modes were built for one
month.

4.3 Performance Verification
4.3.1 Response Time for Learning

The repsonse time for building normal behavior modes of all
the ports using the learning data are shown in Table 5, where the
response time for learning includes reading the learning data from
hard disk, counting the packets for each port in every time unit,
constructing the BH-index, and extracting the normal behavior
modes for all the ports. The computer we used was a Dell Preci-

Table 5 Response time for constructing normal behavior modes.

Datasets Role Response time (seconds)

Pair 1 Learning 4.516

Pair 2 Learning 2.148

Pair 3 Learning 6.433

Fig. 8 Detection results for May 2009 (TCP traffic).

Fig. 9 Locally enlarged part of Fig. 8.

Fig. 10 Locally enlarged part of Fig. 8.

Fig. 11 Detection results for May 2010 (UDP traffic).

sion T3500 with 16 GB main memory and an Intel Xeon W3520
(2.66 GHz) CPU. From Table 5, we can see that all the processes
terminated in a few seconds.
4.3.2 Detection Results

The detection results are illustrated in Fig. 8–Fig. 14. All the
detected attacks were also confirmed manually from the origi-
nal traffic data. That is, for each of the detected attacks, we
checked the original traffic data and confirmed the number of
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Fig. 12 Locally enlarged part of Fig. 11.

Fig. 13 Detection results for July 2010 (TCP).

Fig. 14 Locally enlarged part of Fig. 13.

sources sending packets to the corresponding port in the corre-
sponding time units. Moreover, all the detailed detection results
are presented in Appendix A.1, A.2, and A.3.

a) Detection results using the datasets of Pair 1
The TCP traffic data for April and May 2009 were used as

learning data to build the behavior nodes and as test data, respec-
tively. The detection result is illustrated in Fig. 8, where the x-
axis denotes the time units, the y-axis denotes the ports, and the
z-axis indicates the alert levels of the detected distributed scan at-
tacks. To see the attacks more clearly, two locally enlarged parts
are shown in Fig. 9 and Fig. 10. Note that the detection results
for TCP port 445 are not included in Fig. 8; the reason for this is
given in Section 4.3.3.

From these results, we can see that TCP port 2967 was attacked
by distributed scans for more than 10 hours and that the alert level
was 3 for most of the time during this period. The detailed detec-
tion result is presented as Appendix A.1.

b) Detection results using the datasets of Pair 2
The UDP traffic data for April and May 2010 were used as

learning data and test data, respectively. The detection result is
illustrated in Fig. 11. A locally enlarged part of Fig. 11 is shown
in Fig. 12, from which we can see that the UDP port 39775 was
attacked by a distributed scan for more than 13 hours with a break

Fig. 15 Comparison on response times: using the BH-tree vs. no index.

of about 1 hour. The detailed detection result is presented as Ap-
pendix A.2.

c) Detection results using the datasets of Pair 3
In this dataset pair, the TCP traffic data for June 2010 were used

as learning data and the TCP traffic data for the next month as test
data. The detection result is shown in Fig. 13, with a locally en-
larged part shown in Fig. 14. The TCP port 5900 was attacked by
a distributed scan in seven consecutive time units (70 minutes).
The detailed detection result is presented as Appendix A.3.
4.3.3 Confirmation of the Self-cleaning Ability in the Learn-

ing Phase
From the process of extracting the normal behavior modes

shown in Section 3.4, we know that our algorithm can, at least
to some extent, automatically discard anomalies in the learning
data, which is also confirmed in our experiments. For example,
in the learning data of April 2009, in 1,484 time units of the to-
tal 4,464 time units, the TCP port 445 was attacked by more than
100 sources. Thus, the rightmost bin in the frequency distribution
of this port (see Fig. 5) is high, However, since it was automati-
cally discarded by the learning algorithm, the attacks to TCP port
445 were not included in a normal behavior mode. Thus, the
distributed scan attacks to this port in the test data were still de-
tected. This example clearly indicates that our learning algorithm
possesses a self-cleaning ability. Note that, the detection results
for TCP port 445 in May 2009 were intentionally not included
in Fig. 8. This is because the port was attacked by more than
100 sources in almost all the time units. Thus, if this port was
included, the other attacks would not be clearly seen.
4.3.4 Response Time for Detection

The response time includes reading all the test data from hard
disk, counting the packets for all the ports, and detecting the at-
tacks in the entire test datasets (a total of 4,464 time units in each
test dataset). We tested the response time for detection with and
without using the BH-tree. The efficiency of the BH-tree can be
verified from the results shown in Fig. 15.

4.4 Observations
From the above experiments, we can confirm that the pro-

posed approach can detect distributed scan attacks efficiently and
quickly. The learning phase is also quick with the aid of the BH-
index. In addition, it is easy to associate an alert level with a test
instance. Moreover, our learning algorithm has a certain degree
of self-cleaning ability.

5. Conclusion

In this paper, we focused on one kind of the most important
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network attacks, distributed scan attacks, which are referred to as
next generation cyber-attacks. A novel proposal based on normal
behavior modes for detecting distributed scan attacks in darknet
environments was presented and discussed. In our approach, all
the possible TCP and UDP ports can be monitored and the alerts
may have different levels reflecting the relative scales of the at-
tacks to the normal behavior modes of the corresponding ports.
An index (called the BH-tree) was introduced to speed up the
learning and detection process and proved to be very efficient.
This index is very useful in learning and updating the normal be-
havior modes and realizing rapid detection. The discussion and
experiments using real darknet traffic data showed that our pro-
posal is efficient and fast. Moreover, in the proposed approach,
anomalies in the learning data can be cleaned to some extent in
the learning phase, as confirmed in our experiments. Note that
although this paper focused on distributed scan attacks in which
multiple sources attack one port of multiple destination IP ad-
dresses, this approach can easily be adapted to distributed scan
attacks in which multiple sources attack multiple ports of multiple
destination IP addresses because all possible ports are monitored.
Moreover, this idea can also be applied to ordinary networks, al-
though our discussion and experiments focused on darknet traf-
fic. In the near future, we will extend our proposal to ordinary
networks.
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Appendix

A.1 Original Detection Result I

Learning data: TCP 2009.4
Test data: TCP 2009.5

Alert Levels Port No. TimeUnit No. #Sources
1 51030 759 23
1 51491 761 24
1 50697 761 24
1 48750 764 23
1 17750 765 24
1 50031 766 24
1 17161 777 24
1 49749 780 23
1 50812 807 23
1 50812 812 23
1 50812 830 24
1 19018 833 23
1 16149 833 22
1 49429 835 24
1 16482 839 24
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Alert Levels Port No. TimeUnit No. #Sources
1 2967 3378 21
2 2967 3379 34
3 2967 3380 47
3 2967 3381 61
3 2967 3382 70
3 2967 3383 77
3 2967 3384 84
3 2967 3385 84
3 2967 3386 94
3 2967 3387 91
3 2967 3388 98
3 2967 3389 95
3 2967 3390 82
3 2967 3391 96
3 2967 3392 89
3 2967 3393 100
3 2967 3394 85
3 2967 3395 86
3 2967 3396 90
3 2967 3397 84
3 2967 3398 87
3 2967 3399 83
3 2967 3400 69
3 2967 3401 75
3 2967 3402 54
3 2967 3403 65
3 2967 3404 62
3 2967 3405 70
3 2967 3406 65
3 2967 3407 67
3 2967 3408 50
3 2967 3409 61
3 2967 3410 51
3 2967 3411 48
3 2967 3412 60
3 2967 3413 56
3 2967 3414 56
3 2967 3415 47
3 2967 3416 51
3 2967 3417 51
3 2967 3418 51
3 2967 3419 54
3 2967 3420 46
2 2967 3421 39
3 2967 3422 48
3 2967 3423 45
3 2967 3424 46
2 2967 3425 35
3 2967 3426 44
3 2967 3427 52
3 2967 3428 42
3 2967 3429 42
3 2967 3430 46
3 2967 3431 46
3 2967 3432 49
2 2967 3433 37
3 2967 3434 41
2 2967 3435 40
3 2967 3436 42
3 2967 3437 49
3 2967 3438 57
3 2967 3439 51

A.2 Original Detection Result I

Learning data: UDP 2010.4
Test data: UDP 2010.5

Aleart Levels Port No. TimeUnit No. #Sources
1 53 2948 20
1 53 3010 23
1 607 3072 26
1 607 3124 24
1 53 3424 22
1 57695 3455 24
2 57695 3456 37
2 57695 3457 37
2 57695 3458 38
1 57695 3459 26
1 39775 3534 27
1 39775 3535 28
1 39775 3536 24
1 39775 3537 29
1 39775 3538 26
1 39775 3539 26
1 39775 3540 26
1 39775 3542 26
1 39775 3543 26
1 39775 3544 25
1 39775 3545 24
1 39775 3546 29
1 39775 3547 29
1 39775 3548 28
1 39775 3549 26
2 39775 3550 43
1 39775 3551 27
1 39775 3552 30
1 39775 3553 26
1 39775 3554 22
1 39775 3555 23
1 53 3556 22
1 39775 3556 26
2 39775 3557 44
1 39775 3558 28
1 39775 3559 30
2 39775 3560 42
1 39775 3561 25
1 39775 3562 28
1 39775 3563 27
1 39775 3564 27
2 39775 3565 44
1 39775 3566 29
2 39775 3567 42
2 39775 3568 44
2 39775 3569 43
2 39775 3570 41
2 39775 3571 45
3 39775 3572 68
2 39775 3573 46
2 39775 3574 43
2 39775 3575 48
1 39775 3576 28
2 39775 3577 45
2 39775 3578 41
1 39775 3579 29
1 39775 3580 27
1 39775 3581 26
1 39775 3582 23
1 39775 3583 23
1 39775 3584 22
2 39775 3591 43
3 39775 3592 61
1 53 3592 22
3 39775 3593 65
3 39775 3594 62
2 39775 3595 46
3 39775 3596 62
1 39775 3597 25
2 39775 3598 43
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Aleart Levels Port No. TimeUnit No. #Sources
1 39775 3599 28
2 39775 3600 45
1 39775 3601 24
2 39775 3602 41
2 39775 3603 43
2 39775 3604 44
2 39775 3605 41
2 39775 3606 45
1 39775 3607 29
2 39775 3608 49
2 39775 3609 45
2 39775 3610 48
1 39775 3611 30
3 39775 3612 62
1 39775 3613 30
1 39775 3614 28
1 39775 3615 25
1 39775 3616 24
2 39775 3617 41
1 39775 3618 30
1 39775 3619 30
1 39775 3623 29
1 39775 3624 27
2 39775 3625 43
2 39775 3626 40
1 39775 3627 25
1 39775 3628 21
1 39775 3629 27
1 39775 3630 30
1 39775 3631 25
1 39775 3632 25
1 39775 3633 24
1 53 3725 22
1 53 3753 22
1 53 3883 22
1 53 3895 22
1 53 3898 22
2 27487 3999 38
2 27487 4000 37
2 27487 4001 40
2 27487 4002 37
1 27487 4003 30

A.3 Original Detection Result III

Learning data: TCP 2010.6
Test data: TCP 2010.7

Aleart Levels Port No. TimeUnit No. #Sources
1 11740 1514 21
1 11740 1516 17
1 56331 1751 18
1 64095 1808 16
1 50812 2160 16
1 19018 2163 22
1 16149 2164 16
1 5900 3621 21
1 5900 3622 30
1 5900 3623 25
1 5900 3624 27
1 5900 3625 26
2 5900 3626 34
1 5900 3627 23
1 11740 3765 18
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