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Abstract: In social networks, nodes usually represent people and edges represent the relationship and connections
between people. Ranking how important the nodes are with respect to some query nodes has a lot of applications in
social networks. More often, people are interested in finding the Top-k most “relatively important” nodes with respect
to some query nodes. A major challenge in this area of research is to define a function for measuring the “relative
importance” between two nodes. In this paper, we present a measure called path probability to represent the con-
nection strength of a between the ending node and the starting node. We proposed a measure of relative importance
by using the sum of the path probabilities of all the “important” paths between a node with respect to a query node.
Another challenge of computing the relative importance is the scalability issue. Most popular solutions are random
walk based algorithms which involve matrix multiplication, and therefore are computationally too expensive for large
graphs with millions of nodes. In this paper, by defining the path probability and introducing a small threshold value to
determine whether a path is important or significant, we are able to ignore a lot of unimportant nodes so as to be able
to efficiently identify the Top-k most relatively important nodes to the query nodes. Experiments are conducted over
several synthetic and real graphs. The results are encouraging, and show a strong correlation between our approach
and the well known random walk with restart algorithm.
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1. Introduction

The notion of social networks and the methods of social net-
works analysis (SNA) have attracted considerable research in-
terest for a long time [1]. This long–term interest has trans-
lated into practical use in many socio–economic applications such
as emergency social network [2], education [3], epidemic net-
work [15], [16], and many economic applications [4], etc. Many
popular social networking applications on the Web, such as MyS-
pace, Facebook, LinkedIn, and Bebo, have attracted hundreds of
millions of users, many of whom have integrated these sites into
their daily routines.

A social network is a complex network with a set of actors
engaging in relationships with one another. To perform SNA,
visualization techniques such as graph-drawing can be very use-
ful for gaining qualitative insight about the structure of graphs;
meanwhile, there is also an urgent need for quantitative tools to
characterize graph properties beyond simple lists of “who is con-
nected to whom.” Many quantitative methods have been used
in social network analysis including graph, matrix algebra, and
sociometry [5]. Different quantitative methods are suitable for
different application areas. Often used in computer science re-
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search, graph has been widely adopted to represent social net-
work due to its intuitive illustration [6]. From the perspective of
graph theory, nodes represent actors, edges represent relations be-
tween nodes, and relations between nodes can be either simplex
or multiplex [17].

In a social network graph, there always exists relationship be-
tween some nodes, and current research focuses more on the re-
lations among a set of nodes than individual nodes and their at-
tributes [6]. For example, Top-k is one kind of problems to mea-
sure the relations among nodes [7], [8], [14], [25]. In our view,
there are mainly two kinds of Top-k problems in existing social
network graphs. One is to identify the Top-k matched graphs that
contain a query graph from a set of graphs. Another is to find the
Top-k nodes that are relatively important to some query nodes in
a large graph. The second question has an extensive significance
in practice. For instance, researchers new to a field often face
a challenge of “reading in” that field. In this context, they need
to be able to locate the classical papers that initiated inquiry into
that domain, and what they plan to read should afford them a suf-
ficient understanding of various pertinent topics. It can be really
a hard work due to potentially a very large number of existing lit-
eratures. These tasks currently can be accomplished with the help
of social network analysis whereas authors can be represented as
nodes and the co-author relationships can be represented as edges.
Based on such a network structure, we can recommend the Top-

k relevant authors and papers for further reading according to a
given set of authors in this paper, we pay our main attention on
how to find the Top-k relatively important nodes with respect to
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some query nodes.
To do that, we should accomplish two important steps - one

is to impose a metric upon measuring the strength of relations,
and the other is to rank nodes according to certain user require-
ments. Centrality and prestige can be quite useful when evalu-
ating relative importance. The three most widely used centrality
measures are degree, closeness, and betweenness [6], [10], [11].
Many graph-theoretic centrality concepts are discussed in Hage
and Harary [12]. There are also varying methods with respect
to prestige including degree prestige and proximity prestige [9].
As to ranking, one way is to rank the nodes according to its
characteristics (e.g., price and size of house objects in a real
estate database, or color and texture of images in a multimedia
database); and another way is making use of random walk [13].
Markov chain-based models have been proven successful in
ranking web pages [14], [25]. PageRank [14], [19], [22] and
Hits [24], [25] are well-known approaches that attempt to com-
putationally measure the global importance of individual nodes
in directed graphs. Research in this area has since been very ac-
tive in developing a variety of extensions and new algorithms.

Based on the above analysis, in this paper, we focus on finding
the Top-k nodes with respect to a set of query nodes. In pur-
suit of this goal, firstly, we present a new measure called path

probability to estimate the importance of a path to a query node
(the starting node) based on the probabilities of random walk, and
then, the relative importance of a node t with respect to s defined
as the sum of all significant path probabilities from s to t. Fi-
nally, experiments on both a toy data set and two real data sets
are conducted. Experimental results are reported in Section 6.

The rest of the paper is organized as follows: In Section 2,
related work of this research is discussed. Section 3 gives the
problem formulation. Section 4 defines path probability and how
it is calculated. In Section 5, we present a relative importance
algorithm called SigPathSum to find Top-k nodes of interest. In
Section 6, the results of experiments conducted on three data sets
are presented. We conclude our work in Section 7.

2. Related Work

Measuring the importance of nodes in graphs or networks has
been studied for a long time, especially in the social networks,
link analysis [39], and bibliometrics areas [40]. Most of the work
focuses on ranking the nodes globally in the whole networks or
graphs. Freeman [10], [11], [26] first defined a set of measures
to describe the global importance of nodes in the social networks
called centrality. He proposed three measures of centrality: one
is based on degree, and the other two are based on the short-
est paths between pairs of nodes. Several other centrality mea-
sures [11], [21], [26] were later proposed in order to represent
how central someone is in the disease–spreading social network.
Kerrebroeck et al. [36] introduced loop ranking, a new ranking
measure based on the detection of closed paths that can be com-
puted relatively efficiently. Using degree or shortest paths for
ranking nodes may work for some social networks, but it ignores
other paths that might be important in other social networks. Our
idea of ranking nodes is based on a set of weighted paths between
nodes.

The idea of using weighted paths to approximate global mea-
sures of importance has also been studied for a long time in the lit-
erature of social networks. Katz [28] introduced a way to measure
the degree of influence of an actor in a social network by taking
into account the total number of walks between a pair of actors.
Stephenson and zelen [29] defined a similar measure called infor-
mation centrality that is based on the information contained in all
possible paths between pairs of nodes. In addition, in social net-
works and bibliometrics areas, work has been carried out on using
the principal eigenvector of a matrix derived from the underlying
graph to measure the importance of nodes in the networks. Much
of this work can be seen as precursors to the eigenvector methods
for web page ranking in the web graphs literature.

The two seminal contributions for ranking nodes in web graphs
are PageRank algorithm by Page and Brin [19], [22] and HITS
algorithm by Kleinberg [24], [25]. Both algorithms have been
widely used in ranking the global importance of web pages in
some applications. A lot of variants of PageRank and HITS have
been developed since then. Lempel and Moran [30] described
a variation of HITS called SALSA that can be understood as a
random walk on a bipartite graph of hubs. Borodin et al. [31] de-
scribed a number of algorithms for ranking nodes in a web graph,
including extensions of both SALSA and HITS.

Unlike the algorithms discussed above focusing on global mea-
sure of node importance, some algorithms derived from PageR-
ank and HITS try to rank the relative importance of nodes
with respect to some other nodes. Haveliwala [23] and Jeh and
Widom [32] developed the personalized ranking algorithms by
extending the PageRank algorithm. Chang, Cohn, and Macal-
lum [33] presented a personalized variant of HITS algorithms.
White and Smyth [27] proposed a new framework and class of
techniques for measuring relative importance in the networks.
They introduced newly-defined measures of node importance and
extensions of techniques previously proposed. Fouss et al. [35]
presented a new perpective on characterizing the similarity be-
tween elements on graphs for the recommendation systems by
using the average commute time that is the pseudoinverse of the
laplacian matrix of the graph. However, in order to find the Top-

k nodes relatively important to some query nodes, all the rela-
tive importance algorithms discussed above have to use matrix
multiplication to calculate the relative importance score for ev-
ery single node in the graph. It is computationally too expensive
for complex graphs. Zhang and Wang [37] introduced a hierar-
chical method for estimating relative importance of complex net-
works. Their approach has to perform hierarchical partition that
may cause a large overhead; moreover, the paper has not present
experimental results.

In this paper, we define a new relative importance measure for
nodes in the graphs. Based on the new measure, we present an al-
gorithm aiming to provide a way to estimate relative importance
of nodes for large social networks.

3. Problem Formulation

Our research focuses on selecting Top-k most relatively impor-
tant nodes with respect to a set of query nodes in the graphs such
as those depicting social networks. We believe in many cases,
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Top-k most important nodes can achieve the goals of many appli-
cations, especially when the size of the graph or network is very
large. For instance, in the case of terrorist network, given some
known terrorists (nodes) and their communications (edges), the
ability to quickly identify Top-k terrorist suspects is essential to
prioritize the elimination of security threats, especially if the re-
sources are constrained.

We now describe the problem formulation in steps, each step
is closely related with the previous one:

1).Given a graph G(V, E), where V is a set of nodes and E a
set of edges, compute the “relative importance” of a node t in G

with respect to another (query) node s, also in G. We represent
this relative importance as I(t|s). Our proposed solution works
for graphs with either weighted or un–weighted edges.

2). Given a graph G(V, E), any query node s from G, and an
integer k, find the k nodes in G with the highest “relative impor-
tance” with I(vi|s), 1 ≤ vi ≤ k.

3). Given a graph G(V, E), a set of query nodes S from G, and
a node t in G, compute the “relative importance” of t with re-
spect to the set of query nodes S . This can be denoted as I(t|S ), a
non-negative quantity. We define:

I(t|S ) =
1
|S |
∑

s∈S
I(t|s) (1)

4). Given a graph G(V, E), a set of query nodes S from G, and
an integer k, find k nodes with the highest “relative importance”
scores with respect to I(vi|s), 1 ≤ vi ≤ k.

These four problems are closely related, and computing the
relative importance I(t|s) of one node t to the query node s is
fundamental. We treated un–weighted graphs as a special case
of weighted graphs with unity edge weight 1, therefore the pre-
sented solutions for these four problems apply to both weighted
as well un–weighted graphs.

4. Path Probability

In the section, we will present a novel relative measure for rel-
ative importance of nodes with respect to a set of query nodes.
Intuitively, if a node i has many heavily weighted paths to an-
other node j, then j is very important to i.

Definition 1: Non-loop path. A non-loop path p on a graph is
a path with no repeated nodes, defined as follows:

p = ((v1, v2, . . . , vm)|∀i, j :

1 ≤ i, j ≤ m, vi ∈ V and vi � v j i f i � j) (2)

All the paths we mention in this paper is are non-loop paths.
When a query node has only one neighbor, using the random walk
model would make the neighbour equally important to the query
node. In order to make sure a query node is more important than
any of its neighbors with respect to itself, a small flying out factor
f is introduced into the random walk model and it can be inter-
preted as the information loss during the propagation.

Generally speaking, the importance of a node a to its neighbor
s is defined as the probability of s randomly jumps to node a with
a flying out probability:

P(s, a) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − f )
e(s, a)∑

v∈neighbor(s)
e(s, v)

s � a

1 s = a

(3)

where f is a value between 0 and 1, usually f is quite small. Also
e(s, a) is the corresponding edge weight of a node a to its neigh-
bor s, and e(s, v) is similarly defined.

The selection of f is based on two criteria 1. how well f can
preserve the random walk property 2. whether it converge in an
acceptable rate. Ideally, we want to keep f as small as possible.
However, as f becomes very small, the computational time in-
crease dramatically. In our experiment, we found when f = 0.1,
the results are quite similar to f = 0.001 with an average Kendall
Tau Distance> 0.98, and as f increases from 0.1, the Kendall Tau
Distance decreases very fast.

In addition, on average the computational time for f = 0.1 is
only about two times of the computational time for f = 0.3. In
this paper, we let f = 0.1 for the reason that it can help to achieve
both criteria. In order to decide whether a path p is important with
respect to a node is important(vs. a node is important), a new con-
cept called path probability of a path p is defined to measure the
contribution of the importance of the ending node t to the query
node s through this path p.

Definition 2: Path Probability. PPath(s, v1, v2, . . . , vm, t) is de-
fined as probability of moving from a starting node s to another
node t in the graph following a non-loop path s, v1, v2, . . . , vm, t:

PPaths,v1 ,v2 ,...,vm ,t(s, t)

= P(s, v1)

⎛⎜⎜⎜⎜⎜⎜⎝
m−1∏

i=1

P(vi, vi+1)

⎞⎟⎟⎟⎟⎟⎟⎠ P(vm, t)(s, t) (4)

where P(vi, vi+1) is defined in Eq. (3). It is easy to prove that path
probability is a value between 0 and 1 including both 0 and 1. In
general, we use PPathp(s, t) to denote a path probability without
spelling out the path.

Each path carries some signal of the connection between the
starting node s and the ending node t. If path probability of a
path is large, this path carries a strong signal of connection from
starting node to ending node.

Definition 3: Significant Path. A significant path from node s

to node t is defined as a path p with path probability greater than
or equal to threshold value c:

PPathp(s, t) ≥ c (5)

Definition 4: Relative Importance. The relative importance

of a node t with respect to node s is defined as the sum of all
important/significant path probabilities from s to t:

I(t|s) =
∑

g

PPathg(s, t) (6)

where ∀g ⊆ G, start(g) = s and end(g) = t, PPathg(s, t) ≥ c. We
use the arithmetic mean of the path probabilities as the relative
importance of node t to the set of query nodes S (see Eq. (1)). If
node s has a lot of significant paths to t, it means strong signal
can be carried from s to t through different paths. This indicates
that t is important to s.
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5. Algorithm to Estimate Relative Importance
Based on Path Probability

One of the biggest challenges for graph mining is the scala-
bility issue because a lot of graph problems are NP-hard. Many
algorithms for estimating the relative importance of nodes in the
graph involve matrix multiplication that is usually computational
too expensive especially for large graphs such as social networks.

As mentioned before, the problem targeted in this paper is to
find the Top-k relatively important nodes to the query node where
k is usually relatively small compared to the size of the graph.
If the path probabilities of all paths from the query node s to a
node t are smaller than the threshold value, then this node t is not
important to node s. Therefore, we only consider nodes with at
least one path to s such that its path probability with respect to
s is greater than c. In this section, an algorithm aggregating the
path probabilities of each node with respect to the query nodes
called SigPathSum is presented.

We now focus on calculating the relative importance of nodes
with respect to a query node given a threshold value. The whole
process is a depth-first search in a graph. Since each path does
not have loop, the longest possible path is no more than N hops
where N is size of the graph.

Figure 1 illustrates an example how the path probabilities are
aggregated. The algorithm can be described as follows:

The algorithm calculates the relative importance of nodes with
respect to one query node. It starts from the query node s and
travels to its neighbors in the breadth-first search manner. At each
step, it calculates the path probability from the query node s to
the current visiting node. If the path probability is smaller than
the threshold value, that means the path is not important to the
nodes that are not yet visited because the probability of visiting
the unvisited nodes through this path from the query node is too
small. Since there is the flying out probability and usually the
path probability of a path diminishes quickly as a path extends to
be suffixed with more nodes.

If there is a set of query nodes, the above algorithm will run
for each node in the set. And the average value of the relative im-
portance scores of each node to the set of query nodes is used to
represent the relative importance of the node to the query nodes.
The k nodes with highest relatively importance scores are selected
as the k most relatively important nodes.

Suppose the maximal number of neighbors for any node is k,
and the total number of nodes in the graph is n and the threshold

Fig. 1 An example of relative importance calculation process of tree
expansion.

value is threshold. When the path probability falls below thresh-

old, it will stop expanding. According to the definition of path

probability, when a path expands to its neighbor, its path proba-
bility is at most (1 − f ) of its previous path probability.

Algorithm 1 SigPathSum
Algorithm (Compute the relative importance of each node to one query

node)

SigPathSum (prefix, suffix, threshold, pathProb)

pre f ix: a stack stores the nodes visited

su f f ix: a list stores the nodes to visit

threshold: a value decides whether a path is important

pathProb: the path probability of the path visited

if |su f f ix| == 0 then

return

end if

v← pre f ix.peek()

for u ∈ neighbor(v) do

if u � su f f ix then

if pathProb × P(v, u) < threshold then

return

else

newPre← pre f ix ∪ {u}
newS u f f ix← su f f ix − {u}
newPathProb← pathProb × P(v, u)

u′s relative importance+ = newPathProb

call S igPathS um(newPre,

newS u f f ix, threshold, newPathProb)

end if

end if

end for

At step t, the path probability is pathProb(t), while at step t+1,
pathProb(t+1) < pathProb(t)∗(1− f ). Suppose after m steps, the
path probability falls below the threshold value, and it stops ex-
panding. Since m is integer, m = ceiling(log(threshold)/log(1 −
f )). Considering the maximal number of neighbors for any node
(i.e., k), the total time complexity is (in the worst case, each node
has k neighbors, but since there is one incoming edge (except for
the root node), each node has at most k − 1 outgoing edges):

S m = 1 + (k − 1) + . . . + (k − 1)m

= ((k − 1)(m+1) − 1)/(k − 2)

where, m = ceiling(log(threshold)/log(1 − f )).

6. Experiments and Evaluation

In this section, we examine the rankings of nodes using pro-
posed algorithm for several graphs and query sets, with the goal
of better understanding how the path probability method works on
both synthetic data and the real data. In addition, the ranking re-
sults are also compared with one of the most popular approaches:
random walk with restart (PageRank with Prior) [20], [27].

6.1 Evaluation on Synthetic Data
In this section, we examine the Top-10 rankings of our algo-

rithm on two toy graphs first proposed by Ref. [27]. The first
graph is an undirected graph with 10 nodes. The second graph
is a directed graph with 10 nodes. We compare our algorithm
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Table 1 Comparison of relative importance ranking for the nodes in Fig. 2
with respect to node J.

Rank Path Probability RWR
1 J 1.000 J 0.300
2 C 0.331 C 0.102
3 E 0.331 E 0.102
4 H 0.331 H 0.102
5 A 0.172 A 0.061
6 B 0.172 B 0.061
7 D 0.172 D 0.061
8 F 0.172 F 0.061
9 G 0.172 G 0.061

10 I 0.172 I 0.061

Fig. 2 A undirected toy graph [27].

Fig. 3 A directed toy graph [27].

with Random Walk with Restart (RWR) or PageRank with Priors
as described in Ref. [20]. We use the same “fly out probability”
f = 0.1 as Ref. [20].

We first consider a simple undirected graph with 10 nodes,
each node with degree three and a total of fifteen edges. Both al-
gorithms give the same rank to the query node J shown in Table 1.
For both algorithms, J is the most relative important node to J,
which makes sense. C, E and H have the same relative impor-
tance to J, and are relatively more important than A, B, D, F, G,
and I with the same relative importance scores.

Figure 3 shows a directed variation of the previous graph and
edges are of equal weight. (Fig. 2). The relationships between
nodes are more complicated than the undirected graph. For exam-
ple, consider Fig. 3 as a communication network, and the query
node A tries to broadcast message to the rest of the network.
It is easy to find C to be the most important node to A, from
formula 3, we can get that P(A, A) = 1, then we can compute
P(A,C) = 0.9 ∗ 1 = 0.9, PPathA,C,J(A, J) = P(C, J) ∗ P(A,C) =
0.81, PPathA,C,J,E(A, E) = P(J, E) ∗ PPathA,C,J(A, J) = 0.3645.
Upon examination of Fig. 3, one can reach the same conclusion
described above, because without C, it is impossible for A to send
message to any other nodes. Similarly, J is the second most im-
portant node to A, because without J, A can not send message
to other nodes except C. And B might be the least important

Table 2 Comparison of relative importance ranking for the nodes in Fig. 3
w.r.t. nodes A and F.

Rank Path Probability RWR
1 F 0.541 F 0.201
2 A 0.529 A 0.168
3 C 0.376 C 0.122
4 J 0.280 E 0.107
5 E 0.269 J 0.106
6 G 0.215 G 0.104
7 H 0.173 H 0.086
8 I 0.110 I 0.056
9 D 0.094 D 0.038

10 B 0.026 B 0.013

node to A, because it has the longest shortest path to A among
all the nodes in the graph. Our defined measure of relative im-
portance (or SigPathSum) can capture such relationships because
it takes both the number of paths and the length of the path from
the query node into consideration. The ordering of running path
probability ranking algorithm is: A, C, J, H, E, F, G, I, D and B.

Consider an example of a graph with more than one query
nodes. We use A and F as the query nodes, same as used in
Ref. [27]. Table 2 shows the results or using both Path Probabil-
ity and Random Walk with Restart (RWR) approaches with the
graph in Fig. 3. Both approaches produce almost identical rank-
ings except the order of E and J. Path Probability algorithm ranks
J one position ahead of E primarily because J is more important
than E to A, while Random Walk with Restart rank E one posi-
tion ahead of J. Nevertheless, both E and J have similar relative
importance scores to query nodes A and F using either algorithm.
Path Probability method ranks F and A as the Top-2 most impor-
tant nodes which is very obvious. It also considers C as the third
most important, because without C, A cannot communicate with
any node in the network.

6.2 Evaluation with Real-world Data
We use two real-word data sets to illustrate the applicability of

our proposed solution for large, complex graphs. The first data
set is the 9–11 terrorist network, and the second data set is the
DBLP computer scientist co-author network.
6.2.1 Experiments on September 11 Dataset

The 9–11 terrorist network contains 62 nodes and 304 edges
shown in Fig. 4 [41], where nodes represent terrorists or terror-
ist suspects, and edges represent the real communication between
them. The nodes with colors are the 19 terrorists who hijacked
the four airplanes in U.S. We first query the Top-10 terrorists
(shortened last name only) to the query node hijacker Marwan
Al-Shehhi who plays a key role in communicating with the hi-
jackers in four different airplanes. The Path Probability approach
is able to identify 8 hijackers who all have a lot of direct commu-
nications with other hijackers in other airplanes, and Ramzi Bin
al-Shibh who has a lot of connections with three major hijack-
ers (who have the most connections with other hijackers) and the
European Al Qaeda terrorist cells. If the 9 identified nodes are re-
moved, the communication between the query node Marwan Al-
Shehhi and other nodes in the terrorist network would have been
disrupted. We compare the results with the list of nodes identified
by the RWR algorithm shown in Table 3. The Top-10 nodes se-
lected by both approaches are exactly the same except for minor
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Fig. 4 9–11 terrorist network [41].

ordering difference. We also tried two other query nodes: Essid
Sami Ben Khemais and Djamal Beghal. Essid Sami Ben Khemais
is a European Al Qaeda terrorist cell from Italy, while Djamal
Beghal is a leader in the Al Qaeda European network. The re-
sults are presented in Table 3. The following are some interesting
findings from our analysis. Tarek Maaroufi, Kamel Daoudi, and
Zacarias Moussaoui who are known to have strong ties with Khe-
mais and Beghal play a major part in the European operations of
Al Qaeda. Using the path probability approach, among the Top-

10 relatively important terrorists to Atta, Al-Shehhi and Jarrah
who are the master hijackers and the key members of “Hamburg
cell”, a group of radical terrorists based on Hamburg, we were
able to identify eight hijackers and another two people: Bin al-
Shibh and Bahaji. In Table 3, Bin al-Shibh is found to be the most
relatively important node. Although he was not a hijacker, after
further observation, we know that he is another key member of the
Hamburg Cell, and the “key facilitator for the September 11 at-

tacks” [19], [38]. Bahaji was an alleged member of the Hamburg
cell that provided money to the perpetrators of the September 11
attacks.

We use the normalized K-Min (minimizing Kendall Tau dis-
tance) [34] to measure similarities between the Top-10 list pro-
duced by Path Probability algorithm and RWR. Normalized K-
Min distance is a value between 0 and 1. If two list s1 and s2
are identical, K-Min(s1, s2) = 1; if s1 and s2 are in reverse or-
der, K-Min(s1, s2) = 0. From Table 3, One can easily observe
the similarity between the lists produced by different approaches.
We randomly select twelve sets of nodes with size ranging from 1
to 4, and calculated the K-Min for path probability and the RWR.
The mean value of K-Min is 0.956, with the minimal K-Min of
0.889 and maximal K-Min of 1. The results show that Path Prob-
ability and RWR output very similar results for those twelve sets
of query nodes. The reason could be that both approaches are ran-
dom walk based. Since the size of the network is small (only 62
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Table 3 Importance ranking for the nodes in Fig. 4 with respect to query nodes.

Al-Shehhi Khemais and Beghal Atta, Al-Shehhi and Jarrah
Rank Path Probability RWR Path Probability RWR Path Probability RWR
1 Al-Shehhi 1.000 Al-Shehhi 0.351 Khemais 0.509 Khemais 0.503 Atta 0.497 Atta 0.165
2 Atta 0.229 Atta 0.062 Beghal 0.507 Beghal 0.502 Al-Shehhi 0.477 Al-Shehhi 0.155
3 Jarrah 0.134 Jarrah 0.036 Moussaoui 0.129 Moussaoui 0.081 Jarrah 0.417 Jarrah 0.135
4 Bin al-Shibh 0.127 Bin al-Shibh 0.035 Maaroufi 0.116 Maaroufi 0.074 Bin al-Shibh 0.144 Bin al-Shibh 0.039
5 Al-Omari* 0.124 Hanjour 0.0329 Qatada 0.109 Qatada 0.071 Bahaji 0.123 Hanjour 0.036
6 Ahmed 0.121 Al-Omari* 0.0328 Daoudi 0.105 Daoudi 0.0706 Hanjour 0.123 Bahaji 0.033
7 Bahaji 0.116 Ahmed 0.0327 Courtaillier 0.093 Courtaillier 0.062 Essabar 0.102 Essabar 0.027
8 Hanjour 0.114 Bahaji 0.031 Bensakhria 0.091 Walid 0.0622 Budiman 0.093 Budiman 0.026
9 Alshehri 0.108 Suqami 0.030 Walid 0.091 Bensakhria 0.060 Aziz Al-Omari 0.092 Aziz Al-Omari*0.092
10 Suqami 0.106 Alshehri 0.029 Khammoun 0.072 Khammoun 0.049 Raissi 0.088 Raissi 0.024
K-Min 0.933 1.0 0.978

Table 4 Importance ranking for the nodes in DBLP SIGMOD Co-author network with respect to Jiawei
Han.

Rank RWR SigPathSum
c = 0.001 c = 0.0001 c = 0.00001 c = 0.000001

1 Han 0.358 Han 1.000 Han 1.000 Han 1.000 Han 1.000
2 Pei 0.025 Pei 0.081 Pei 0.087 Pei 0.087 Pei 0.087
3 Fu 0.019 Fu 0.068 Fu 0.072 Fu 0.072 Fu 0.072
4 Chiang 0.017 Zaiane 0.059 Zaiane 0.063 Zaiane 0.064 Zaiane 0.064
5 Zaiane 0.017 Chiang 0.059 Chiang 0.063 Chiang 0.064 Chiang 0.064
6 Wang 0.016 Wang 0.055 Wang 0.060 Wang 0.061 Wang 0.061
7 Koperski 0.015 Koperski 0.054 Koperski 0.057 Koperski 0.058 Koperski 0.058
8 Lakshmanan 0.014 Lakshmanan 0.044 Lakshmanan 0.047 Lakshmanan 0.049 Khemais 0.509
9 Chang 0.013 Chang 0.043 Jamil 0.046 Jamil 0.047 Jamil 0.047
10 Jamil 0.013 Jamil 0.043 Lu 0.046 Lu 0.047 Lu 0.047

Time (1 ms) 5219 32 141 2484 26641
K-Min (vs. RWR) 1.0 0.978 0.945 0.945 0.945

Table 5 Average correlations of Top-k (k = 10, 20) for 20 query sets.

RWR SigPathSum

M = 100 c = 0.0001 c = 0.00001 c = 0.000001

RWR 1.000 0.952 0.935 0.941 0.930

SigPathSum

M=100 0.952 1.000 0.962 0.940 0.937

c = 0.0001 0.935 0.962 1.000 0.962 0.955

c = 0.00001 0.941 0.940 0.962 1.000 0.971

c = 0.000001 0.930 0.937 0.955 0.971 1.000

Table 6 Comparison of average computational time between Path Probability and the RWR for 20 query
sets.

SigPathSum

settings M = 100 c = 0.0001 c = 0.00001 c = 0.000001
PathProbability

RWR 0.012 0.096 1.430 13.050

nodes), the difference between computational time can be ignored
for both approaches.
6.2.2 Experiments on DBLP Dataset

In this section, we use the DBLP data set to demonstrate that
the two–phase framework with path probability can be used to
quickly identify the Top-k most important nodes to the query
nodes. The DBLP data set presents information on computer sci-
ence publications listed in the DBLP Computer Science Bibliog-
raphy [42]. The data in this dataset was derived from a snapshot
of the bibliography which contains a sample dataset of the author-
ship graph from the ACM SIGMOD conference [43]. The sample
data set contains 3,379 computer scientists (nodes) and 8,430 co-
authorship (edges).

Finding the Top-k most relatively important nodes to the query
nodes (researchers) in the ACM SIGMOD DBLP co-authorship
network can be helpful to the query of researchers to find the best
suitable collaborative partners to co-author papers to the SIG-

MOD conference or write research proposals in this area.
We first use Jiawei Han (a professor in data mining area at Uni-

versity of Illinois at Urbana-Champaign) as a query node. We run
both RWR approach and Path Probability with different threshold
values. The Top-10 most important nodes to Jiawei Han in the co-
authorship network is shown in Table 4. The results produced by
both algorithms are very similar with the K-Min distance greater
than 0.94. As the threshold decreases, the Top-k list outputted
by the path probability approach does not change much while
the computational time increases sharply from 32 milliseconds to
26,641 milliseconds.

We randomly select 20 query sets: 10 sets with only one node,
5 sets with two nodes, 5 sets with three nodes. We ran both RWR
algorithm and our proposed algorithm with different fixed thresh-
old values (c = 0.0001, 0.00001, 0.000001). We also pick the Top

M = 100 nodes with largest path probabilities to the query nodes
and use that to decide a threshold value. For each query set, the
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Top-10 list and Top-20 list are compared between different algo-
rithms. We compare the computational time of our approach with
different threshold values with RWR algorithm. The running time
for RWR is quite consistent, while the ratio of running time in-
creased for the Path Probability method is faster than the ratio of
the threshold value decreases. The results shown in Table 5 and
Table 6 indicate that our approach can be a good approximation
of the RWR with much less time (with average K-min above 0.93
while consuming only 1% of time). In addition, using SigPath-

Sum algorithm, when threshold is smaller than certain value (e.g.,
c ≤ 0.0001), the results appears to change not much.

6.3 Discussion
The experiments show that in real-life application SigPathSum

can help identify the terrorist suspects given some known terror-
ists, and recommend possible collaboration to researchers. How
to choose the threshold value does play a very important role
in this approach. For graphs with node degree less than 100,
c = 0.0001 is an effective threshold value based on the empirical
results. For graph with node degree greater than 1,000, empirical
results show using (Top-100) nodes with largest path probabilities
to the query nodes to decide the threshold value is a good choice.
For large graphs, RWR is very expensive computationally, both
in term of computational time and storage space required. Sig-

PathSum can be a good choice for approximation for RWR.

7. Conclusion

In this paper, we proposed a solution to find the Top-k most
“relatively important” nodes with respect to some query nodes in
social networks. The measure is based on the aggregated path
probabilities of the significant paths between two nodes in the
network. We define the path probability to measure the signifi-
cance of a path between two nodes. The experiments show that
the proposed approach can effectively identify relatively impor-
tant nodes with respect to the query node in the terrorist network
and the DBLP co-authorship network. It also shows that outcome
of our approach has a very strong correlation with random walk
with restart (or Personalized PageRank) algorithm. Using certain
threshold value (c = 0.0001) can generate comparable results of
RWR in one order less time, therefore it can be applied to analyze
large-scale dataset.
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