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Discrimination of symbiotic/parasitic bacterial type III
secretion system effector protein using principal

component analysis

Yuuichi Nakano1 Mitsuo Iwadate2,a) Hideaki Umeyama2,b) Y-h. Taguchi1,c)

Abstract: Type III secretion system (T3SS) effector protein is a part of bacterial secretion systems. T3SS exists in
the pathogenic and symbiotic bacteria. How the T3SS effector proteins in these two classes differ from each other
should be interesting. In this paper, we proposed the usage of principal component analysis based linear discriminant
analysis that discriminates T3SS effector proteins between plant pathogenic, animal pathogenic and plant symbiotic
bacteria by the accuracy of 0.77. We also hypothesized that the feature vector proposed by Yahara et al represents
protein structure, possibly protein folds defined in Structural Classification of Proteins (SCOP) database.
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1. Introduction
Type III secretion system (T3SS) is employed by a number of

Gram-negative bacterial pathogens to inject toxins into eukary-
otic cells [1]. Termination of proper T3SS functionality by under-
standing T3SS functionality may allow us to suppress infection
of these bacteria. Thus, understanding the characteristic feature
of T3SS effector protein is important. Actually, numerous re-
searches tried to discriminate T3SS effector proteins from other
proteins [2], [3], [4], [5], [6].

In contrast to these efforts, trials that discriminate symbiotic
T3SS effector proteins from pathogenic T3SS effector proteins
were seldom. Since symbiotic bacteria never tried to inject tox-
ins into eukayotic cells, the distinction between symbiotic and
pathogenic proteins is important. Yahara et al [7] recently pro-
posed numerical methods that discriminate symbiotic T3SS ef-
fector proteins from pathogenic T3SS effector proteins. After se-
lecting features using generalized Bayesian information criterion
(GBIC) of kernel logistic regression (KLR), they discriminate be-
tween symbiotic and pathogenic proteins by support vector ma-
chine (SVM). Also, the seven features were reported to discrimi-
nate symbiotic and pathogenic T3SS effector proteins.

In this paper, we proposed the alternative and simpler
method that discriminate symbiotic T3SS effector proteins from
pathogenic T3SS effector proteins. We also proposed the method
that estimate optimal number of principal component for the dis-
crimination without evaluating the performance of cross valida-
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Table 1 Proteins replaced because of uniprot modification.

Yahara et al this study
O84118 B0B9M4
O84119 B0B9M5
Q56027 E1WAC6
Q8X2D5 P0DJ88
Q9RPH0 D0ZPH9
Q9RPQ1 B0B9M3

tion.
In addition to this, since Yahara et al’s original dataset turned

out to include errors, we introduced an alternative dataset, by
which animal pathogenic, plant pathogenic and plant symbiotic
bacteria were shown to be discriminated well with each other. Ya-
hara’s feature vector was also suggested to represent protein folds
defined in Structural Classification of Proteins (SCOP) database.

2. Materials and Methods
2.1 T3SS effector proteins

T3SS effector protein sequences were obtained from uniprot*1,
based on protein IDs listed in Tabels S1 and S2 provided by Ya-
hara et al [7]. Protein sequences obtained were formatted as fasta
format. Since two to three years passed since Yahara et al’s work,
some modifications took place in uniprot. Then, the six proteins
listed in Table 1 were replaced with alternative ones.

2.2 Feature extraction
EMBOSS*2 and SignalIP*3provide features used for the dis-

crimination, although “Number of cleavage sites between signal
sequence and mature exported protein” was not used.

43 features used for discrimination were listed in Table 2.

*1 http://www.uniprot.org/
*2 http://emboss.sourceforge.net/
*3 http://www.cbs.dtu.dk/services/SignalP/
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Table 2 43 features employed for protein discrimination

No. Features Softwares Programs
1 The number of antigenic sites in proteins EMBOSS antigenic
2 The number of fragment generated by Trypsin digestion EMBOSS digest
3 The number of sites that belong to predicted helix EMBOSS garnier
4 The number of sites that belong to predicted sheet EMBOSS garnier
5 The number of sites that belong to predicted turn EMBOSS garnier
6 The number of sites that belong to predicted coil EMBOSS garnier
7 Hydrophobic moment EMBOSS hmoment
8 Average Residue Weight EMBOSS pepstats
9 Charge EMBOSS pepstats

10 Isoelectric Point EMBOSS pepstats
11 A280 Molar Extinction Coefficient EMBOSS pepstats
12 A280 Extinction Coefficient EMBOSS pepstats
13 Improbability of expression in inclusion bodies EMBOSS pepstats
14 Amino Acid Ratio:Ala(Alanine) EMBOSS pepstats
15 Amino Acid Ratio:Cys(Cysteine) EMBOSS pepstats
16 Amino Acid Ratio:Asp(Aspartic acid) EMBOSS pepstats
17 Amino Acid Ratio:Glu(Glutamic acid) EMBOSS pepstats
18 Amino Acid Ratio:Phe(Phenylalanine) EMBOSS pepstats
19 Amino Acid Ratio:Gly(Glycine) EMBOSS pepstats
20 Amino Acid Ratio:His(Histidine) EMBOSS pepstats
21 Amino Acid Ratio:Ile(Isoleucine) EMBOSS pepstats
22 Amino Acid Ratio:Lys(Lysine) EMBOSS pepstats
23 Amino Acid Ratio:Leu(Leucine) EMBOSS pepstats
24 Amino Acid Ratio:Met(Methionine) EMBOSS pepstats
25 Amino Acid Ratio:Asn(Asparagine) EMBOSS pepstats
26 Amino Acid Ratio:Pro(Proline) EMBOSS pepstats
27 Amino Acid Ratio:Gln(Glutamine) EMBOSS pepstats
28 Amino Acid Ratio:Arg(Arginine) EMBOSS pepstats
29 Amino Acid Ratio:Ser(Serine) EMBOSS pepstats
30 Amino Acid Ratio:Thr(Threonine) EMBOSS pepstats
31 Amino Acid Ratio:Val(Valine) EMBOSS pepstats
32 Amino Acid Ratio:Trp(Tryptophan) EMBOSS pepstats
33 Amino Acid Ratio:Tyr(Tyrosine) EMBOSS pepstats
34 Amino Acid Ratio:Tiny(A+C+G+S+T) EMBOSS pepstats
35 Amino Acid Ratio:Small(A+B+C+D+G+N+P+S+T+V) EMBOSS pepstats
36 Amino Acid Ratio:Aliphatic(A+I+L+V) EMBOSS pepstats
37 Amino Acid Ratio:Aromatic(F+H+W+Y) EMBOSS pepstats
38 Amino Acid Ratio:Non-polar(A+C+F+G+I+L+M+P+V+W+Y) EMBOSS pepstats
39 Amino Acid Ratio:Polar(D+E+H+K+N+Q+R+S+T+Z) EMBOSS pepstats
40 Amino Acid Ratio:Charged(B+D+E+H+K+R+Z) EMBOSS pepstats
41 Amino Acid Ratio:Basic(H+K+R) EMBOSS pepstats
42 Amino Acid Ratio:Acidic(B+D+E+Z) EMBOSS pepstats
43 Ratio of signal peptide cleavage sites SignalP

2.3 Linear discriminant analysis based upon principal com-
ponent analysis

Principal component analysis (PCA) was applied to the nor-
malized (mean zero, variance one) feature vectors. Then, sym-
biotic and pathogenic T3SS effector proteins are discriminated
using linear discriminant analysis (LDA) with optimal number
of principal components (PCs) estimated based on leave one out
cross validation. Semi-supervised[8] discriminations was also
employed; PCA was applied to all of samples without classifi-
cation information of test samples, while LDA was applied to
samples excluding samples in test set as usual.

2.4 Estimation of useful features for discrimination
Suppose that xi is normalized ith feature. Then jth PC, PC j, is

PC j =

43∑
i=1

a j
i xi

Then discriminant function

z =
∑

j

c jPC j

can be expressed as

z =
∑

j

c j

43∑
i=1

a j
i xi =

43∑
i=1

∑
j

c ja
j
i

 xi

Here
Ci ≡

∑
j

c ja
j
i

is the amount of contribution of the ith feature to discriminant
function.

2.5 Estimation of optimal number of PCs without evalua-
tion of cross validation

LDA was performed in two ways; with and without cross vali-
dation. For the cross validation, we exclude one symbiotic T3SS
effector protein or one pathogenic T3SS effector protein from the
training set. Then, excluded the proteins was classified based on
LDA trained. Since there are N symbiotic and pathogenic pro-
teins, in total 2N trials. The prediction for excluded proteins with
cross validation was not compared to the true classification, but
to the prediction without cross validation. Suppose the predic-
tion with cross validation of ith symbiotic or pathogenic protein
when ith symbiotic protein or pathogenic protein are excluded
is Ai, where Ai takes 1(0) when ith protein is predicted to be
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Table 3 Performance of semi-supervised PCA based LDA.

True
Symbiotic Pathogenic

Predicted Symbiotic 49 8
Pathogenic 8 49
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Fig. 1 PC number dependency of Accuracy (black circle), AUC (blue cross)
and over fitting measure A (red triangle) for semi-supervised PCA
based LDA

symbiotic(pathogenic). A′i is the prediction of ith symbiotic or
pathogenic protein without cross validation. Then, averaged ac-
curacy A is defined as

A ≡ 1 −
∑2N

i=1 | Ai − A′i |
2N

Then denote A when PCs up to kth PC are used for discrimination
as A(k). The standard errors up to A(k) is defined as

δA(k)2 ≡ 〈(A(k) − 〈A(k)〉k)2〉k
k

where 〈Qk〉k ≡
∑k

k′=1 Qk′/k. Optimal k is decided such that δA(k)
takes minimum.

3. Results and Discussions
3.1 Original data set provided by Yahara et al
3.1.1 Performance

In Table 3, we have shown the performance of semi-supervised
PCA based LDA. Accuracy is 0.86 for the optimal number of PCs
of 34. This value of accuracy is as good as Yahara et al[7]’s fine
tuned non-linear methods, while ours was a simple and classical
linear method.

In Fig. 1, PC number dependency of the Area Under the Curve
(AUC) value of the Receiver Operating Statistic Curve (ROC)
was shown. AUC for optimal number of PC (=17) was 0.91.
This means that the performance was good enough compared to
the simpleness of the method.
3.1.2 Useful features for discrimination

Fig. 2 shows Ci (see Materials and Methods) for optimal num-
ber of PCs (=17) for AUC. Upward (downward) features corre-
spond to pathogenic (symbiotic) expressive features.
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Fig. 2 The amount of contribution of ith feature to discrimination function,
Ci. Positive (negative) values contribute to pathogenesis (symbiosis).
The number (=17) of PCs used was the optimal number for AUC.
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Fig. 3 The rank of amount of contribution of ith feature to discrimination
function, Ci as a function of PCs. Bold-red-broken-doted curve indi-
cates ranks of zero. Features ranked above (below) the rank of zero
contribute to pathogenesis (symbiosis)

Apparently, although there are several features specific to ei-
ther symbiosis or pathogenesis, it is not a case. Although Fig.
3 shows the rank of each feature’s contribution as a function of
the number of PCs; upper (lower) features are pathogenic (symbi-
otic), clearly it heavily fluctuates. Since AUC and accuracy does
not depend upon number of PCs if the number of PCs exceeds 10
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(Fig. 1), the fluctuation indicates that there are numerous combi-
nation of features in order to achieve good performance. Only ex-
ceptions are highly symbiosis specific features (i.e., at the bottom
lines in Fig. 3). Yahara et al also reported that there were limited
number of symbiosis-specific-features while very little number of
pathogenesis-specific-features existed. These symbiotic-specific
features in our study are Arginine, Alanine, Aspartic acid and hy-
drophobic moment in this order. Yahara et al also reported that
both Alanine and Aspartic acid are highly symbiosis-specific, but
reported neither Arginie nor hydrophobic moment. Fig. 4 shows
the boxplot of the ranks of each features contribution when the
number of PCs is between 10 and 30 where both AUC and accu-
racy constantly take higher values (Fig. 1). Only limited number
of features that represent each amino acid ratio are definitely sym-
biosis or pathogenesis specific; e.g., Ala, Asp, and Arg for sym-
biosis and Lys for pathogenesis. Although hydrophobic moment
and polar are symbiosis and pathogenesis specific respectively,
their specificity is relatively weak compared with that of individ-
ual amino acid ratios. This means, in spite of the good perfor-
mance of discriminations, it is not easy to understand what dis-
criminates between pathogenesis and symbiosis, unfortunately.

The fluctuation seen in Figs. 3 and 4 is very distinct from Ya-
hara et al’s results that specified well defined and stable seven
features. Possibly, although there could be more combinations of
features that can discriminate pathogenic and symbiotic proteins
as good as seven selected proteins, they were overlooked because
of their employment of GBIC, which resulted in apparent stability
of feature selections.

It is also interesting that amino acid ratios that were distinct
between T3SS effector protein and other proteins, i.e., Leu, Glu,
Asp and Ala [6] were also distinct between pathogenic and sym-
biotic T3SS effector proteins (Fig. 4). These were depleted pro-
teins in T3SS effector proteins. This may suggest that these pro-
teins whose molecular percentages were distinct between symbi-
otic and pathogenic play critical roles in T3SS systems.
3.1.3 Optimal number of PC without cross validation eval-

uation
In PCA-based LDA, the parameter to be optimized was the

number of PCs used for LDA. Usually, the number of PCs used
for LDA was optimized such that cross validation performance
is maximized. However, this criterion always gives us “optimal”
number of PCs, even if it is not an optimal number, because there
is always the maximum performance of cross validation and the
number of PCs attributed to the maximum performance. It does
not guarantee us that it is truly optimal. If not, the number of PCs
used is highly sample-dependent, thus it may not be an optimal
number for other independent samples. In order to clarify this
point, we checked how the amount of over fitting grows when the
number of PCs increases (see Material and methods).

Fig. 5 shows δA(k) as a function of k, which is the measure of
over fitting. In contrast to the expectation, δA(k) does not have
any minimum values but remains almost constant for k > 15.
This suggests that, even if we added the features, the quality of
discrimination did not decrease. Thus, the optimal numbers of
PCs, i.e., any numbers more than 10, is trustable and will be valid
for the independent samples. Unfortunately, not many symbi-

antigen mol_ext Gly Asn Val Polar
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Fig. 4 Boxplot of the rank of amount of contribution of ith feature to dis-
crimination function, Ci when the number of PCs is between 10 and
30. Bold red horizontal line indicates mean rank. Features ranked
upper (lower) than this line contribute to pathogenesis (symbiosis)
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Fig. 5 δA(k) as a function of k, the number of PCS used for discrimination.

otic T3SS effector proteins were found, we could not test our
method for independent samples. However, in the future when
more symbiotic T3SS effector proteins are found, we can test this
conjecture; optimal number of PCs that discriminate symbiotic
T3SS effector proteins from pathogenic T3SS effector proteins is
robust and take any values between 10 and 30.
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Fig. 6 PC number dependency of Accuracy (black circle), AUC (blue cross)
and over fitting measure A (red triangle) for not-semi-supervised
PCA based LDA.

3.1.4 Not semi-supervised discrimination
The reason why we employed semi-supervised discrimination

was because semi-supervised discrimination has more tendencies
that discriminate test samples including outliers, since discrimi-
nant function can be constructed so as to deal with outliers well
later when trained function was applied. However, as can be seen
in the previous sections, the present samples and methods have
less possibility to be overfitted. In this case, semi-supervised
method may not have to be required. Employment of unneces-
sary semi-supervised method might twist the results. In order
to check this point, we have repeated the same procedure without
semi-supervised learing; i.e., features of test set were not included
into training set even without classification information.

Fig. 6 shows the results. They are quite similar to Fig. 1. Thus,
the employment of semi-supervised discrimination did not twist
the outcomes. Thus, it is better to continue to use semi-supervised
learning in order to be prepared for the cases where we face the
treatment of outliers someday.

3.2 An alternative data set
3.2.1 Data preparation

Due to the results presented in the above, the methodological
details of discrimination do not seem to matter, but feature vector
selected by Yahara et al seems to be critical. Hereafter we call
this as Yahara Feature Vector (YFV) even if a few features lack
or are replaced with others. Thus, the point is, what YFV rep-
resents. During the process of this investigation, Yahara’s data
set turned out to be erroneous. More than half of proteins identi-
fied as symbiotic in their analysis were taken from Pseudomonas
syringae, which is the famous plant pathogen. So we newly iden-
tified these proteins taken from P. syringae as plant pathogenic
proteins, while the former pathogenic proteins are identified as
animal pathogenic proteins since they were mostly taken from an-
imal pathogen genus, e.g. Yersinia, Salmonella, Chlamydia and
from E. Coli O157. Since some almost identical proteins had

distinct uniprot ID, only one of them remains within the newly
compiled animal pathogenic protein list, in order to reduce redun-
dancy. Symbiotic proteins were represented by an newly added
list of plant symbiotic proteins taken from Sinorhizobium fredii
and Bradyrhizobium japonicum [9], which are famous plant sym-
biotic bacteria. Table 4 shows the full list of proteins. Then, now
the problem is the three classes discrimination between animal
pathogenic, plant pathogenic and plant symbiotic proteins.
3.2.2 Performance

Then we have applied PCA-based LDA to discriminate three
classes. Table 5 shows the best performance obtained by PCA-
based LDA with optimal number (29) of PCs. Accuracy is 0.77,

Table 5 Performance of semi-supervised PCA based LDA.

True
Plant animal

Symbiotic Pathogenic

Predicted Plant Symbiotic 46 6 0

Pathogenic 11 28 10
Animal 2 3 36

which can be regarded to be well as a three classes discrimination.
The almost half of predicted plant pathogenic proteins clearly
consist of misclassified plant symbiotic or animal pathogenic pro-
teins. It is natural since plant pathogen shares the host with
plant symbiotic while plant pathogen shares pathogenesis with
animal pathogen. When we recompute accuracy by merging
plant pathogenic and symbiotic proteins into one group, accu-
racy as a two classes discrimination increases up to 0.89, which
is as large as accuracy obtained for the discrimination of Ya-
hara’s original data set. This is possibly the reason why Yahara et
al apparently successfully discriminated between symbiotic and
pathogenic proteins in spite that their symbiotic proteins include
many pathogenic proteins. They did not discriminate between
symbiotic and pathogenic proteins, but discriminated between
proteins that belong to bacteria with animal hosts and proteins
that belong to bacteria with plant hosts. This warns us that incor-
rect labelling of data set can derive wrong conclusion.

Fig. 7 shows the two dimensional discrimination by PCA-
based LDA. Plant pathogenic proteins were clearly located be-
tween plant symbiotic and animal pathogenic proteins. It is rea-
sonable as mentioned in the above.
3.2.3 What does YFV represent?

Although Yahara et al’s results included some mistakes, the
proposal of YFV was definitely excellent. Why does it work so
well? One of the reasons is possibly because YFV does not in-
clude anything specific to symbiosis or pathogenesis. This possi-
bly enabled them to discriminate animal and plant bacteria, suc-
cessfully but unintentionally. Since YFV works very well, this
should represent implicitly something critical to protein proper-
ties.

Here we hypothesizes that YFV represents something related
to protein structure. Previously, one of authors demonstrated
that only amino acid composition can discriminate protein fold
well[10]. Since most part of YFV consists of amino acid ratio, it
is not surprising if YFV can discriminate protein fold well. And
if each class has more class specific protein folds, it is not strange
even if YFV can discrminate between animal pathogenic, plant
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Table 4 Full list of T3SS proteins in the alternative data set consists of 59 plant symbiotic proteins, 37
plant pathogenic proteins and 46 animal pathogenic proteins. Folds in SCOP indicated beside
UNIPROT IDs were estimated by 3D-BLAST.

Plant Symbiotic (59 proteins): Q89E69 BRAJA, Q89E68 BRAJA, Q89E67 BRAJA, Q89E66 BRAJA, Q89TH9 BRAJA, Y4ME RHISN (d.144.1.7),
Y4YB RHISN (d.268.1.2), H7C6G4 BRAJA (c.10.2.6), Q89Y78 BRAJA (c.56.2.1), Q89F81 BRAJA (c.69.1.1), Q89F80 BRAJA (f.38.1.1),
PANB1 BRAJA (c.1.12.8), H7C7V0 BRAJA, Q89GY6 BRAJA (c.94.1.1), H7C7T1 BRAJA, Q89TK8 BRAJA, Q89TP0 BRAJA, H7C6G2 BRAJA,
H7C6I2 BRAJA (d.118.8.2), Q89TN8 BRAJA, Q89TQ4 BRAJA, H7C6P6 BRAJA, Q79UN8 BRAJA, Q89EF4 BRAJA (d.128.1.4), Q89GY8 BRAJA
(b.70.1.1), H7C827 BRAJA (b.80.1.5), H7C6S1 BRAJA, Q89TN2 BRAJA, Q89TW7 BRAJA (b.29.1.11), H7C813 BRAJA, Y4YJ RHISN,
H7C6M8 BRAJA (b.26.1.2), Y4YQ RHISN (b.26.1.2), C4PL66 BRAEL (d.14.1.5), NOPX RHISN, H7C823 BRAJA (a.114.1.1), NOLV RHISN,
Q9ANH4 BRAJP, NOLU RHISN, NOLT RHISN (d.226.1.1), Q89TR9 BRAJA, NOPP RHISN, Q89TU9 BRAJA (c.10.2.6), Y4FR RHISN (c.10.2.7),
NOPL RHISN, Y4LO RHISN, Q89TX4 BRAJA, H7C6R2 BRAJA, C4PL71 BRAEL (c.109.1.4), C4ALD1 RHISN, C4PL56 BRAEL, Y2140 BRAJA
(d.3.1.10), Y4ZC RHISN (d.3.1.10), H0HX55 9RHIZ (d.3.1.10), YP 346620.1, YP 004473413.1, A1WKP8 VEREI (c.146.1.1), Q9EUG5 RHIFR
(c.1.6.1), Q9EUG6 RHIFR (d.268.1.2)
Plant Pathogenic (37 proteins): AVRB PSESG (e.45.1.1), HOPM1 PSESM, Q888Y7 PSESM (c.70.1.1), Q52537 PSESX, Q886L1 PSESM,
Q88BF6 PSESM, Q889A9 PSESM (d.2.1.6), Q87V79 PSESM (c.146.1.1), Q882F0 PSESM (a.118.5.1), Q8RP03 PSEYM (c.2.1.2), Q888Y1 PSESM
(a.238.1.1), Q87W07 PSESM (a.2.3.1), HRMA PSESY, Q87WF7 PSESM, Q87X57 PSESM, Q87W42 PSESM, Q88A09 PSESM (d.92.1.7),
Q881L7 PSESM, Q9K2L5 PSESH (d.166.1.4), Q88AB8 PSESM, HOAE1 PSEU2, Q7PC42 PSEU2 (c.150.1.2), Q52530 PSESH, Q9L6W4 PSEUB
(c.150.1.2), AVRP2 PSESJ (d.3.1.10), Q52394 PSESH, HPAB1 PSESH, Q888W0 PSESM (c.43.1.2), Q7PC45 PSEU2 (d.113.1.4), AVRA PSESG,
Q52432 PSESX (a.15.1.1), AVRD1 PSESH, Q52389 PSESX, Q9JP32 PSEUB, HOPAD PSESM (c.3.1.5), Q87XS5 PSESM (b.80.1.2),
Q9L6W3 PSEUB (c.3.1.4)
Animal Pathogenic (46 proteins): A6M3N5 YERPE (a.24.11.1), O30783 CHLCI, O34020 CHLCI (f.22.1.1), SOPE SALTM (a.168.1.1), INCE CHLT2,
INCF CHLT2, O84235 CHLTR, O84236 CHLTR, TARP CHLTR, A6M3U5 YERPE (c.10.2.6), SPAN SALTY (b.1.18.2), SOPD SALTY (d.68.2.1),
SPTP SALTY (c.45.1.2), Q3KMQ0 CHLTA (a.238.1.3), Q3KMQ1 CHLTA, Q46210 CHLCI (f.37.1.1), SIPA SALTS (a.257.1.1), SIFA SALTY
(a.118.8.1), A9R9K8 YERPG (c.45.1.2), Q56935 YERPU, Q57QR2 SALCH (a.22.1.3), Q663L9 YERPS (c.10.2.1), Q7BS06 YEREN, SOPE2 SALTY
(a.168.1.1), A9ZER0 YERPE (a.243.1.2), Q7DB81 ECO57, Q7DB85 ECO57, Q824H6 CHLCV (a.238.1.3), ESFU2 ECO57, Q8XC86 ECO57,
SOPA SALTY (b.80.8.1), Q93KU8 YEREN (c.10.2.1), SSPH2 SALT1 (c.10.2.6), A9ZFE7 YERPE (d.144.1.7), INCD CHLT2, Q9Z7W9 CHLPN
(a.238.1.4), Y572 CHLPN, Q9Z8L4 CHLPN (a.243.1.3), Q9Z8P6 CHLPN, Q9Z8P7 CHLPN, Q9Z8Z8 CHLPN (a.25.1.2), Q9Z9F5 CHLPN (a.25.1.1),
B0A3S3 YERPE (d.3.1.10), B0A3S4 YERPE, B0HNN9 YERPE, B2NN32 ECO57
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Fig. 7 Two dimensional discrimination between plant symbiotic (black cir-
cle), plant pathogen (red triangle) and animal pathogen (green cross).
The horizontal (vertical) axis represents the first (second) discrimi-
nant function.

pathogenic and plant symbiotic proteins.
In order to confirm this conjecture, we need to know protein

structure, but unfortunately, only limited number of proteins were
reported to have known protein structures. In order to infer pro-
tein structure, we used FAMS[11]. Then FAMS provided us
model structure for 27 out of 46 animal pathogenic, 19 out of 37
plant pathogenic and 27 out of 59 plant symbiotic proteins. In or-
der to see if other program can provide more model proteins, we
employed phyre2[12]*4 and found that the performance of pro-
viding model protein structure was as good as FAMS. Finally,
we checked that if I-TASSER[13]*5 can provide feasible model

*4 http://www.sbg.bio.ic.ac.uk/phyre2/
*5 http://zhanglab.ccmb.med.umich.edu/I-TASSER/

proteins for proteins for which neither FAMS nor phyre2 could
provide model protein. I-TASSER was known to achieve the best
performances in the recent Critical Assessment of protein Struc-
ture Prediction (CASP)*6 that is a community-wide, worldwide
experiment for protein structure prediction taking place every two
years since 1994. At the moment, we did not check all of proteins
without model protein structures that FAMS or phyre2 predicted,
proteins that have already been checked were not accompanied
with the feasible model proteins provided by I-TASSER. Al-
though I-TASSER provides some model protein structures, fea-
sibility for these model proteins was poor since no positive C-
scores are associated with them. In their analysis[13], feasible
model protein structure should be accompanied with more than
0.5 TM-score. Considering error-bars, model proteins with posi-
tive C-scores were known to have more than 0.5 TM-score with
high possibilities. Thus, I-TASSER does not seem to provide us
feasible model proteins for proteins to which neither FAMS nor
phyre2 could provide good model proteins.

Based upon obtained model protein structure, we predicted
protein fold within SCOP[14]*7 (Table 4). For this purpose, 3D-
BLAST[15]*8 was employed. Then, amino acid sequences of 27
out of 46 animal pathogenic, 19 out of 37 plant pathogenic and 27
out of 59 plant symbiotic proteins were replaced with randomly
selected proteins with same fold from non-redundant set of pro-
teins, SCOP 1.75 (40%)*9 that is representative proteins taken
from SCOP 1.75B with removing proteins that share more than
40 % sequence identity. YFVs were computed for these set and
discrimination was applied. The obtained accuracy averaged over
100 random sampling was 0.45 (see a typical example of two di-

*6 http://www.predictioncenter.org/casp10/
*7 http://scop.mrc-lmb.cam.ac.uk/scop/
*8 http://3d-blast.life.nctu.edu.tw/
*9 http://scop.berkeley.edu/downloads/scopseq-1.75B/astral-scopdom-

seqres-gd-sel-gs-bib-40-1.75B.fa
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mensional discrimination in Fig. 8). Although it was much less
than accuracy obtained for original (true) set, 0.77, it was still
significantly better than accuracy expected for simply random se-
lection, 0.33. In actual, random permutation of proteins between
three classes reduced the accuracy down to 0.35 that was aver-
aged over 10 independent random permutations. P-values that
accuracy 0.45 can be obtained accidentally from randomly per-
mutation was only 3 × 10−4, which is small enough to be signifi-
cant. This means, three classes proteins have surely class specific
protein folds defined in SCOP (Table 6) and YFV possibly re-
flected these protein folds more or less.

Table 6 Protein folds distribution for plant symbiotic (PS), plant pathogenic
(PP), and animal pathogenic (AP) proteins, estimated by 3D-blast.
Subtotals indicate numbers of proteins in each class (a, b, c, d, e,
or f). Percentages (%) are equal to the numbers of proteins in each
class divided by total number of proteins in each category (PS, PP
or AP). Since this information is especially useful for drug discov-
ery, correspondence between protein ID and protein fold is listed
in Table 4.

fold PS PP AP
c.1 2 0 0
c.10 3 0 4
c.109 1 0 0
c.146 1 1 0
c.150 0 2 0
c.2 0 1 0
c.3 0 2 0
c.43 0 1 0
c.45 0 0 2
c.56 1 0 0
c.69 1 0 0
c.70 0 1 0
c.94 1 0 0
subtotal 10 6 6
% 37 32 22
d.113 0 1 0
d.118 1 0 0
d.128 1 0 0
d.14 1 0 0
d.144 1 0 1
d.166 0 1 0
d.2 0 1 0
d.226 1 0 0
d.268 2 0 0
d.3 3 1 1
d.68 0 0 1
d.92 0 1 0
subtotal 10 7 3
% 37 37 11

fold PS PP AP
a.114 1 0 0
a.118 0 1 1
a.168 0 0 2
a.2 0 1 0
a.22 0 0 1
a.238 0 1 4
a.24 0 0 1
a.243 0 0 2
a.25 0 1 2
a.257 0 0 1
subtotal 1 4 14
% 4 21 52
b.1 0 0 1
b.26 2 0 0
b.29 1 0 0
b.70 1 0 0
b.80 1 1 1
subtotal 5 1 2
% 18 5 7
e.45 0 1 0
subtotal 0 1 0
% 0 5 0
f.22 0 0 1
f.37 0 0 1
f.22 1 0 0
subtotal 1 0 2
% 4 0 7
total 27 19 27

4. Conclusion
In this paper, we have applied semi-supervised PCA based

LDA for the discrimination between symbiotic and pathogenic
T3SS effector proteins, using 43 physico-chemical features that
can be calculated solely from amino acid sequences. In spite of
the good performance of discriminations, there were no stable
and small number of features that can discriminate symbiotic and
pathogenic proteins, because of many combinations of features
that successfully discriminate symbiotic and pathogenic features.
All of these combinations were suggested to be robust, since lit-
tle over fittings turned out to take place. In addition to this, us-
ing newly proposed and more feasible protein sets, Yahara’s fea-
ture vector (YFV) can successfully discriminate three classes, i.e.,
plant symbiotic, plant pathogenic and animal pathogenic proteins,
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Fig. 8 A typical two dimensional discrimination when T3SS proteins are
randomly replaced with proteins selected within same protein fold.
Other notations are the same as Fig. 7

with PCA-based LDA. This definitely demonstrated the power-
ful and general ability of YFV for the discrimination of proteins.
YFV was further suggested to reflect protein folds defined in
SCOP data base.
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