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A Linear Algebraic Approach to Intraclass Shape Analysis
and Its Application in Archaeological Research

Min Lu1,a) Bo Zheng1,b) Jun Takamatsu2,c) Ko Nishino3,d) Katsushi Ikeuchi1,e)

Abstract: Shape analysis is one of the fundamental problems in computer vision. In particular, if objective shapes
belong to the same class, the problem is specified to what is named as intraclass analysis. In this paper, we focus on
the general problem of intraclass shape analysis. A novel framework for analyzing similar shapes is proposed. Given
samples within a certain category, we first manage to reveal hidden structural information with low-rank matrix recov-
ery theory, and further develop effective algorithms under the guidance of this information for several related topics,
including intraclass shape restoration, clustering and comparison. All these processes are fully automatic, without
using any prior knowledge about the given shapes as well. Experimental results verify the feasibility and effectiveness
of our proposed method.

1. Introduction
Shape analysis is one of the most fundamental problems in

computer vision and an elementary step to artificial intelligence.
There are several sub-topics related to shape analysis, including
salient region detection, geometry comparison, object recogni-
tion, etc. In this sequence of questing a better way to make intel-
ligent systems, researchers are inspired by the cognition pattern
of ourselves. Seeming to be almost naturally capable of observe
and further analyze the creatures and creations, human start his
cognitive process from shape analysis.

As a relatively wide topic, some studies about shape analysis
focus on analyzing a single object only. For example, to detect
feature point or salient region via curvature analysis, or to extract
feature lines such as ridges and valleys. If two or more objects
are taken into consideration, the problem turns into shape com-
parison.

1.1 Interclass and Intraclass Problems
Generally speaking, depending on the types of target objects,

the problem of shape analysis can be further divided as interclass
analysis and intraclass analysis. The former issue crosses over
objects without similarity prerequisite; while the latter issue fo-
cuses on the analysis on those targets belong to the same category.
From our former experiences, objects from the same class usually
have similar shapes and structures. Therefore finer comparison is
required for intraclass analysis.
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Fig. 1 shows two different data sets, belonging to interclass
and intraclass problems respectively. Notice that these two differ-
ent kinds of problems actually stay in different levels of analysis:
while in interclass analysis we pay more attention to recognition,
which is to solve the problem “what is this?”, intraclass analy-
sis focus on more detailed shape comparison, e.g. “How to fur-
ther divide them into sub-groups? What is the difference between
them?”.

Fig. 1: Two data set of 2D silhouettes images. The top two rows
constitute one data set, where samples are totally different objects
from each other. This leads to an interclass problem. The rest
two rows form the other data set, where samples are all butter-
flies, with slightly different shapes. This belongs to the intraclass
analysis. These images are from a large binary image database
collected by the LEMS Vision Group at Brown University.
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In this paper, we focus on shape analysis with both 2D and 3D
models. Here 2D data are represented as contours or silhouettes,
as shown in Fig. 1; while 3D shapes are mainly triangle meshes
or point clouds scanning from real world.

1.2 Motivation
Compared with general shape comparison problems, intraclass

shape analysis enjoys better semantic explanation and higher pro-
cessing accuracy, which bring it increasing concern with wide
range of applications.

A typical usage of intraclass shape analysis is biometrics. It is
used to identify individuals from their characteristics or trait. Tak-
ing 3D face recognition as an example, 3D geometry of the facial
part is captured and then compared with others. Since geometry
is invariable with the change of illumination or head pose, this
technique overbears its 2D counterpart with significantly higher
accuracy.

The application of intraclass shape analysis in manufacturing
industry is also in the ascendant. Take the automobile industry as
an example. For manufacturers, if same or similar parts of old car
models can be reused in the design and production process of the
new models, that would be both economical and efficient. There-
fore 3D retrieval system for workpieces attracts widespread at-
tention. In such a retrieval system, geometry shapes of workpiece
models are acquired and archived in advance. When a query is
given, the system will analyze its shape, compare it with the cur-
rent samples, and then return most similar objects. This system
provides increased productivity and decreased cost by facilitating
optimal workpieces pickup flow and maximal reuse extent. We
believe that with the development of the new 3D printing tech-
nique, intraclass shape analysis will become even more impor-
tant.

Another important application of intraclass shape analysis is
the protection and study on historic relics. Nowadays, three-
dimensional digital replicas play an increasingly important role in
cultural heritage preservation. With current 3D data acquisition
technology, such as laser rangefinders, the geometric informa-
tion of real-world objects can be accurately and reliably digitized.
These 3D digital models can then be used for various archaeolog-
ical studies. In addition, historic relics are often only partially
preserved due to various causes, such as weather and vandalism.
In order to avoid a great loss of cultural heritage, finding effective
ways to restore the original appearance of these relics is impor-
tant. We will discuss about this topic in Section 3.

Besides, intraclass shape analysis also shows a significant po-
tential in medical diagnosis and treatment, e.g. personalized tooth
shape estimation. We hope our study can contribute to the task of
improving our lives.

1.3 Related Work
Shape restoration

Several approaches have been proposed for shape restora-
tion. For the purpose of filling holes on given polygon
meshes or point clouds, either mesh-based methods [30] or
volumetric approaches [16], [26], [36] can be used to achieve
smooth continuation by imposed localized geometric con-

straints. This kind of completion methods is suitable for
filling holes, but in case large region or structural informa-
tion is lost, hole-filling methods will be no longer suitable.
An alternative strategy using geometric priors can be em-
ployed. Usually patches with similar surface characteristics
are selected from either the incomplete object itself, such
as [7], [43], [50], or analogous candidate models, including
[29], [37]. Notice that all these methods handle a single sam-
ple at a time.
The studies about reconstruction from depth video, such
as [38], as well as markerless motion capture systems
also suffer from data incompletion. By making use of the
correspondences between frames, and acquiring accumulate
geometric information over time, the restoration problem
can be solved.

Intrinsic shape analysis
A recent hot topic in shape analysis is the intrinsic sub-
problem, where only isometric deformation is taken into
consideration. For example, the eigenfunctions of Laplace-
Beltrami operator shows its power to deal with isometric
deformation in [11], [40]. A study about analyzing de-
formable two-dimensional shapes is introduced in [9]. Based
on Gromov-Hausdorff distance and intrinsic geometric prop-
erties of shapes, they present deformation-invariant shape
comparison method.
Notice that these studies belong to intraclass shape analysis
as well. However, the scope of research objects are different
from our study in this paper— while the intrinsic analysis
focuses on the same object under different isometric pos-
tures, we try to handle the comparison between a group of
similar but different objects, which are ideally under the
same posture.

Partial shape matching
A regularized partial matching method of rigid shapes is
discussed in [8], and a partial similarity detection method
using the notion of Pareto optimality is introduced in [10].
Moreover, with local descriptors, such as shape contexts
introduced in [2] and spin images discussed in [24], as well
as effective indexing algorithms, many partial matching
methods by shape similarity are proposed, such as the
studies in [3], [22].

Statistical shape analysis
Another branch of methods to analyze a set of shapes is
statistical shape analysis discussed in [18], where statistics
are measured to describe geometrical properties from simi-
lar shapes or different groups. Usually principal component
analysis (PCA) [25] is used to analyze the shape variability.
As for the identifiable region detection problem, researches
on sparse subspace clustering such as [19], as well as the
biclustering [14] provide the theoretical basis.

Cluster culture relics
Extensive studies of the Bayon faces have been conducted
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from the cultural and archaeological perspectives. A ground-
breaking study on the classification of Bayon faces was done
by the Japanese Government Team for Safeguarding Angkor
(JSA) in [35]. Based on the observation and analysis from
their experienced experts, those faces were roughly divided
into three groups: Deva, Devata and Asura, meaning god,
goddess and devil respectively. Meanwhile, several more
objective methods of classification for comparison were pro-
posed. For example, a framework for clustering images of
face carvings at archaeological sites was presented in [28],
where the pairwise similarities were computed from local
facial features (eyes, nose, etc.). This method was effective
when dealing with the Devata goddesses depicted in Angkor
Wat. And a classification study about Bayon faces with sev-
eral different methods was established by [27], using depth
images generated from scanned 3D data. Other related work
includes tracing the sequence of constructing the Bayon by
[15], and describing the deterioration of sandstone blocks in
the temple by [45].

1.4 Contributions
In this paper, we concentrate on the problem of intraclass

shape analysis, including restoration, clustering and comparison.
We present novel algorithms for all stages of this process.

Intraclass shape analysis with L1 minimization
We address the problem of restoring a group of similar
objects with damaged samples, and propose a restoration
method that builds upon the low-rank matrix recovery theory
to restore all incomplete samples simultaneously. To the
best of our knowledge, our work is the first attempt to solve
shape restoration problem from the algebraic viewpoint. A
general and elegant framework is proposed, without using
any prior knowledge about the shape. We further extend the
original matrix recovery theory to more complex case where
large missing areas can be handled as well.

Joint shape restoration and cluster analysis
We introduce a two-step shape recovery strategy, which
combines restoration and cluster analysis together, to further
refine the restoration result and divide the data set into
subcategories. Due to the fact that we use unsupervised
classification method, pre-labeled data is no longer needed
to separate the data set. Notice that our method is based on
objective measurements and comparison as well. Experi-
mental results with real world culture heritages demonstrate
the effectiveness of our proposed method.

A quantitative intraclass shape comparison method
We present a quantitative method to compare similar shapes,
extending shape similarity evaluation with deformation field.
A tensor decomposition based approach to the analysis of
similar shapes, and an reinforced scheme to detect identifi-
able regions are also proposed. These are novel and interest-
ing attempts to analyze similar objects.

2. Preliminaries
Before we start exploring the world of intraclass shape analy-

sis, a first look at the low-rank matrix recovery theory is neces-
sary, since it is the theoretical basis of our work. We would like
to give a brief introduction about this theory in this preliminary
section.

2.1 Norm
Let us start from the norm. Its mathematical meaning is clear:

the norm of an object, such as vectors, is a quantity that describes
the length or size of this object. The Lp norm in general case is
defined as:

‖x‖Lp = (
∑

i

|xi|
p)1/p, (1)

where x ∈ Rn, p ∈ R, p > 1.
From this definition, we can derive the most common two

norms— taxicab (L1) norm and Euclidean (L2) norm, as shown
below respectively:

‖x‖L1 =
∑

i

|xi|, (2)

‖x‖L2 =

√∑
i

|xi|
2. (3)

In particular, if we let p = 0, then we get the “L0 norm”:

‖x‖L0 =
∑

i

|xi|
0, (4)

where 00 � 0. Notice that L0 norm is special, since it is actually
not a norm in the usual sense. However, due to the fact that L0

norm counts the number of non-zero entries, it is widely used to
evaluate whether a mathematical object is sparse or not, such as
the study in [34].

2.2 Low-Rank Matrix Recovery
Low-rank matrix recovery, which is introduced in

[12], [48], [49], is also known as robust principal compo-
nent analysis (Robust PCA). The essential idea of this theory
is to recover corrupted entries of a matrix using structural
information of the matrix itself. An example is shown in Fig. 2.

+

Corrupted observations Low-rank component Sparse error

Fig. 2: An illustration of low-rank matrix recovery. The input cor-
rupted observation matrix can be separated into two components:
an underlying low-rank matrix and a sparse error matrix.

Given the observation matrix D ∈ Rm×n, which is generated by
corrupting some entries of an unknown low-rank matrix, we aim
to find a proper decomposition, that separates it into two mean-
ingful parts:
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D = A + E. (5)

Here A ∈ Rm×n is a low-rank matrix, representing the original
data without corruptions; while E ∈ Rm×n is the error matrix,
which is supposed to be sparse.

Robust principal component analysis solves this problem by
seeking a possible A with the lowest rank that could have gener-
ated the observation D, while subjecting the error matrix E to a
sparseness constraint: ‖E‖0 6 k. Here the L0 norm is employed
to measure the matrix sparseness. Thus the initial decomposition
problem is turned into an optimization:

min
A,E

rank(A) + γ‖E‖0, s.t. A + E = D, (6)

where γ is the weighting parameter that trades off the rank of the
solution and the sparseness of the error.

Unfortunately, the optimization problem (6) is highly non-
convex, and currently with no efficient solution. A tractable opti-
mization, however, can be obtained by relaxing the original prob-
lem. By replacing the L0 norm with the L1 norm, and by mea-
suring the rank with the nuclear norm ‖A‖∗, problem (6) can be
converted to a tractable convex optimization:

min
A,E

‖A‖∗ + λ‖E‖1. s.t. A + E = D. (7)

Here ‖A‖∗ is the nuclear norm of matrix A, defined as the sum of
its singular values: ‖A‖∗ �

∑
i σi(A). ‖E‖1 refers to the L1 norm

of matrix E and the weighting parameter λ is in the form c/
√

m,
where c is a constant, and typically set to be around 1. Notice
that the new objective function in problem (7) is continuous and
convex, so it can be solved efficiently via convex optimization,
such as the augmented Lagrange multipliers (ALM) algorithm.

Compared to ordinary principal component analysis (PCA),
this method is more robust to outlying and corrupted observa-
tions. Therefore it can be used in various complex problems, such
as batch image alignment and robust photometric stereo, etc.

3. Intraclass Shape Restoration
Given a group of similar shapes, before any further compar-

ison, the integrity of the data should be checked first. In real
world cases, it will not be that surprising if the shape information
we obtained is incomplete.

A variety of different reasons may cause this problem. Some-
times it is because of the limitations of data acquisition method.
For instance, laser scanning usually fails in case of self-occlusion
or some special surface reflection properties. Another kind of
reason is that the data sources are different. Take the dental sim-
ulation as an example. While some recently techniques, e.g.,
cone beam computed tomography (commonly referred to by the
acronym CBCT), can provide the full geometry of our teeth in-
cluding root portions, data acquired via traditional casting method
will contain the crown parts only. Moreover, source objects may
be incomplete as well, especially in the case of cultural relics.
Due to natural and human factors, e.g., weathering and vandal-
ism, historic cultural relics are often partially damaged. An ex-
ample is demonstrated in Fig. 4(d).

So here comes the question, can we restore the incomplete

samples by making use of the complete ones? This is a prob-
lem of practical significance. Let us take the dental simulation as
an example again, since the latest medical equipments are usu-
ally both expensive and not popular, patients will benefit from
this shape restoration algorithm to avoid extra medical expenses.

3.1 Framework Overview
Given a group of similar objects in a uniform posture, including

partially damaged and incomplete samples, we propose a novel
algorithm which automatically restores all these objects simulta-
neously. Aiming to make use of the group shape similarity, we
formulate the shape restoration task as a low-rank matrix recov-
ery problem: samples are first represented as fixed-length vec-
tors via shape matching, and then restored to their original shapes
by adopting matrix recovery, which can be solved effectively via
convex optimization discussed in [6], [13]. Fig. 3 depicts an
overview of our proposed method.

...

inputs

... ...

Outputs

v1

v2

vn

...
Vectorization

Surface
 

Matching

Matrix
 

Recovery

Fig. 3: the pipeline of our shape restoration method. Input shapes
are first aligned and dense correspondences are acquired using a
surface matching scheme. By stacking coordinates of these cor-
responding points, input shapes are represented as fixed-length
vectors and then a matrix recovery procedure is used to accom-
plish the restoration.

3.2 Shape Matching and Representation
Before adopting our restoration algorithm, the shape repre-

sentation has to be reformed. Each sample should be properly
represented as a fixed-length vector based on accurate correspon-
dences. We will describe this procedure in this section.

3.2.1 Preprocessing
Given the data set, denoted as {S i}

N
i=1, we first unify the scale

via Procrustes analysis, which is introduced in [23]. Here the
root mean square distance (RMSD) from all points to its mass
center is used for scaling:

s =

√∑K
i ‖xi − x̄‖2

K
, (8)

where K is the number of points on a certain object. Notice that
this may not be accurate enough in case that a relatively large
part is missing. Therefore a certain degree of manual correction
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is necessary.
Then we rigidly align these object together. Considering about

the possible data corruption, we manually select a relatively com-
plete sample from the whole data set, denoted as S T . This one
will serve as the template, to which all the other samples will be
rigidly aligned in a preprocessing phase via iterative closest point
(ICP) algorithm introduced in [4]. In particular, if target objects
are reflection symmetrical, e.g. human faces, the axis (2D case) or
plane (3D case) of symmetry can be used to help the rigid align-
ment processing. Here we utilize an effective reflection symmetry
detection method introduced in [47].

After the above preprocessing, all samples are rigidly aligned
and scaled to an unified size. A representative point set PS T

with an adequate number of points is extracted from the region
of interest (ROI) on the template S T . An example is shown in
Fig. 4(c). This can be done by adopting an uniform sampling.

3.2.2 Shape matching
In the whole process of shape restoration via matrix recovery,

a crucial step is to properly represent the shape of each sample
using a fixed-length vector, so that accurate correspondences are
established among all input objects.

Given a data set of similar shapes, we would like to first estab-
lish dense correspondences among this group for further analysis.
Actually the problem how to find a meaningful and accurate cor-
respondence between two or more shapes itself is a fundamental
task for shape analysis. A number of different methods have been
proposed in this field, such as [32], [51], [52], [53]. A compre-
hensive survey about shape correspondence is given in [46] for
further reading.

In our work, since all the samples belong to the same class,
which means that they are quite similar to each other, we choose
a deformation-driven approach to acquire correspondences. Af-
ter that, the desired correspondences between all samples {S i}

N
i=1

can be approximately obtained via nearest neighbor searching.
Notice that here a distance threshold is set: if there is no point
within this threshold, correspondence is marked as a null point.
The above matching process is shown as Algorithm 1.

Algorithm 1 Obtaining Correspondences via Shape Matching

Input: {S i}
N
i=1, S T and PS T

Preprocessing: rigidly align {S i}
N
i=1 to S T

for i = 1→ N do

// Deform S T to Ŝ T that approximates the target S i

Ŝ T = FS T→S i (S T )

Update the point set on template S T : PS T → P̂i
S T

//for P̂i
S T

, search for the nearest-neighbors on target S i

PS i = FNN(P̂i
S T
, S i)

end for

Output: {PS i }
N
i=1

As for the shape deformation phase, a moving least squares
(MLS) deformation discussed in [1], [41] is employed. N pairs
of control points, denoted as {pi}

N
i=1 and {qi}

N
i=1, are manually se-

lected as sparse correspondences. Here {pi}
N
i=1 ∈ R

3 are the orig-
inal positions on source model S 0, and {qi}

N
i=1 ∈ R

3 are the cor-
responding deformed positions on destination shape S d. For an
arbitrary point x ∈ R3 on the source model S 0, let Fx denote the
transformation that gives the corresponding position of point x on
S d after the deformation. According to the MLS theory, Fx could
be determined by solving the following optimization:

min
Fx

N∑
i=1

1
d(x,pi)2α ‖Fx(pi) − qi‖2, (9)

where d(x,pi) is the distance between x and pi, α is a system
parameter.

In order to get better deformation results, geodesic distances
are used in the weight function. Given one 3D shape represented
by a triangle mesh, the geodesic distance between two points on
its surface can be approximated with the length of the shortest
path from one to the other, which can be calculated by Dijkstra’s
algorithm introduced in [17]. Moreover, the mapping Fx is as-
sumed to be an affine transformation, consisting of a linear trans-
formation M followed by a translation T : Fx(x) = Mx + T .

(a) template sample (b) cropped template (c) points on template

(d) a damaged sample (e) shape matching (f) corresponding points

Fig. 4: Establishing shape correspondence. The first column are
two input shapes, where (a) is relatively complete and selected
as the template, while (d) is a heavily damaged sample; (b) is a
cropped template sample that keeps the region of interest only;
(e) shows the matching procedure between these two shapes; (c)
shows a dense set of sampling points on the template, and (f) is
the corresponding points on example (d).

So far, we obtained a dense point set {PS i }
N
i=1 with correct cor-

respondences for all given samples {S i}
N
i=1. For a certain point

cloud PS i , in order to reform it as a length-fixed vector, the (x, y, z)
coordinates of all points in PS i are stacked to form a vector vS i .
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As for the vectorization of each sample, it is obvious that this
procedure will generate vectors with the same length, since the
number of sampling points are fixed. Notice that points corre-
sponding to damaged parts may be marked as null points in our
scheme. These null points could be substituted with nearby points
on the object’s convex hull or bounding box for actual calcula-
tion. Fig. 4(f) shows an example where points corresponding to
the missing right side of face are chosen from the bounding box
instead.

3.3 Shape Restoration via Matrix Recovery
From the experience of our daily lives, we know that for a

group of similar objects, even if there is a damaged or missing
part on one of them, we can still infer what does the original
shape look like from other intact samples. To leverage this fact,
we propose a novel method to restore a group of similar shapes
based on the low-rank matrix recovery theory we introduced in
Section 2.

3.3.1 Problem Formulation
Given a sufficiently large number of similar shapes from the

same object category, denoted as C, where some samples are par-
tially damaged and incomplete, our aim is to get rid of corruption
as much as possible and recover their undamaged shapes. Let
{S 0

i }
N
i=1 and {S i}

N
i=1 denote their original shapes when they were

just completed and the corresponding observations, i.e., raw mea-
sured data in the real world respectively.

An assumption that {S 0
i }

N
i=1 are linearly correlated is required as

a premise. Let span(S 0
1, . . . , S

0
N) denote the linear span of these

shapes:

span(S 0
1, . . . , S

0
N) = {

n∑
i=1

αiS 0
i |α1, . . . , αn ∈ R}, (10)

where {αi}
n
i=1 ∈ R are coefficients. This represents the intersec-

tion of all subspaces containing this set. Therefore an arbitrary
sample S 0 from the same category C will approximately lie in
this linear span:

S 0 ≈

N∑
i=1

αiS 0
i . (11)

Notice that these samples, {S 0
i }

N
i=1, are actually no need to be

linearly independent.

This assumption means the dimension of span(S 0
1, . . . , S

0
N)

should be much smaller compared with the superposition of N
samples. In other words, after the shape matching procedure
introduced in Section 3.2, {S 0

i }
N
i=1 can be reformed as vectors

{v0
S i
}Ni=1. The matrix of their combination, denoted as:

A � [v0
S 1
| · · · |v0

S N
] ∈ RM×N , (12)

should be of a much smaller rank than the total number of sam-
ples N. This reveals that A is approximately a low-rank matrix. In
our method, this assumption of linear correlation is the only prior
knowledge we rely on to restore the corrupted samples.

Similarly, an observation data matrix D can be formed by

{si}
n
i=1. The difference between A and D corresponds to the cor-

ruption, which is denoted as matrix E. The observation can then
be decomposed as

D � [vS 1 | · · · |vS N ] = A + E. (13)

Usually the defect area is much smaller compared with the
complete parts, which means error matrix E should be sparse
and most of its entries are zero. Considering that matrix A is
approximately low-rank, as analyzed earlier, the task of restoring
this group of similar shapes can be formulated as a low-rank
matrix recovery problem, as we discussed in Section 2.

3.3.2 Reformulation including Missing Data
One shortage of the shape recovery method introduced in the

previous section is, missing data and damaged parts are treated
in the same way, leading to inaccurate restorations. For instance,
if the missing parts of one sample are considerably large, while
the total number of samples are limited, which means the size of
data matrices is relatively small, the corruption matrix E would
be no longer sparse if the missing parts are not excluded. Inaccu-
rate results may be generated in this case. In order to improve the
restoration method to avoid this problem, cases of data loss and
corruption have to be distinguished, and treated differently.

Suppose the size of matrix D in Eq. (7) is M × N. Let
Ω ⊆ [M] × [N] denote the positions of observed entries of D,
which is called the support set of D. Its complementary set, Ωc,
corresponds to those missing entries, which have been automati-
cally localized in the preprocessing step. Let PΩ be an orthogonal
projection supported on Ω, defined as

PΩ(X) =

 Xi j, (i, j) ∈ Ω,

0, (i, j) < Ω,
(14)

where XM×N is an arbitrary matrix. This projection can be used as
a mask to exclude missing entries of matrix E in Eq. (7), making
the rest of this difference matrix E sparse. The former optimiza-
tion Eq. (7) is then modified as

min
A,E

‖A‖∗ + λ‖PΩ(E)‖1, s.t. A + E = D. (15)

Notice that the objective function is still convex.
We use augmented Lagrange multipliers to solve the above op-

timization. The procedures are outlined as Algorithm 2. Notice
that in this case the augmented Lagrangian function becomes:

L(A, E,Y, µ) = ‖A‖∗+λ‖PΩ(E)‖1 +〈Y,D−A−E〉+
µ

2
‖D−A−E‖2F .

(16)
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Algorithm 2 Augmented Lagrange Multiplier for Our Problem

Input: Observation matrix D ∈ Rm×n, support set Ω and λ.

Initialization: Y0 = D/J(D); E0 = 0; µ0 > 0; k = 0.

while not converged do

// Solve Ak+1 = arg minA L(A, Ek,Yk, µk)

(U, S ,V) = svd(D − Ek + µ−1
k Yk);

Ak+1 = USµ−1
k

[S ]VT .

// Solve Ek+1 = arg minE L(Ak+1, E,Yk, µk)

Ek+1 = PΩ(Sλµ−1
k

[D−Ak+1 +µ−1Yk])+PΩc (D−Ak+1 +µ−1Yk)

Yk+1 = Yk + µk(D − Ak+1 − Ek+1)

Update µk to µk+1

k ← k + 1

end while

Output: Ak, Ek

Similarly to [31], we introduce a soft-thresholding (shrinkage)
operator for convenience. It is defined as:

Sε[x] �


x − ε if x > ε,
x + ε if x < −ε,
0 otherwise,

(17)

where x ∈ R and ε > 0. This operator can be extended to multi-
dimensional arrays by applying it element-wise.

3.4 Experimental Results

Fig. 5: Example 3D shapes from the database of facial sculp-
tures in Bayon. Notice that many of them are incomplete, due to
natural decay and damage from vandalism.

We conducted experiments to restore the 3D shapes of real-
world cultural relics. The Bayon facial statue database introduced
in Appendix A is used, including 151 facial sculptures scanned

Fig. 6: The small data set for verification. The top two rows: the
chosen six well-preserved faces; The rest: demonstrations of syn-
thesized samples, generated by cutting down a certain facial area.
Holes are filled using smooth surfaces.

from the temple Bayon. A part of these models are shown in
Fig. 5. Due to weathering, vandalism, and some other reasons,
many sculptures are incomplete, and some of them are damaged
so heavily that only a small part is preserved.

A relatively complete sample, No. 15N, shown in Fig. 4(a), is
chosen as the template. Compared to the outer part of a facial
sculpture, such as the ears and the headwear, the inner part (the
face) contains more information we are interested in. Taking this
into consideration, before generating dense correspondences, the
outer part of the template is masked out, as illustrated in Fig. 4(b).

Besides, initially each sample contains around 500,000 points
and 1,000,000 triangles. In order to reduce the amount of
calculation, the template was down-sampled to 10,000 points
before the shape matching. This leads to an observation matrix D
with 30,000 rows—three times of the number of sampling points.

3.4.1 Verification Experiment

Fig. 7: An experiment with known ground truth to verify the
correctness of the shape restoration method proposed in Sec-
tion 3.3.2. Left: original shapes. Middle left: synthesized inputs,
with nearly half of each face cropped. The missing part of each
face corresponds to a plane on the surface of its bounding box.
Middle right: corresponding restored outputs of the original ma-
trix recovery method (Section 3.3.1). Right: restoration results of
the restoration method we proposed.
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We would like to examine the effectiveness of our proposed
method in Section 3.3.2. A test with the Bayon database was de-
signed as below. First, we chose several samples to form a small
data set. Six well-preserved faces in total were chosen from the
entire database. For each chosen face, five extra samples were
synthesized by cutting down a certain area randomly, as illus-
trated in Fig. 6. Holes were filled using simple smooth surfaces.
This results in a data set containing 36 samples, on which both
the original matrix recovery method in Section 3.3.1 and our pro-
posed method in Section 3.3.2 were carried out, aiming to restore
those incomplete samples back to their origins.

Fig. 8: Comparison of the restroration accuracy. For each
individual sample, the average displacements between different
restoration results and the ground truth are shown. According
to this result, our restoration algorithm beats the original robust
PCA method in all these cases.

The process of restoring this small data set cost less than 20
seconds on a common laptop with our Matlab implementation.
Part of the restored outputs are shown in Fig. 7. Compared
with the outputs of the original matrix recovery model, which
look quite similar to each other, more accurate results were
achieved by our revised algorithm introduced in Section 3.3.2.
A comparison of the restroration accuracy is shown in Fig. 8.
This verifies the effectiveness of the proposed shape restoration
method.

3.4.2 Restore the Bayon Faces
More restoration results were generated using the entire Bayon

face database. In the convex optimization process (Eq. (15)),
there is a weighting parameter λ that trades off the rank of the
solution versus the sparseness of the error. As we mentioned, pa-
rameter λ is in the form c/

√
m, where c is a constant, typically

set to 1. m is the length of the input vectors, fixed to three times
the number of corresponding points in our experiment. Therefore
the constant c could be used as a scaled version of the parameter
λ. Notice that for our shape restoration problem, this parameter
c trades off the similarities of all input models versus the char-
acteristics of each sample: the larger c is, the more individual
characteristics, as well as the error caused by shape incomple-
tion, will be kept and vice versa. Fig. 9 illustrates the effect of
changing the value of parameter c. The result shows that the typ-
ical value 1 seems to be a good trade-off for parameter c in our
shape restoration task.

(a) No. 20E (b) No. 22E (c) No. 22N (d) No. 24E

Fig. 9: More restoration results, with three different values of pa-
rameter c. Each column belongs to the same sample, and the first
row shows the original inputs. The remaining rows demonstrate
the outputs under different values of parameter c, 2, 1.6 and 1,
respectively, from top to bottom.

4. Joint Restoration with Cluster Analysis
In the previous section, we proposed a novel method that builds

upon the extended matrix recovery theory to restore incomplete
samples. However, if there are two or more subcategories in
the given data set, it is more reasonable to take only the sam-
ples within that certain subcategory into consideration, instead of
using the entire data set, since these objects from the same sub-
category are more close to each other than the rest. Moreover,
sometimes we only know that there are some different subcate-
gories among the given data set, without the accurate grouping
information, since some samples may be partially damaged! This
makes the matter even worse, and it is quite common when deal-
ing with culture relics.

In this section, we introduce a novel comprehensive method
to solve this kind of problem, combining the previous restora-
tion method and cluster analysis together. Accurate restoration is
achieved by adopting a two-step shape recovery strategy. Rough
restoration and clustering processes are first carried out using the
entire database to group similar samples together. Then refined
restoration using high resolution data is executed in each cluster
to restore higher details while retaining the characteristics of each
shape.

4.1 Restoration and Clustering
As we mentioned before, in order to achieve detailed restora-

tion results, the given data set should be divided according to
the shapes of samples. This is a typical task of cluster analy-
sis, with several classical solutions, such as K-means discussed in
[5]. Here we choose a flexible clustering method—hierarchical
clustering. Instead of generating a “flat” data description, like K-
means, hierarchical clustering lead to a hierarchical representa-
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1st Step: Rough Restoration with Low Resolution Data 2nd Step: Refined Restoration with High Resolution Data

Fig. 10: The workflow of our proposed two-step restoration method. The same restoration algorithm, which is explained in Section 3.3.2,
is used in both steps.

tion, where the relationship among all samples is clear at a glance
and clusters can be chosen more flexibly.

In the practice of refined restoration, an additional benefit is
that for a certain sample, which is one leaf node in the dendro-
gram, the scope of the cluster used for recovery can be gradually
enlarged, until a satisfactory result appears. This bottom-up strat-
egy also enables efficient computation on limited memory, as only
a part of the database is required in the computation.

We choose a simple but effective approach to evaluate sim-
ilarity between two samples. After reforming each sample
as a length-fixed vector, the similarity evaluation turns into
the problem of measuring distance between two points in a
high-dimensional vector space. Here the Euclidean distance is
employed among a number of possible metric candidates. Notice
that the raw 3D measurements should not be used to similarity
evaluation directly, since some of them may be incomplete.
Instead, a rough shape restoration procedure is carried out
beforehand, using all but relatively low resolution data.

4.1.1 Integrating Restoration with Clustering
We leverage the fact that similar shapes can be restored via

the method introduced in the previous section. Considering that
these samples may come from different subcategories, a two-step
restoration strategy is developed, as shown in Fig. 10.

First of all, a preprocessing similar as Section 3.2 is adopted,
turning each sample into a fixed-length vector to represent its
geometric shape. After that, in order to properly divide the
data set into subcategories, a rough restoration process with all
samples is carried out to temporarily handle data incompletion.
Then a refined restoration with higher resolution data is executed
in each respective cluster, which results in detailed restorations
that retain the characteristics of each face. Several advantages
are brought by the proposed method, including higher restoration
accuracy and reduced computation. Notice that we adopt the
same restoration method in both rough and refined shape recov-
ery steps using data with different resolution, and the scopes of
the faces within the database are different, too.

4.1.2 Post-processing
Recall that in the optimization Eq. (15), the output matrix E

evaluates the difference between observation D and estimated
original shape A, and Ωc records the positions of missing entries.
This can be used to help doing the merging process. In details, ap-
proximate confidence scores can be estimated for sampling points
on both restored and initial shapes. Those points with higher con-
fidence scores are supposed to dominate the merging process. It
is clear that for restored points corresponding to missing data,
their scores of confidence should be set higher. Similarly, for a
certain observed entry (i, j) within Ω, if the difference value ei j

is relatively large, showing that there might be a corruption, the
confidence value of this point from the restored shape should be
set higher as well.

4.2 Experiments
In this section, we show the results of applying the proposed

method to the Bayon face database. 161 digital copies of scanned
faces are included in this data set. Due to the cropping operation
in the preprocessing step, our restoration method handles the
facial part only, without considering outer parts such as ears and
headdresses.

4.2.1 Experiments with Bayon Faces

Fig. 11: The hierarchy of Bayon faces, based on the global rough
restoration results using low resolution data.
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Fig. 12: Enlarged image of the hierarchy corresponding to the
chosen cluster in Fig. 11.

First, after the rough restoration and classification procedures,
similar samples were grouped together to generate a hierarchy
shown in Fig. 11. Here we randomly chose one cluster in the
whole dendrogram, which is marked by a red box in that figure,
to demonstrate the restored results of our method. The enlarged
image of the hierarchy corresponding to this cluster is shown in
Fig. 12. Notice that due to the characteristic of our restoration
method, a necessarily large cluster, which usually contains more
than three samples, is required. Moreover, if the restoration result
is not satisfactory enough (judged by the user), the cluster can be
gradually enlarged until good results are generated.

Fig. 13: The 12 samples that belong to the chosen cluster in
Fig. 11.

There are 12 samples in the chosen cluster, where several
samples are partially damaged, as shown in Fig. 13. For example,
the third face in the bottom row, which is numbered as No. 49E,
has a broken nose. After applying the refined restoration process
to this group, the missing nose part of this sample is recovered,
as shown in Fig. 14. From the comparison from both frontal and
side views, as well as the enlarged partial details, we can see that

Fig. 14: One experimental result of our proposed restoration
method, face No. 49E, with comparison from a side view and en-
larged partial details. Upper: measured shape. Bottom: restored
output.

the broken nose and mouth are well restored, without changing
other undamaged areas.

4.2.2 Clustering Bayon Tower

Fig. 15: Similarities within towers. Each column corresponds to
a certain face tower: from top to bottom, the first four items show
the four facial sculptures on that tower, and the last one illustrates
the tower’s representative shape (average shape).

We also applied our method to cluster Bayon face towers. Ac-
cording to [27], facial sculptures on the same tower are of a sig-
nificant similarity comparing to those from different ones. Based
on this fact, we presented a hypothesis where each face tower
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could be treated as an unit, and further modified the original goal
to classifying face towers. In order to eliminate the impact of
data incompletion, our restoration scheme was adopted within
each tower. Towers were represented by the average shapes of
restored faces, and then hierarchically clustered based on their
pairwise similarities. The spatial distribution of this classifica-
tion result shows that there are some patterns among the structure
of Bayon that could be found to be meaningful through further
archaeological research.

The famous face towers are located on the upper terrace of the
Bayon. Typically, each tower supports four huge smiling faces.
In the previous classification studies, such as [35] and [27], faces
were treated individually without considering the spatial connec-
tions. However, it is easy to notice that faces on the same tower
look more similar than those from different ones, as shown in
Fig. 15. Hence we may assume that, compared with consider-
ing every face separately, it is more reasonable to treat each face
tower as a union, as it seems to have a high shape similarity within
each tower.

There are at least two advantages to consider each tower as a
unit: first, the number of clustering units is reduced, making the
result clear at a glance, and it is therefore easy to discover the
hidden regularities; second, a number of faces are only partially
preserved, which makes the comparison inaccurate and inappro-
priate. If every tower is treated as a whole, then the other com-
plete faces on the same tower can be used to help repairing the
missing part, following the restoration scheme introduced in Sec-
tion 3.3.2.

A restoration procedure introduced in Section 3.3.2 was
adopted within each face tower, trying to handle the shape in-
completion and make the similarity comparison more accurate.

Fig. 16: The hierarchy of Bayon face tower clusters. This den-
drogram was divided into three groups, labeled in different col-
ors. The numbers on the bottom axis refer to the serial numbers
of face towers; while the vertical axis refers to the distance mea-
sure between spots or spot clusters. The height of a node can be
thought as the distance value between its right and left sub-branch
clusters. Notice that tower No. 52 was labeled as an outlier in this
result.

  

Fig. 17: The distribution of our clustering result showed in Fig. 11
on the plane of Bayon.

The average of repaired faces was used for representing the cor-
responding face tower. In case no other than one face existed in a
certain tower (which is really rare in our experiment), the restora-
tion step would be skipped, keeping the original shape for further
comparison.

After the proceedings described in Section 3.2, a small data set
containing the representative faces of 35 towers was built. Based
on this data set, a hierarchy of face tower clusters was gener-
ated (Fig. 16). The tree root refers to a single cluster containing
all elements, and the leaves correspond to individual face tow-
ers. After setting a proper threshold value, the whole dendrogram
was divided into three groups, labeled in different colors. Fig. 17
illustrates the distribution of clustering results on the plane fig-
ure of Bayon. Notice that tower No. 52 was included in none
of the above three groups, because it was “far” from all the other
towers, which means it had a notable difference from the rest.
This was also confirmed by JSA experts. From their perspective,
this tower seemed to be built later than the others, with a slightly
worse sculpting skill compared with all the other towers.

After acquiring the above classification results, we tried to un-
scramble them from the perspective of culture and history, hoping
to get some new findings of the ancient mystery.

First of all, our classification results were consistent with the
three-type hypothesis of Bayon faces given by the JSA report
[35]. That was that these faces can be roughly divided into three
basic groups, as shown in Fig. 11. This indicates that there might
be different sculpture teams building the Bayon at the same time.

Second, it is interesting to find that the spatial distribution of
our result shows a certain degree of structural information. Let
us focus on Fig. 17, it seems that the blue and green groups are
almost symmetrically distributed on both sides of the east-west
axis of this temple. Moreover, for the third group (the red one),
all samples, except towers No. 8, 36, and 48, are located on the
symmetrical positions, forming a figure that resembles the mean-
ingful structure called a “Mandala”.As this kind of structure is
widely used in the Hindu and Buddhist religious traditions for
establishing a sacred space, the above discovery confirmed our
classification results to some extent.
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5. Intraclass Shape Comparison
In the previous two sections, we solved the problem about

how to remove corruptions from a given data set using the hid-
den group similarities. Complete shapes can be recovered even
when there are two or more unknown subcategories exist. Now
we move on to the further analysis: to compare similar shapes
quantitatively. Compared with general shape comparison prob-
lems, intraclass shape analysis enjoys better semantic explanation
and higher processing accuracy, which bring it increasing concern
with wide range of applications, such as biometrics, medical di-
agnosis, manufacturing industry, etc.

Given a group of shapes for comparison, denoted as {S i}
N
i=1, the

traditional method is to find a proper metric d : S × S → R to
evaluate the distance between them. This metric can be used to
form a distance matrix, like the one shown in Fig.18.

However, if we want to know the details about shape differ-
ences, the previous scalar evaluation will be no longer enough.
For instance, given several silhouettes from different kinds of
butterfly, as shown in Fig.19, we would like to detect the most
identifiable regions that cause the subcategories differ from each
other. In this case, the feature region of the Papilio samples is the
swallowtail highlighted in the figure.

5.1 Shape Matching
One essential part of the proposed comparison method is shape

registration. While source object is deformed to target shape, the
differences between them will be revealed.

Here we choose a non-rigid registration method introduced in
[21]. Comparing with other shape matching method, this method
is more appropriate for our problem. This is mainly because that
common methods usually focus on reducing the residuals of reg-
istration only, without considering of keeping local structures.
This may lead to inaccurate correspondences between objects and
hurt the performance of the later comparison. On the contrary,
based on the observation that similar objects usually have very

Fig. 18: An example of distance matrix

Fig. 19: Silhouettes of butterfly. The highlighted swallowtail
regions make the Papilio samples different from the others.

similar local structures, the chosen registration method uses local
rigid transformations to guide a underlying free-form deforma-
tion (FFD, introduced in [42]). Due to this attribute, local struc-
tures will be kept during the registration.

Moreover, the registration process also provides us a way to
find correspondences between similar objects. Based on the reg-
istered result, corresponding points can be obtained by adopting
nearest neighbor point search. Fig.20 shows an example of shape
matching.

Notice that in the above shape matching method, a certain sam-
ple is chosen as the template, to which the rest all samples will be

(a) template (b) target

(c) contours before registration (d) contours after registration

(e) matching result

Fig. 20: An example of shape matching. The correspondences
are obtained via a nearest neighbor search based on the registered
shape (d). A common method to accelerate this search is to use
k-d tree data structure.
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registered. This will actually affect the shape matching process,
since different templates will lead to different corresponding re-
sults. Fortunately, the difference is small enough to tolerant for
our analysis.

5.2 Identifiable Region Detection
Traditional cluster analysis can only provide overall grouping

information, such as the dendrogram generated by hierarchical
clustering. In this section, we will introduce a method to auto-
matically detect identifiable regions among a group of shapes.

5.2.1 Biclustering Methods
Recently, biclustering techniques, such as studies in [14],

[20], [33], [39], were proposed for revealing submatrices show-
ing unique patterns, e.g. a submatrix with low numerical rank
[44]. Different from traditional clustering method, these meth-
ods simultaneously discover row and column groups and the de-
tected biclusters may correspond to arbitrary subsets of rows and
columns, as the white rectangles shown in Fig.21.

(a) Original matrix (b) Biclustering result

Fig. 21: A demonstration of the biclustering process. After
proper operations to re-order both rows and columns of the origi-
nal matrix, a biclustering result is obtained with clearer meaning
and structures.

In our problem, we choose the biclustering method proposed
in [14]. Based on the fact that good clustering usually leads to
a few homogeneous blocks in data matrix, this method makes
use of lossless data compression to decompose a binary matrix
into disjoint row and column groups. Comparing with other
biclustering method, numbers of row and column groups are no
longer needed to be specified in this method.

5.2.2 Detecting Identifiable Region via Biclustering
Based on the correspondences we obtained by shape matching,

we start to find feature regions that distinguish different subcate-
gories from each other.

Suppose there are N targets, each of which has M sampling
points with known correspondences. We first generate a N-by-
M matrix D to record detailed differences when these targets are
compared to a certain object, e.g. the average shape. In order
to emphasize the most notable regions, we use the robust PCA
method introduced in [12] to filter this matrix, highlighting sig-
nificant regions.

We then search for notable similarities along not only the di-

mension of the object index but also the dimension that corre-
spond to spatial sampling points. Due to the fact that identifiable
regions lead to regular structures in the difference matrix we gen-
erated, we turn this partial similarity searching problem into a
low-rank submatrix detection process, which can be solved by
biclustering method. Algorithm 3 shows the whole flow of our
proposed method.

Algorithm 3 Identifiable Region Detection

Input: a group of similar objects {S i}
N
i=1

Obtain dense correspondences {PS i }
N
i=1 between {S i}

N
i=1

Calculate the average PS = 1
N
∑N

i=1 PS i

for i = 1→ N do

Evaluate the displacements at every corresponding points:

dS i = |PS i − PS |

end for

Form the displacement matrix D � [dS 1 | · · · |dS N ]

Filter D to matrix A in order to highlight features

Binarize A to matrix B by thresholding

Adopting biclustering on B to find notable regions {Rt}
K
t=1

Output: {Rt}
K
t=1

5.3 Experiments
Here comes the experiment part. From a large binary image

database collected by the LEMS Vision Group at Brown Univer-
sity, we selected a butterfly silhouette data set, as shown in Fig.22.
Samples from several subcategories are included, such as Papilio
with swallowtail. The following experiments are mainly adopted
on this data set.

We adopted the proposed method to the butterfly data set.
Fig.23 show the effectiveness of the low-rank matrix filtering we
designed. Two low-rank submatrices are found in the biclustering
process, as shown in Fig.24, which correspond to two different
subcategories respectively. Notice that the desired result similar
to Fig.19 is obtained.

Fig. 22: A butterfly data set from a large silhouette image
database collected by the LEMS Vision Group at Brown Univer-
sity.
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(a) Original binary representation matrix

(b) Representation matrix after RPCA filtering

Fig. 23: The effect of RPCA filtering. Clearer result is generated.

(a)

(b)

(c)

(d)

Fig. 24: The two detected low-rank submatrices (yellow blocks
in the figure) and their corresponding regions (highlighted in red
color).

6. Conclusions
In this paper, we focus on the general problem of intraclass

shape analysis. Given samples from an arbitrary category, we
would like to discover the overall similarity and the detailed de-
scription about shape difference. In case that defective samples
exist, we handle shape incompletion as well. Besides, we can
further divide the data set into sub-categories according to their
similarities.

More specifically, we adopt a non-rigid matching scheme to
align sample shapes. As for the shape restoration issue, unlike ex-
isting example-based approaches, our method simultaneously re-
stores incomplete samples via convex optimization, without man-
ual intervention and prior knowledge about shape. We also show
how to combine restoration with cluster analysis, which further
improve the restoration. Moreover, based on the deformation
field from pairwise shape comparison, we form a similarity tensor
to record shape differences. Low-dimensional shape representa-
tion can be obtained via tensor decomposition. Besides, we turn
the identifiable region detection problem into a low-rank subma-
trices searching process, and solve it with biclustering algorithm.
The proposed methods are evaluated with real world data. Sat-
isfactory results are achieved, which verifies the effectiveness of
our study.

6.1 Limitations
Although the effectiveness of the proposed methods is proved

by experimental results, there are still several limitations:

Poor restoration outputs may occur
Due to the fact that our method makes use of group similar-
ity implicitly, a necessarily large data set containing enough
samples, usually more than three, is required. For example,
if a certain part of all samples are missing, it will be really
difficult for our method to recover that area, since there is
no information about that missing part.

Restored objects are smoothed to some extent
Currently our method is good at keeping common attributes
among a group of similar objects, while the individual char-
acters are difficult to extract. This will lead to smoothed
restoration, with some details lost. Besides, the current
shape matching method relies on the template chosen, which
should be refined as well.

6.2 Extensions and Open Problem
We hope that this paper demonstrates the utility of low-rank

matrix recovery theory in the shape analysis domain. Here we
describe several possible extensions to our work, as well as some
possible directions for future research.

To integrate shape matching into optimization
Since the proposed restoration method requires accurate
shape correspondences, while currently we only do the
shape matching once, before the optimization. If we could
integrate the non-rigid shape matching into the whole
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optimization and keep updating the correspondence, the
restoration result would be more accurate.

Iteratively restoring and clustering
For the restoration and clustering problem discussed in
Section 4, our proposed joint method works not iteratively,
which is more effective for this kind of chicken-and-egg
problem. This can be improved in future.

To further develop shape comparison method
As for the identifiable region detection method discussed
in Section 5, spatial constraints should be added during
the biclustering process. This actually can be solved by
adopting a shape segmentation first, and then cluster these
pieces.
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