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3D Shape Reconstruction by Dynamic Sensing with A
Range Sensor
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Abstract: Building 3D shape models of interesting targets and getting their localization are very important funda-
mental tasks in the fields like digital culture heritage, robotics, mixed reality, medical application and so on. Most
commonly used range sensors cost a relatively long time of data acquisition. This causes data distortion and cannot be
ignored especially in the case of continuously gathering data on a moving platform. Existing common solutions to this
problem are either taking ”stop-scan-go” strategy to avoid distortion or correcting the sensor motion using secondary
sensors like GPS, inertial sensor, camera or even another range sensor. Some other researches apply linearization,
discretization and other specified constraints to the problem to achieve compromised results.
This thesis focuses on efficient and accurate 3D shape reconstruction under a moving sensing system only with a single
range sensor. Different from previous solutions, the proposed system works in an efficiently continuous manner. We
don’t have to stop the platform to obtain a stationary scan. Sensor can move under a reasonable motion mode and
simultaneously scan the target or environment. Data distortion caused by continuous movement will be rectified. This
continuous manner is much more efficient and attractive in practical applications.
Our method consists of two major components: 1) sensor motion estimation - recovering motion of laser projector
which leads to data distortion and relies on 2) inter-frame correspondences - extracting local feature points which are
robust to data distortion. In experiments, we demonstrate that the algorithm achieves substantially better performance
for i) data rectification, ii) robust feature extraction.

1. Introduction
Building accurate 3D models of interesting targets is a very

important fundamental task in the fields like using range finder in

digital culture heritage, robotics, mixed reality, medical applica-

tion and so on. [1–4]

When investigating 3D reconstruction, it is necessary to de-

scribe the kind of data being considered. Most commonly used

sensors for 3D modeling are camera and laser range sensor. Com-

pared with camera, range sensor has the following advantages: 1.

It can easily get direct and highly accurate 3D data. 2. Range

data is stable, whereas the 3D modeling techniques based on 2D

cameras are much more sensitive to illumination, shadows, scale

and pose. However, range sensor costs a relatively long time of

data acquisition, e.g., Vivid 9i takes 30 seconds for one 3D scan.

This causes data distortion and cannot be ignored especially in the

case of continuously gathering data on a moving platform with

relatively fast speed.

The way of continuously obtaining range data is obviously

more efficient and practical in actual applications. This paper
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challenges the problem of 3D shape reconstruction using a mov-

ing range sensor.

2. Related Work
A typical issue coming from robotics field is to build a 3D map

of complex non-flat terrain. Although range sensors can afford

accurate 3D point clouds of the environment, relatively slow data

acquisition rate compared with fast vehicle speed leads to dis-

torted data and difficulties for alignment. A common solution to

this problem is taking ”stop-scan-go” strategy [5, 6] to avoid dis-

tortion.

In practical, gathering data continuously with moving sensors

is obviously a more efficient way. There are also a lot of work

trying to solve the data distortion problem for moving range sen-

sor. Considering from the information source, they can be catego-

rized into two classes. The first group tries to solve the problem

by utilizing external information from a secondary sensor [7, 8]

or prior knowledge of the environment or targets. For example,

to digitize large-scale culture heritage, [9] has used laser range

sensor mounted on flying balloon to cover the whole site. The un-

controllable movement of balloon causes distortions on the data.

Utilizing the overlapped areas with another range sensor fixed

on the ground, Banno and Ikeuchi adopt polynomial fitting to
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approximate the sensor motion parameters, then align and rec-

tify distorted data. Harrison and Newman [10] have made effort

to utilize the vertical plane feature in man-made environment to

refer low amplitude roll, pitch and yaw movements of vehicle

moving on uneven ground. The other group only use internal in-

formation from the sensor itself. Bosse and Zlot [11] proposed

a 3D scan-matching method varied from the ICP algorithm, in

which sensor trajectory is discretized and constraint are linearized

to deal with continuously collected data from a moving vehicle.

Structured light range sensors with rolling shutter, like Microsoft

Kinect, have the similar data distortion problem when it is used

on a moving platform. In [12], Ringaby and Forssen proposed a

scan rectification method by estimating 3D camera trajectory.

Another related line of work is rectification of rolling shutter

video. This problem has been studied, and solved to some ex-

tent [13, 14]. What is different here is that in range sensor sys-

tems we have access to depth values in all pixels, and these allow

us to robustly solve for the full 3D sensor trajectory, instead of

resorting to affine motion [13], or rotation only models [14].

Our data rectification algorithm proposed in this paper, has uti-

lized the correspondence constraints between 3D shapes. A lot

works have been done on this problem of finding correspondence

between 3D shapes. Classical rigid alignment includes meth-

ods based on sampling and verifying candidate transformation,

or by applying the iterated closest point algorithm or its vari-

ations [15, 16]. More recent works focus on shapes with large

variations. There are some successful works about non-rigid reg-

istration of surfaces [17–20], which usually consider the whole

shape as a single feature and can not handle with large missing of

data. Several recent works also deal with matching approximately

isometric shapes [21, 22].

In the case of deformation coming from relative motion be-

tween range sensor and objects, it has its own properties. It usu-

ally includes large amount of missing data, due to occlusion or

change of scene or view points. The shape might be deformed

significantly between scans and the deformation doesn’t keep the

geodesic distance invariant. Thus we consider local shape feature

is better choice for this problem.

3. Shape Rectification for Intra-frame Motion

Since raw range data only have sensor-oriented coordinates,

data from different view points are described in different coor-

dinate system. In the continuously data gathering mode, each

point has a individual coordinate system. To correctly align those

points, we need to apply unique transformation to each point to

make them described in the unified coordinate system. When

there are some overlapped areas between two data sets, we apply

transformations to make them coincide.

Those transformations can be derived from the sensor motion.

We build a proper model to describe the sensor motion. Utilizing

the correspondence of feature points in overlapped areas, we can

construct a cost function to evaluate the motion model. Sensor

motion is estimated by minimizing the cost function. Finally the

distorted data can be rectified based on the transformation derived

from estimated sensor motion.

3.1 Intra-frame Motion Model
According to Chasles’ Theorem [23], every rigid body motion

can be realized by a rotation about an axis combined with a trans-

lation parallel to that axis. It can be represented using exponential

of twist ξ, as shown in following equation:

G = eξ̂ = I + ξ̂ +
(ξ̂)2

2!
+

(ξ̂)3

3!
+ · · · (1)

where ξ =
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 (2)

where the rotated angel θ is the norm of ω. ν describes the trans-

lation parallel to the axis ω.

We use twist coordinate to describe rigid body kinematics for

its two main advantages. The first is that they allow a global

description of rigid body motion which does not suffer from sin-

gularities due to the use of local coordinates. Such singularities

are inevitable when one chooses to represent rotation via Euler

angles, for example. The second advantage is that screw the-

ory provides a very geometric description of rigid motion which

greatly simplifies the analysis of mechanisms. [23]

For convenience without loss of generality, we have made an

assumption that the motion of sensor is smooth, which is appro-

priate in most practical applications. This means that the sensor

motion can be represented by a smooth function whose continuity

is higher than C0. Such a smooth function can be represented by

a sum of smooth basis functions, and the most simple case is the

polynomial representation.

While the sensor moves, the transformation changes in accor-

dance with time t, and the twist coordinate is represented by func-

tions of time t as ξ(t)

ξ(t) = ξ0 + ξ1 · t + ξ2 · t2 + ξ3 · t3 + · · · (3)

which we call polynomial motion. Without loss of generality, we

can assume that, initially at t = 0, the sensor and object coor-

dinate systems are identical, and hence ξ0 = 0. We denote the

coefficients of polynomial motion of N-th order by ξ(t)N , where

ξ1, ξ2, · · · , ξN are 6 × 1 twist vectors. Here we assume that all

parameters are constant in the whole sensor motion sequence of

a time duration Tc.

Therefore the trajectory of range sensor in the object frame q(t)

can be represented as:

q(t) = G(t) · q(0) = e ˆξ(t) (4)
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Fig. 1 Overlapped areas between sequent range images.

Given the motion model of sensor G(t), a point of the object mea-

sured at time t with local range sensor coordinate pr, can be trans-

formed to the object frame:

qo = G(t) · pr (5)

3.2 Motion Estimation from Correspondences
As shown in Fig. 1,when we use a 3-D continuously scanning

range sensor, there are overlap regions in sequent range images,

through which we assume that the sensor motion is represented

by a unique sensor motion model. If a point with its object co-

ordinate po is measured in two range images indexed by 1 and 2,

the sensor coordinates are related to the world coordinates by:

po = G(t1) · pr1

po = G(t2) · pr2

where pr1 and pr2 are the sensor coordinates and t1 and t2 are

the measured time of point po in two range images successively.

By eliminating the object coordinate po, the constraint equation

describing the correspondence of feature points can be written as:

G(t1) · pr1 −G(t2) · pr2 = 0 (6)

Each pair of corresponding points can give a constraint equa-

tion. Theoretically, when the number of equations is more than

the number of unknown variables in G(t), we can have a solution

of sensor motion. In the actual case, we usually have redundant

equations. To find an optimal solution from those constraints, we

construct a cost function.

Given K points p1, · · · , pK with measurements

(pr1,i, t1,i, pr2,i, t2,i), 1 < i < K, when the motion parameter

of twist ξ is represented by N-th order polynomial, the optional

solution is given by minimizing the cost function defined by the

sum of squared errors:

E(ξ) =

K∑
i=1

‖ G(t1,i) · pr1,i −G(t2,i) · pr2,i ‖
2 (7)

with G(t) = e ˆξ(t),where ξ(t) = ξ1 · t + ξ2 · t2 + · · · + ξN · tN .

In this cost function, there are 6N unknowns. Since each pair

of feature points can give 3 constraint equations, theoretically, as

long as 3K ≥ 6N, there would be a solution for the problem.

We minimize the cost function to find the optimal solution.

Here we adopted Levenberg-Marquardt algorithm to solve it.

3.3 Rectification from Motion
Based on the estimated sensor trajectory G(t) from Eq. 7, trans-

formations from local sensor coordinates to world coordinates

can be precisely deduced for each individual measurement point.

4. Feature Correspondence for Distortion by
Sensor Motion

In our proposed sensor motion estimation algorithm, point cor-

respondences have been assumed as prior conditions. Actually,

due to the nature of distorted data from moving range sensor, it’s

not a easy job to obtain reliable corresponding relation. Deforma-

tion coming from relative motion between range sensor and ob-

jects, has its own properties. It usually includes large amount of

missing data, due to occlusion or change of scene or view points.

The shape might be deformed significantly between scans and the

deformation doesn’t keep the geodesic distance invariant.

To solve this problem, we propose a novel algorithm of ex-

traction of 3D shape correspondences. The basic idea is utiliz-

ing Morse theory to extract topological information from criti-

cal points of a function. We design two types of Morse function

for different conditions. We then find the maximal stable energy

basins from the extracted topological tree by introducing energy

landscape and disconnected graph here. To describe the features,

we apply an affine invariant regularization to the extracted re-

gions. We then attach a multiple-scale description to each crit-

ical point since there are multiple extracted regions supporting

the point. To apply this algorithm to our problem that 3D shape

reconstruction from data distorted by sensor motion, we assume

that local data deformation satisfies affine transformations. De-

tails will be described in latter sections.

4.1 Feature Detection
4.1.1 Morse Theory

In this sub-section, we give a brief review of basic definitions

and concepts of Morse theory we will use here.

Definition of critical point: given a manifold M, suppose

f : M → R is a smooth function. Then x0 ∈ M is critical point

of f if and only if d f |x0 ∈ T?
x0
M. The value of f (x0) is called

critical value.

A critical point is called nondegenerate if its Hessian is nonde-

generate.

Definition of Morse function: a smooth function f is called a

Morse function if its all critical points are nongenerate.

Morse Lemma: If p0 is nondegenerate critical point of index

λ of a smooth function f : M → R, then there exist local co-

ordinates (xi)1≤i≤m near p0 such that xi(p0) = 0, ∀i, and in these

coordinates we have the equality

f = f (p0) −
λ∑

i=1

(xi)2 +

m∑
j=λ+1

(x j)2 (8)

where m is dim(M).
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It can be deduced from Morse Lemma that for a Morse func-

tion f : M −→ R with a critical point x0, one can perturb f

by composing with an isotopy of the manifold M, that the new

function has the same critical point x0.

We assume that the deformation caused by sensor motion satis-

fies the perturbation mentioned above. In other words, we assume

that critical points of Morse function on 3D mesh are kept after

the distortion by sensor motion. Based on this assumption, we de-

sign a algorithm slicing the 3D mesh by critical values to extract

feature regions which are invariant to the deformation.

In the case of 3D data scanned by moving range sensor, the co-

ordinates of objects always change with the movement of sensor.

Thus we need to choose appropriate Morse functions which are

not affected by the definition of reference frame.

4.1.2 Implicit Polynomial Morse Function
One choice is to utilize implicit polynomial (IP) which fits the

object surfaces.

Given a 3D data set, the 3D IP of degree n is defined as:

fn(x) =
∑

0≤i, j,k;i+ j+k≤n

ai jk xiy jzk (9)

where x = (x, y, z) is one point in the data set.

An IP fitting of 3D surface is to find an IP whose zero set

{x| fn(x = 0)} can represent the given 3D data set best.

Ideally, it means:

fn(x) =
∑

0≤i, j,k;i+ j+k≤n

ai jk xiy jzk = 0 (10)

Technically, it can be considered as the IP which minimizes the

square error: ∑
( fn(x))2 (11)

The degree n can be adaptively determined by adopting a fast

adaptive fitting method developed by Zheng [24]. It achieves

O(Nk) complexity where N is the number of data points and k

is the number of polynomial coefficients. Denote the found IP as

f̃n(·): ∑
( f̃n(x))2 = min

fn(·)

∑
( fn(x))2 (12)

According to [24], the value of IP fitting won’t be affected by

the change of coordinate system. Another advantage is that IP

is invariant to affine transformation. As shown in Fig. 2, left top

figure is the original Stanford bunny model and the left bottom

one is the model colored by the value of its IP function f̃n(x). The

right top figure is the one distorted by an affine transformation

and the right bottom is the one colored by its IP value. We can

see that the corresponding parts on the two models share the same

color distributions.

IP is a global fitting method where all points are involved in the

calculation. It works well on the data sets which contain the same

parts of objects. But in the case of large change of the observed

targets, like view point change or occlusion, it will be affected a

lot by the data change.

(a) (b)

(c) (d)

Fig. 2 Stanford bunny colored by IP values. (a) Original model. (b) The
one distorted by an affine transformation. (c) Original model colored
by its IP values. (d) Distorted model colored by its IP values.

4.1.3 Shape Difference of Beta stable Laplacian
To overcome the problem of IP in the case of data change, we

design another Morse function based on Laplacian smoothing.

Laplacian smoothing is one of the common methods of mesh

smoothing. The basic idea is moving the vertices of mesh incre-

mentally in the direction of the Laplacian. One of the advantages

of selecting Laplacian smoothing is that it uses relative positions

of neighborhood vertices, which don’t change with the reference

frame. Another advantage is that the computational complexity

of Laplacian smoothing is linear in time and space which is more

practical on large meshes.

Different from the conventional Laplacian smoothing, we use

the difference of the vertex and the one after smoothing:

Ik =‖ Lk+1(x) − Lk(x) ‖ ·sign(n · (Lk+1(x) − Lk(x))) (13)

where k is the iteration times of Laplacian, n is the surface normal

at point x.

Geometrically, this function describes the local shape of ob-

jects. It emphasize the parts where the shape changes fast. The

more iterations of Laplacian done, the flatter the function would

be, and more small changes on the shape are filtered. To de-

termine an appropriate number of k, inspired by the concept of

feature’s stability in [25], we define a Beta-stable Laplacian func-

tion.

Let Nk be the norm of Ik:

Nk =‖ Ik ‖=
∑
‖ Lk+1(xi) − Lk(xi) ‖ (14)

The variation speed δk of the Morse function at k is:

δk = Nk+1 − Nk (15)

When δk is far away from zero, we say that the Morse function

is not stable. A small change of k will lead to a significant change

of Nk. From the point of view of geometric shape, it means a
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Fig. 4 Construct a disconnected graph from Morse function based on criti-
cal points.

small hump on the surface also has large Morse function value,

which is undesired. In contrast, when δk ≈ 0, we say that Ik is

stable.

Ik is β-stable if k is the smallest integer for which δε = 0 for all

ε ∈ [k, k + β].

Fig. 3 (a) shows the value of Laplacian function changing with

the iteration times k. Fig. 3 (b) shows the variation speed δk ver-

sus k. It can be seen that the function gets stable when k ≥ 15.

4.1.4 Maximal Stable Regions
According to Morse theory, the topology of a smooth manifold

is very closely related to the critical points of the Morse function

defined on the manifold. Given a smooth manifold M, sublevel

set Mt is defined as:

Mt = {x ∈ M; f (x) ≤ t} (16)

The changes in the topology of Mt is an indicator of the presence

of a critical point.

Our main interest in using this property is to slice the the man-

ifold based on critical points.

3D mesh can be considered as a graph G = (V,E), where V

denotes the vertices and E is referring to the undirected edges

connecting the vertices.

First we define a connected component C in 3D mesh as a sub-

graph of G, in which any two vertices are connected to each other

by paths, and which is connected to no additional vertices in G.

Assume the boundary of the given Morse function f (x) is

[a, b]. When the value t gradually changes from a to b, the con-

nectivities between local minimas in the sublevel set Mt change

at critical values. As shown in Fig. 4, P2 and P3 is not con-

nected until t = f (p4) and P1 is not connected to P2 and P3 until

t = f (p5).

We thus can determine the set of critical values { f P} for key

point P by checking the change of connectivities of local mini-

mas in Mt, like f (P4) and f (P5) in Fig. 4.

We use local minimas as key points. The support regions of lo-

cal minima P, denoted as S RP, is defined as the connected com-

ponents containing P in the set of M f P
. As shown in Fig. 4, the

support regions of P2 are the green and blue parts, and the support

regions of P3 are the pink and blue parts.

The change of connectivities between local minimas can be vi-

sualized using a disconnectivity graph [26]. This idea is from the

field of physics used for visualizing potential energy. As shown

(a) (b)

Fig. 5 Example of multi-scale feature. The key point is the one on the eye
denoted by a blue arrow. (a) Support regions extracted from data
scanned by static sensor. (b) Support regions extracted from data
scanned by moving sensor. Different colors stand for the different
scales.

in Fig. 4, all local minimas are leaves nodes represented by blue

circles. The critical values f P where connectivities change are

branch nodes represented by yellow triangles. Actually the criti-

cal values f P of key point P are all branch nodes on the path from

leaf P to the root.

We adopt the depth first search algorithm to calculate the con-

nected components in Mt. The detection of local minima can

also be done at the same step. We only need to find the point with

the minimal value in the newly appeared connected components

while t changes.

4.1.5 Multi-scale Detection
The detail of how to extract the feature on 3D mesh is de-

scribed in Algorithm 1. Geometrically the extracted regions look

like basins with the bottom at key points. So we name it en-

ergy basin extraction algorithm. We only mentioned the support

regions around local minimas when we describe the algorithm.

Similarly, it only need to take the minus value of Morse function

f to get the support regions around local maximas.

Fig. 5 shows an example of the multi-scale feature. The dif-

ferent colors stand for the support regions in different scales. Al-

though they are not all the same in the two data sets because of

the change of data, still they share the same region in the small

scales. Thus we can find their similarity in different scales.

4.2 Feature Description
By far, we have extracted the multi-scale energy regions cut

by critical points. The next step is to find an appropriate way to

describe them.

Here we assume that the local deformations between the cor-

responding regions in range data from moving sensor approxi-

mately satisfy affine transformation, which is appropriate in nor-

mal moving vehicle. We thus apply an affine normalization to the

extracted regions. Since there are multiple regions in different

scales for each key point, we construct a multi-scale descriptor

made by a set of a basic descriptor. Here we adopt the spin image

to be the basic descriptor.

4.2.1 Affine Normalization
We use the shape normalization method based on the inertia
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(a) (b)

Fig. 3 (a) Difference of Laplacian on Stanford bunny model. (b) Shows the speed δk versus the iteration
times k of Laplacian.

Algorithm 1: Energy Basin Extraction
Data: G = (V,E); f (V) ∈ [a, b]
Result: a set of key points {Pi} with corresponding multi-scale support

regions S RPi

1 for t = a→ b do
2 Get the sublevel set Gt;
3 Check connectivity of Gt and give component label C toV;
4 Update the component label Ci

t for each key point Pi;
5 Update the list of key points {Pi};
6 if Connectivities between {Pi} change then
7 Record t as a parent node for connected Pi;
8 Update the disconnected graph (DG);
9 end

10 end
11 for i = 1→ |P| do
12 Get the path {ti

j} from Pi to the root ofDG;
13 for j = 1→ |ti | do
14 Get support region S R j

Pi
: the connected component containing

Pi in sublevel Gti
j ;

15 end
16 end

matrix normalization presented by Cohignac [27].

The algorithm described in [27] is for 2D image data. Here we

analogously expand it to 3D case.

Denote IF as the indicator function of a solid shape F , assum-

ing that F is previously translated so that its barycenter is at the

origin of the 3D space. The moment of order (p, q, k) (p, q and k

are natural integers) of F is defined by:

µp,q,k(F ) =

∫
R3

xpyqzkIF (x, y, z)dxdydz (17)

The discrete form for 3D meshM can be rewritten as:

µp,q,k(M) =
∑
R3

xpyqzk (18)

where (x, y, z) ∈ M

Let SF be the following 3×3 positive-definite, symmetric ma-

trix:

SF =
1

µ0,0,0


µ2,0,0 µ1,1,0 µ1,0,1

µ1,1,0 µ0,2,0 µ0,1,1

µ1,0,1 µ0,1,1 µ0,0,2

 (19)

1 





1 2 3 

4 5 6 

(a) Basic spin image 

(b) Multi-scale spin image 

Fig. 6 (a) Basic spin image. (b) Multi-scale spin image.

where µi, j,k = µi, j,k(M). According to the uniqueness of Cholesky

factorization, the decomposition of SF : SF = BF BT
F

may be

unique, where BF is a lower-triangular real matrix with positive

diagonal entries.

Let A be a non-singular 3 × 3 matrix. The normalized shape

associated to F is the shape F ′ = B−1
F

(F ). It can be proved that

the normalized shape F ′ is invariant to affine transformation A,

up to a rotation Q. (See details in [27])

4.2.2 Description of Normalized Regions
Since our normalized shapes have rotation change varying with

the coordinate system, invariance to rotation should be a desired

property of the feature descriptor. Spin image is chosen as the

basic descriptor for its rotation invariance and fast computation.

We propose an variation algorithm of spin image.

First we simply review the original spin image algorithm pro-

posed by Andrew E. Johnson [28]. A spin image is created for

an oriented vertex on 3D mesh surface. First a partial, object-

centered coordinate system is defined with respect to an oriented

point: the radial coordinate α, defined as the distance to the sur-

face normal at the point, and the elevation coordinate β, defined

as the signed distance to the tangent plane at the point. A 2-D

accumulator indexed by α and β is incremented in the surface
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mesh which is within the support region of this vertex, as shown

in Fig. 6 (a).

To use spin image in our algorithm, for each support region

S R j
P belonging to the key point P, a spin image is calculated, as

shown in Fig. 6 (b). Since the size of each support region S R j
P is

different, the coordinates range of α and β of the spin image is set

as the maximal distance along each coordinate axis from the key

point to the furthest point in the region. The resolution of bins in

the accumulator is set the same for all regions.

Given the spin image S I j for each support region S R j
P, We

construct our descriptor of the key point P as:

D(P) = {S I1, S I2, · · · , S IN} (20)

where N = |S RP| is the cardinality of the set {S RP}.

The similarity of two key points P and Q is defined as the min-

imal pairwise distance of spin images between their supporters:

d(P,Q) = min
S Ii∈{D(P)},S I j∈{D(P)}

‖ S Ii − S I j ‖ (21)

This descriptor compares features in different scales and is

more robust to occlusions and the change of view points.

4.3 Matching Criteria and Evaluation
Consider two 3D meshes M, N to be matched. Let KM and

KN be the detected key points set ofM and N respectively. As

described in Eq. 21, let d(p, q) be the similarity of two key points

p and q.

We say key point p ∈ KM is matched to q1:

q1 = arg min
q∈KN

d(p, q) (22)

if
d(p, q2)
d(p, q1)

> 1.5, where q2 = arg min
q∈KN \q1

d(p, q)

It means if the best match is at least 50% better than the second

best match for p, then p has a matched key point.

To evaluate the performance of the proposed algorithm, we use

accuracy and repeatability [29]:

Accuracy =
correct matches found inM and N
total matches found inM and N

(23)

Absolute Repeatability = repeatable key points (24)

Relative Repeatability =
repeatable key points

min{|KM|, |KN |}
(25)

A key point p ∈ KM is said to be repeatable if the distance from

its nearest neighbor, a key point q ∈ KN , after transformed ac-

cording to the ground truth transformation matrix GT , is less than

a threshold ε:

‖ p −GT q ‖≤ ε (26)

5. Experiments

5.1 Evaluation on Rectification
To verify and evaluate our proposed algorithm, we test it with

Table 1 Virtual sensor specification

Vertical range 30◦

Horizontal range 90◦

Angular resolution 1/16◦

fps 0.5
Scanning order Raster

simulated data which can afford ground truth. To show the ro-

bustness under different conditions, like the complexity of sensor

motion and the shape of objects, we build a data set which con-

tains the regular motion modes and typical targets in applications

such as digitalization of culture heritages, autonomous vehicle.

5.1.1 Setting up
The characteristic of virtual range sensor is set up as Table

1. We generate the range data by simulating the process that a

straight line hits on the object surface in raster order with a given

time sequence and given angular resolution. Thus we can obtain

measured data, scanning time and corresponding ground truth.

We don’t consider the feature detection procedure here and just

make an assumption that the correspondence of feature points in

different frames is known and established by methods like manual

operation or feature matching. Another assumption is that all fea-

ture points are taken from static rigid objects. In our experiments,

we generate feature points in a manual way, randomly choosing

points from the overlapped areas of two successive frames.

5.1.2 Evaluation Methods
To evaluate the rectification performance, we compute the

point distances between the rectified points {R}N1 to ground truth

{S}N1 . Here we define the absolute rectification error as:

ei =‖ Ri − Si ‖ (27)

The absolute error is affected by point resolution, which is re-

lated to sensor specifications and distances between sensors and

observed objects. In order to evaluate the algorithm despite of

those factors, we define the normalized rectification error as:

Ei =
ei

dp
(28)

where dp = 1
K
∑K

i=1 di is the mean point-wise distance of the ob-

ject, as shown in Fig.7.

5.1.3 Tests on Common Motion Modes
To evaluate our algorithm in different types of sensor motions,

we test it under 5 general motion modes as shown in Fig.8. As

shown in the first column of Fig.9, measurements are distorted by

sensor motion. The second column of Fig.9 shows our rectified

results. Table 2 shows the parameters of simulated motion modes

in the data set.

5.1.4 Tests on Different Target Sets
We verify the proposed algorithm with different targets, as

shown in Fig.10. As Fig.10 shows, as long as enough correspond-

ing point are sampled, the proposed algorithm works on different

targets.
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Fig. 7 Point-wise distance.

Table 2 Regular motion modes

Motion description
1.Constant velocity
2.Constant acceleration
3.Pure rotation
4.Combination of 2 and 3
5.Uniform circular motion

Fig. 8 Simulated motion modes

5.1.5 Robustness to Correspondence Noise
To verify the robustness of the proposed algorithm, we add

noise to the correspondence constraints. The unit of noise is mesh

resolution. As shown in Fig.12, the rectification error has a linear

relation with correspondence noise.

5.1.6 Discussion on Optimization
In the experiment, we notice that for a given polynomial mo-

tion G(t)N , the initial guess of the parameters in the Levenberg-

Marquardt optimization algorithm has large effect on the result

and iteration time. Empirically, we found that use the estimation

result of low order polynomial motion G(t)i−1 as the initial guess

of G(t)i can give better result than directly estimating G(t)i. In

most cases we can achieve an acceptable solution by starting this

iterative procedure from G(t)1 with the initial guess ξ1 = 0.

5.2 Evaluation on Feature Correspondence
To verify and evaluate the proposed 3D corresponding extrac-

Fig. 9 Simulation experiment on Stanford bunny model under 5 common
motion modes. The first column: distorted data and correspondence
between consecutive range image. The second column: rectified data
using our method. The third column: rectification error.

Fig. 10 Simulation experiment with other objects under constant velocity
motion. The first column: distorted data and correspondence be-
tween consecutive range image. The second column: rectified data
using our method. The third column: rectification error.

Fig. 11 Rectification error with correspondence noise

tion algorithm, we use models from the Stanford 3D Scanning

Repository [30] and AIM@Shape Shape Repository [31]. First

test is extracting correspondence between original model and the

one distorted by affine transformations. The second test is be-

tween the static data and the synthesized data gathered by virtual

moving sensor.

Fig. 13 and Fig. 14 are examples of extracted feature regions
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Fig. 12 Rectification error with respect to correspondence noise.

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 13 Example of extracted feature regions and their affine normaliza-
tions. (a) Two key points with their support regions extracted from
the original data. (b) Corresponding key points with their support
regions extracted from the data distorted by affine transformations.
(c) and (e) are the normalized regions from the original data. (d) and
(f) are the corresponding normalized region from distorted data.

and their affine normalizations. To show the performance of affine

normalization, only a single-scale corresponding region is shown

for one key point. As shown in the sub figures (a) and (b), the

exact corresponding region is extracted from the distorted data.

After the affine normalization, the normalized regions have the

same shapes, up to a rotation.

5.2.1 Evaluation on Affine Distortion
To verify the performance of proposed algorithm to affine dis-

tortion, a series set of affine transformations are applied to origi-

nal object models.

As shown in Fig. 15 and Fig. 16, we apply different affine trans-

formation to the bunny model and compare the extracted feature

(a)

(c)

(e) (f)

(d)

(b)

Fig. 14 Another example of extracted feature regions and their normaliza-
tions. (a) Two key points with their support regions extracted from
the original data. (b) Corresponding key points with their support
regions extracted from the data distorted by affine transformations.
(c) and (e) are the normalized regions from the original data. (d) and
(f) are the corresponding normalized region from distorted data.

Fig. 15 Repeatability curve of Stanford bunny model applied a set of affine
distortion, using IP Morse function.

points with the original model. The results show that although

beta-stable Laplacian Morse function can detect feature points

twice than IP Morse function, IP is more stable on different dis-

tortions.

We apply the same set of affine transformations to other mod-

els. The repeatability curves using IP Morse function and beta-

stable Morse function are shown in Fig. 17 and Fig. 18, respec-
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Fig. 16 Repeatability curve of Stanford bunny model applied a set of affine
distortion, using beta-stable Laplacian Morse function.

(a) Bimba

(b) Dragon

(c) Happy Buddha

Fig. 17 Repeatability curve of other models applied the same set of affine
distortion, using IP Morse function.

tively. The results show that IP does have a more stable perfor-

mance than Laplacian in the affine distortion. Fig. 19 (a) and (b)

show the matching accuracy of using IP and Laplacian, respec-

tively. Fig. 20 and Fig. 20 show the matching result of using IP

and Laplacian on different models with the same affine transfor-

mation, respectively.

5.2.2 Evaluation on Synthetic Data from Moving Range
Sensor

Fig. 22 and Fig. 23 are the matching results between the syn-

thetic static data and distorted data from moving sensor with dif-

ferent velocities, using beta-stable Laplacian Morse function.

6. Applications

6.1 Application in 3D Reconstruction of Indoor Environ-
ment

The problem of fast 3D modeling of indoor environment at-

(a) Bimba

(b) Dragon

(c) Happy Buddha

Fig. 18 Repeatability curve of other models applied the same set of affine
distortion, using beta-stable Laplacian Morse function.

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

Bimba
Bunny
Dragon
HappyBuddha

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

Bimba
Bunny
Dragon
HappyBuddha

(a) IP

(b) Laplacian
Fig. 19 (a) Match accuracy using IP Morse function. (b) Match accuracy

using beta-stable Laplacian Morse function.

tacks a lot of attention because of its wide applications to intel-

ligent building, since 3D models can provide richer information

about the environment. The state-of-the-art technologies of 3D

modeling usually involve devices like camera, laser scanner, GPS

with mobile platform. Laser scanner based systems have better

accuracy than camera-based systems. Since high accurate local-

ization device like GPS cannot receive satellite signals in indoor

environment, information fusion with other devices like camera,

IMU and encoder is a common solution.

Here we apply our proposed algorithm to build 3D model of

an office environment, as shown in Fig.24. The purpose of this

experiment is to verify that our algorithm can collect and self-
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Fig. 20 One group of matching result of the ones using IP Morse function.

Table 3 Specification of IHI 3D laser range sensor

Model Number IHI

Light source JIS C 6802 Class1
Vertical field of view 60◦

Horizontal field of view 90◦

Measurable distance 0.1[m] ∼ 200[m]
vertical angular resolution 0.01◦

horizontal angular resolution 0.15◦

Frame rate 0.3 ∼ 10Hz

calibrate data with moving platform using a single 3D laser range

scanner. Such system has lower cost and works more efficiently.

6.1.1 Setting up
As shown in Fig.25, the laser range scanner is mounted on a

cart. In order to cover more upper space, we set the scanning

central axis a small upward angle with the horizontal plane. De-

tails of sensor specification is in Table 3.

In the experiment, we mannually move the platform in the of-

Fig. 21 One group of matching result of the ones using beta-stable Lapla-
cian Morse function.

Fig. 22 Correspondence between synthetic static data and constant velocity
(C1) data using our proposed algorithm.
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Fig. 23 Correspondence between synthetic static data and constant velocity
(C2) data using our proposed algorithm.

Fig. 24 Scene of the indoor experiment.

Fig. 25 Setting up of range sensor in the indoor experiment.

fice to scan it in one round. Examples of data distortion caused

by sensor movement are shown in Fig.26.

6.1.2 Results and Discussion
In order to evaluate our algorithm without the effect of per-

formance of corresponding extraction step, we manually pick a

set of corresponding points, as the green lines shown in Fig.27.

Fig.28 shows the comparison between distorted data and rectified

data by our algorithm.

One way to evaluate the data rectification is to check how well

the point clouds can be aligned with ground truth, which is the

point clouds {S}N1 obtained by static range sensor. To align two

point clouds, we adopt iterative closest point (ICP) method [15]

to find the best alignment transformation, yeilding aligned point

clouds {X}M1 for raw distorted data, and {Y}K1 for rectified data.

Now we can compute closest point distances for all points in

{X}M1 to {S}N1 :

Fig. 26 Distorted data of the indoor scene.

Fig. 27 Manual correspondence of distorted data from the indoor scene.

Fig. 28 Rectification result of the indoor scene.

dm = d(Xm, {S}N1 ) = min
n∈[1,N]

‖ Xm − Sn ‖ (29)

Similarly, we can calculate closest point distance for point in rec-

tified data set to the ground truth:

dk = d(Yk, {S}N1 ) = min
n∈[1,N]

‖ Yk − Sn ‖ (30)

c© 2013 Information Processing Society of Japan 12

Vol.2013-CVIM-187 No.43
2013/5/30



IPSJ SIG Technical Report

Fig. 29 Rectification error of the indoor scene.

Fig. 30 Comparison of error distribution curves between distorted data and
rectified data of the indoor scene.

dm and dk are mapped as colors in Fig.29. Point distances in-

crease from blue to red. Using these distances, we can obtain two

probability density error curves based on kernel density estima-

tion (KDE) [32]. As shown in Fig.30, p(d) of rectified data has

more data with small error.

Another way to evaluate the point cloud rectification, is utiliz-

ing prior knowledge of indoor environment, that angles between

walls, floor and ceiling should be 90 degree, as shown in Fig.31.

We estimate plane normals of the subset of point clouds which

only contain the wall,floor and ceiling parts using RANSAC. We

then calculate the angle between two normals:

θi, j = arccos n̂i · n̂ j, (31)

where n̂i and n̂ j are normals for the two planes.

As shown in Table 4, the angles after rectification are much

closer to the ground truth.

6.2 Application in Large Scale Culture Heritage Digitiza-
tion

6.2.1 Bayon Project
One of the most important and comprehensive applications of

Fig. 31 Comparison of plane angles between distorted data and rectified
data of the indoor scene.

Table 4 Evaluation based on plane angles.

θ1,2 θ1,3 θ2,3

Distorted data 87.0◦ 78.4◦ 52.2◦

Rectified data 86.1◦ 84.4◦ 87.3◦

Static data 88.9◦ 89.9◦ 88.8◦

3D technologies is modeling cultural heritage objects. It has great

significance in many aspects. Modeling technologies can pro-

vide digital archive of object shapes of culture heritage. Digital

data enables us to restore the original shapes of the heritage ob-

jects, even if some unfortunate disasters destroy them, like natu-

ral weathering, fire, or wars. Moreover, researchers can do fur-

ther analysis on digital data applying modern computer vision and

graphics technologies. In addition, normal people can get access

to digital culture heritages through the Internet from any corner

around the world.

In order to preserve and study one important UNESCO World

Heritage, the Bayon temple, which is located in the center

of Angkor Thom in Cambodia, the Bayon Digital Archive

Project [33] is started.

6.2.2 Flying Laser Range Sensor
Several novel sensors are developed to observe this huge

(160m × 140m × 45m) and complex structure. One of them is

flying laser range sensor (FLRS), as shown in Fig.32. Using a

balloon platform instead of previous helicopter platform, FLRS

is safer and more flexible to measure large culture heritages in

outdoor condition.

6.2.3 Results and Discussion
This system is certainly free from high frequency vibration

such as that of a helicopter engine. However, the obtained range

data are still distorted because the sensor itself is moving during

the scanning processes, as shown in Fig.33.

We apply our method to the distorted FLRS data using manual
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Fig. 32 The FLRS and the Bayon Temple

Fig. 33 Distorted data of Bayon temple gathered by flying laser range sen-
sor.

Fig. 34 Rectified data of Bayon temple.

correspondences. Rectified data is shown in Fig.34.

7. Conclusion
We propose a feature based polynomial fitting method to es-

timate 6 DOF motion parameters of moving range sensor. The

3D model can be reconstructed according to a highly accurate

sensor motion estimation. When using a 2D scanning sensor in-

stead of a 1D scanning sensor, the same region is measured in

Fig. 35 Estimated trajectory of flying laser range sensor.

multiple times when the sensor moves. We show that we can re-

construct the sensor motion and the scene from only the measured

coordinates and times of the same set of points. This reconstruc-

tion is intrinsic, which relies on only the intrinsic properties of

the distortion, and not relying on the extrinsic information from

other sensors. Firstly, for robust estimating sensor movement, we

model the sensor motion using polynomial with respect to time.

Secondly, to estimate the parameters of sensor motion model, we

utilize the 3D corresponding points extracted from the overlapped

parts between consecutive frames. This method doesn’t need the

secondary sensor and is not limited with specific environment fea-

tures. Without linearization of constraint and discretization of

trajectory, distorted data is accurately rectified.

To obtain the corresponding constraints, we propose a novel

3D affine invariant feature detection and matching method which

is designed for the deformed 3D data collected by moving range

sensor. The basic idea is utilizing Morse theory to extract topo-

logical information from information about critical points of a

function. We design two types of Morse function for different

conditions. The one based on implicit polynomial fitting of 3D

mesh is more robust to data noise and suitable for sparse data

set. The other one based on difference of Laplacian has the ad-

vantages to the problem of data changes, like occlusion or the

change of view point and scene. We then find the maximal sta-

ble energy basins from the extracted topological tree by introduc-

ing energy landscape and disconnected graph here. To describe

the features, we apply an affine invariant normalization to the ex-

tracted regions. We then attach a multiple-scale description based

on spin image to each critical point thus their similarities are com-

pared in different scales. The simulation experiments prove the

verification and robustness of the proposed algorithm, especially

for the distorted data gathered from moving sensor.
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