
IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009)

Regular Paper

A Flexible Modeling Engine

Enabling Inter-service Management

Masayuki Iwai,†1,†2 Yoshito Tobe†1,†2

and Hideyuki Tokuda†3

A large number of embedded computers, such as network appliances and
sensors, have rapidly spread out to home and office environments in the last
few years. These embedded computers have enough CPU power to execute
the software components that can control hardware. Managing distributed
components together can enhance human activity and change the real world
into a “Smart Space.” We name such collaboration of components “federated
service” or “application.” In this paper, we have developed and evaluated a
novel middleware named uBlocks which enables users to build and manage ap-
plications. uBlocks, unlike other distributed application-building middleware,
is distinguished by two major features. The first is a flexible communication
mechanism named RT/Dragon. RT/Dragon enables the connection of heteroge-
neous components. The second is the universal modeling of various distributed
components to support building applications by multiple users in parallel. Ad-
ditionally, to enable building applications in a simple way, we provide various
user interfaces (UI) for multi-modal visualization: 2D/3D User Interface, and
a web interface. These features lead to reduce the cost of building and manag-
ing distributed applications by the user. This research proves that the idea of
building applications by users is practical and effective.

1. Challenging in Users’ side Service Management

1.1 Smart Space
A large number of embedded computers, such as networked appliances and

sensors, have rapidly spread out to home and office environment in the last few
years. Each embedded computer has enough CPU power to execute software
components that can control hardware. Such a computing environment can be

†1 School of Science and Technology for Future Life, Tokyo Denki University
†2 “Advanced Integrated Sensing Technology” Project, JST (Japan Science and Technology

Agency) CREST
†3 Faculty of Environmental Information, Keio University

called “Smart Space.”
The first feature of Smart Space is a large number of embedded computers

and sensors which exist in the space. We have experimentally constructed a
room called “Smart Space Lab.” This room is a model of our vision towards the
next generation computing environment, where many sensors and appliances are
embedded. Embedded computers include PCs, digital Audio Video appliances,
sensors, and PDAs. Some of the computers such as Smart Furniture 11) are
invisible for users. Many projects have focused on this type of smart spaces.
To name a few, Active Office 7), Active Space Project 17), Aware Home 9), Easy
Living Project 1), EU House �1, JEITA House �2 relate to this topic.

Second feature of Smart Space is given with focus on a purpose; Smart Space is
the room that helps users who are working or living in the room. Supporting the
users’ life cannot be achieved with a single computer. For example, we suppose
a like to introduce the case of a “smart” meeting room at an office environment.
Because users might be moving around from one side of the room to another,
some camera-linked computers need to work together to capture both the users
and whiteboards. This capturing computer should send pictures to a meeting
logging server computer that logs the meeting. Even in this small meeting space,
we need many embedded computers.

The third feature is devices in the Smart Space. Most of all devices in Smart
Space should contain built-in network interfaces. Particularly wireless communi-
cation technology such as IEEE802.11a/b/n, Bluetooth, or ZigBee are innovative
and affordable to do this. Traditional A/V appliances are currently connected
with one another with composition analog cables interface, but it is no doubt
that future appliances in the Smart Space will be equipped with digital network
interfaces in stead of such legacy wiring technologies.

1.2 Life Span of Applications
As we can see in historical distributed applications based on the server/client

model (e.g., the bank’s network system for automated teller machine), each of
the server and client has a clear role of communication. There is a less chance

�1 http://panasonic.co.jp/euhouse/
�2 http://www.eclipse-jp.com/jeita/

973 c© 2009 Information Processing Society of Japan



974 A Flexible Modeling Engine Enabling Inter-service Management

to replace an application after it is activated. However, when the application
specification must be altered, system engineers create a new application using
much time, and after the application has been tested to run correctly, system
engineers finally replace the old applications with the new ones.

On the contrary, applications in a smart space have different life spans. These
applications consist of various devices. Each device is replaced frequently. Users
in a smart space often have the requirement to change the behaviors of applica-
tions. For example, when a new networked appliance is bought, the users have
desire to replace an old networked appliance. They try to replace or modify an
application within a short period. Additionally, applications in a smart space
are likely unstable in comparison with applications run on servers since com-
puters in a smart space happen to shutdown frequently. Such applications are
managed by non professional users and also kept in a daily used room not in
the special machine room. From our experiences in building application for the
Smart Space Lab 16), we have become aware that any attractive application can
soon fail and become useless. The life of applications was shorter than that we
expected. Application life cycle are shorter than legacy distributed applications.

There are so many requirements to replace or update applications. Therefore,
it is impossible for the system engineer to replace it whenever users want to
change applications.

1.3 Hardware and Software Assumption
This paper is on the assumption that each hardware has network interface and

each hardware are distributed.
In a smart space, there are various kinds of hardware: networked appliances,

sensor network/IP bridge nodes, PDA, cellular phones, PCs, and computerized
furniture. Such embedded computers are integrated into most of these hardware.
Nowadays, it is natural to assume that embedded computers have enough pro-
cessing power to run programs. Network interface chips have been miniaturized
and enhanced with low power consumption. TCP/IP network is the standard
protocol which is spread to all infrastructure of the internet. This paper assumes
that every hardware in a smart space has a wired/wireless network interface of
TCP/IP.

The devices in smart space with wireless network interface can exist almost in

any place in a room. This paper assumes that every hardware are distributed and
running independently. The first version of iPhone 3G already has 620 MHz arm
CPU and 128 MB DRAM memory, It is natural to assume that each harware in
the smart space has resource which can run Java Micro Editon or Java Standard
Edition. Each device has a required Java runnable resource such as 128 Mbyte
momory, 300 MHz or more over clock of CPU.

Virtual Machines (VM) technologies, such as the Java Virtual Machine and
.NET Common Language Runtime (CLR), have been an important software
topic in recent years. Because VM can remove differences among hardware, pro-
grammer do not necessarily consider on what architectures would run their code.
The overhead of the VM runtime was big at the beginning, but has improved
gratefully. Programmers can now efficiently develop software on VM.

In particular, Java has VMs for various purposes. This enables Java to run
on a limited resource computer. From this feature, we assume that software
on embedded computers run on a Java VM. If embedded devices lack of the
resources to run a Java VM, we use a small proxy computer which connects to
the device.

In this paper, hardware is represented as a Java component. We use the term
“component” as a Java component on an embedded computer. A component
is a set of Java classes which can handle an actuator of an appliance or can
process data from sensors. Because of each hardware are distributed as mention
in Section 1.3, each software component on the hardware is also distributed. We
use the term of a component as a distributed Java software component.

1.4 Skill Level Assumption of Users
In a smart space, it is difficult to assume all of people having skills of both

network management and distributed programming. Some users may be members
of a family and they would not have the skills of computers. Users can be classified
into the following three groups.

Users with Advanced Skill with Computers
The first group are people who can program software and know network proto-

cols because they have special computer related educational background. They
can re-program components and can also configure it in detail in a smart space.

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



975 A Flexible Modeling Engine Enabling Inter-service Management

Users with Average Skill with Computers
The second group are users who can read e-mail or browse web pages by them-

selves. They have skills of simple setting of components and can connect hard-
ware with one another usign cables, for example, TV and Video with a composite
analog cable. They have less stress using mouse or watching PC display.

Users Having Novice Skill with Computers
The third group is users who cannot use computer well. Due to handicap,

some of users cannot use a mouse or cannot watch a display. There is some other
people who does not have handy-cap, but refuse to touch IT devices.

The first group of users is the minority of the entire users found in home
environment. The third type has been decreasing due to the rise of technologies
in system automation and multi-user interface (e.g., Voice interface). We do not
focus on either type of users, but instead, focus on the second type which is Users
with average skill with computers. We will use the term of “users” in this
meaning throughout this paper. Most of users who can use internet browsers,
e-mail, cell phones are classified in to the second level.

1.5 Who Should Build Applications in a Smart Space?
We described the features of the short period of an application lifecycle in

Section 1.2. Therefore, it is needed to rebuild applications. Rebuilding the
applications can replace outdated applications with useful ones. However, there
is discussion on who should reconstruct the applications? Although, the large
number of studies have being conducted in a smart space, there is no research
which discusses on who should be responsible to do.

There are three possibilities of “who”: a component programmer, a system
engineer, and user. We also classify these 3 kinds of model as a point of building
person as follows.

Building by Component Programmer
Most of the distributed applications are created by highly skilled deployers who

also developed the software components, so the user has no participation in the
development of distributed application. This case is suitable for creating reliable
and well adjusted systems such as enterprise systems. Therefore, applications in
the model are stable.

However, as this type of application needs to prospect the end users’ require-

Table 1 Comparison of the person who builds applications.

Application Building Person Monetary Cost Stability
Component Programmer expensive high

System Engineer expensive neutral
User inexpensive inexpensive

ments before component programming, it is possible to mismatch the user’s cur-
rent requirements from the system’s intention. The programmers need to rebuild
distributed application at every update occasion. If rebuilding is frequently done,
it will be costly to rebuild them by component programmers.

Building by System Engineer
A system engineer does not program software components, they roughly know

general parts of the components and deploy them to build applications. Deploy-
ment is both to configure a component and to combine with one component to
another. In this model, component programmers and the deployers are different.
A system engineer configures the detail of connections between components. A
configuration file is, for example, as follows. Deployment Descriptor 22) of EJB
is in conformity with this model. This model requires both application deployer
and users to have sophisticated computer and software skills, to name a few,
VML of VNA 13). Building applications by system engineers also delivers the
cost of rebuilding application to the users.

Building by User
Legacy audio and video equipments at home are cabled by the users them-

selves. Similarly, it can be said that users are the most suitable group to build
distributed applications. In this model, the software components are developed
by programmers of IT vender, while users choose the components and combine
them. The applications build by users directly reflect their preferences. Because
these users are not professional for building application, applications tend to be
unstable.

1.6 Comparison of Builder
Table 1 shows monetary cost by comparing the above models. The applica-

tions, which are built by programmers or system engineer, cost more than ones
built by users. As shown in Fig. 1 left, a system engineer needs to design, im-
plement, test, ant tune-up a application totally. When users wish to change to

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



976 A Flexible Modeling Engine Enabling Inter-service Management

Fig. 1 Application building by system engineers (left) and users (right).

the application’s behavior, the user have to tell changing request to the system
engineer. Then the system engineer re-designs the application again. Monetary
cost of personnel expenses for the system engineers is required without intervals.
Therefore, building applications by system engineers is costly. Furthermore, users
do not receive many benefits from the application due to the maintenance ant
development time of the system engineer.

From the point of monetary cost, applications built by users is most suitable
for a smart space. Due to re-building application are done by users in this model,
there is less gap in perception between users and existing applications. Figure 1
right shows a model of application building by users. This model can provide
the application’s benefits in a long span. This model can also remove the delay
when user requests to change application.

On the other hand, applications built by users will not be optimized and well
tested. We need a mechanism which can stabilize them. Additionally, the model,
that application is building by users, requires the users to be aware of networked
devices and the relation between them. For instance, users must know how many
RFID readers are in operation in a ubiquitous environment and which appliances
are running when using an application consisting of RFID embedded appliances.
These requirements will be discussed in Section 2.

1.7 Our Positions in End User Computing
Let us show an example of users’ level application building. Players of LEGO

block can build any size of object by joining each piece with another. Each piece
has a simple uneven hole and projection on its surface, which can connect with

any other blocks pieces.
The application building, which we focus, is in the same way. In our defini-

tion, application building means to reassign a new role to these components
by composing software components which binds to the real sensors or appliances.
Application building is not done by particularly configuring each component be-
havior, but by simply combining components with each other. This simplicity
of application building, however, is difficult because we must hide complicated
component communication protocols from the users.

To simplify the programming, there is a rearch are named End User Com-
puting (EUC). Most of EUC are the programming tools for stand alone com-
puters 10),14). However, in case of Smart Space near future, we have to consider
totally distributed heterogeneous computing environment. All processes are run-
ning independently, we can not stop any computers to configure them.

As the point of users, most of end users are should not be exparter computer
users in the home environment. They do not know the method, values, and
network programming deatails of programming. Visual programming tools like
Java Beans, Mac Quartz Composer, are for the computer expert people. It is
needed simple connection interface but which can create powerful applications.

2. Issues in User-side Component Programming

At the previous section, we figured the merit of application building by end-
users. In this section, we realize the issues which are caused by users side pro-
gramming at the practical smart space.

2.1 Issue1: Lack of Components Compatibilities
In a smart space, components are developed and provided from various soft-

ware/hardware vendors independently. However, in the smart space, users build
component-based applications by combining such components from different ven-
dors. For that reason it is hard for programmers of components to estimate which
kinds of components communicate with each other. Such heterogeneous compo-
nents are also aimed for different purposes. The lack of compatibility among
components will hinder building a new application simply. Users are not so well
skilled. They can neither configure the detail of component nor re-program the
inside of components. So it is important to achieve compatibility among compo-

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



977 A Flexible Modeling Engine Enabling Inter-service Management

Fig. 2 Three uBlocks components are running on different Java runtimes.

nents at the layer of middleware.
To solve these compatibility issues, we propose a middleware, named uBlocks.

This name originally means that users can build applications easily like building
toy blocks.

First, we describe a total architecture of uBlocks briefly.
uBlocks represents each device as a software component. uBlocks components

contain the following communication mechanisms: flexible communication mech-
anism and reliable communication mechanism. Flexible and reliable commu-
nication mechanism are named RT/Dragon. Universal modeling engine 8) is a
modeling scheme upon RT/Dragon. Universal modeling engine extracts both
the existence of component and relationship of components. Upon these mecha-
nisms, users can build flexible and reliable applications.

Each component is running on a Java VM. More than two components can
run on a same Java VM as shown in Fig. 2. Harware and software requirements
are described in Section 1.3.

uBlocks utilizes Remote Method Invocation (RMI) and HTTP protocol for
inter-components communication. RMI is a major communication method in
Java, particularly, in component based applications like Enterprise Java Beans
(EJB). As HTTP is the most popular protocol on the Internet, it is natural to
implement components using it.

Figure 3 shows a basic component design of uBlocks. A basic component is
the most primitive component in uBlocks.

The message to notify from component to another, like sensor value or appliance
control command, is named event in this paper. The internal of a component
consists of six software modules: Acting Gate, Sensing Gate, Event Admission

Fig. 3 A basic component design of uBlocks.

Gate, Event Departure Gate, Event Filtering Engine, and Modeling Gate. In a
internal component, an event is processed by passing the gates. The functions of
these modules are described as follows.
• Acting Gate (AG) makes an action against the real world entities, when

a component receives an event. Programmers of components implements the
event handler at AG. If some devices are connected via serial communication
line, a component programmer implements a processing code of communica-
tion with devices by extending AG. For instance, it works like a controller
of an air conditioner or a room light controller.

• Sensing Gate (SG) defines how to sense environmental information from
real world entities. For example, at SG, a component programmer defines
the way of obtain the temperature from the air conditioner. SG generate
events and passes them to Event Departure Gate through Event Filtering
Engine. This gate is implemented by programmers.

• Event Arrival Admission Gate (EAG) is an object that handles many
kinds of events that contain occurred in other components. EAG receives
events from other components and passes the event objects to Event Filtering
Engine. This gate is provided as a port of middleware uBlocks.

• Event Departure Gate (EDG) fires events to another component in ac-
cordance with an ordering table that was created when a user configured

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



978 A Flexible Modeling Engine Enabling Inter-service Management

the relation of components. This gate is also provided by uBlocks. So it
is not needed for programmers to concern about communication mechanism
among components. This EDG gate is also provided as a part of middleware
uBlocks.

• Event Filtering Engine (EFE) checks the contents of the events and
decides on firing events or not. EFE is designed too generic so that pro-
grammers can implement characteristic behavior of event handling. uBlocks
provide several templates filters which extends the EFE.

• Modeling Gate (MG) is a software module which communicates with the
Modeling Engine. The Modeling Engine is an only component which rec-
ognizes the existence of every component in a smart space. MG tries to
discover the Modeling Engine and also notice its existence to the Modeling
Engine when a component is launched. If a relationship between components
is changed, MG notices the difference to the Modeling Engine.

Events are propagated between components by following a connector. A central
component has neither Sensing Gate (SG) nor Acting Gate (AG). This compo-
nent, instead, mediates events through its Filtering Engine.

The model, in which each component conveys events to another component,
are similar to data flow programming. This data flow programming receives
much attention at the large scale dynamic web-site developing like WSFL 5) and
SEDA 25).

2.2 Issue2: Complex and Unpredictable Communication between
Components

As mentioned in Section 1.1, embedded computers have wireless communication
in a smart space. Due to some of computers or sensors are embedded in furniture
or in a wall, it is hard to recognize and to remember them. The computers,
which are out of people’s memories, are not used effectively. New role will not
be assigned a part to forgotten components. Needless to say, it is impossible to
composite these components to build applications.

Though Mark Weiser predicted an age of “calm” computing 24), users have a
right to know what applications are running around us currently. Additionally,
if we give up recognizing all of components, we need system engineers to build
and maintenance applications in a smart space. This cost is not cheap to con-

Fig. 4 Abstruction of connection among components.

nect different propose of components. We need a mechanism both to adapt the
relationship among different type of components.

Figure 4 shows difference of abstraction between user level and middleware
level. At the middleware layer in Fig. 4, abstraction of connection among compo-
nents includes six communication styles, priority of communication, event types,
and period of firing events. For users, it is needed to hide complicated commu-
nication protocols and various type of events. Users have not to be unconscious
of complex communication mechanism of the middleware. However, we want
to keep the users’ conscious of the connection/disconnection among components
simply. So it is needed to simplify the complicated relationship of components.
A mechanism of simplification and modeling of relationship among components
is challenging.

To overcome the gaps of different components, we provide a methodical com-
munication style which is independent from components. Communication style
means a part of module which can send and receive some message from other
components. We propose selectable communication style which can connect using
a certain communication style from six styles: push, pull, callback, future-push,
future-pull, and future-callback. By enabling to select communication style dy-
namically, this mechanism can reduce component programmers’ implementation
of communication with targets components. A component, named CA, is on an
embedded computer with sensors. This component sends an event every 10 s pe-

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



979 A Flexible Modeling Engine Enabling Inter-service Management

riodically. At first, CA is select a push style. Another component, named CB , is a
component which can display information. According to the firewall of network,
CB can not get arrival events from other network domains. In this situation,
CB selects the callback communication style. Using six communication styles, a
number of combination of components are extended.

2.3 Issue3: Model Collisions in Application Building from Multiple
users

It is natural that multiple users are living in smart spaces. There is a possibility
for different users to control and setup distributed applications at the same time.
When users build an application using two components, another one might try to
build a different application by using the components. In this situation, collisions
of building application are occurred. It is needed users to recognize the latest
relationship among components. Therefore, a synchronization mechanism which
shares relationship of components is needed. When a user rebuilds an application
with distributed components, the other person has to find out the change.

World Model
Figure 5 shows a scheme of modeling component relationship. Each compo-

nent has information that the component communicates with others. For in-
stance, when component C1 is linked with C2, C1 has a relationship information
of C1 ∼ C2. (A ∼ B means that A is connected with B.) This whole of rela-
tionship is named World Model. Similarly C2 has a relationship information
of C2 ∼ C3. uBlocks have a centralized Modeling Engine. The Modeling Engine
gathers the relationship information from each component. Then the Model-
ing Engine creates a whole relationship of components in a smart space. This
scheme is named Independent Modeling Scheme and is described at Section 4.
This scheme can offload work from individual components. Furthermore, our
modeling engine can not only recognize relationships of components but also de-
tects both a fault of component and appearance of a new component. To detect a
fault of component, Modeling Engine uses leasing mechanism which is referred to
Jini Distributed Leasing Specification 21). To discover a new component, uBlocks
also refer to Jini Discovery and Join Specification 20) using multicast UDP packet.

User Interface (UI)
Both relationship recognize mechanism and discovery mechanism are imple-

Fig. 5 The World Model, which is relationship among every components, is notified to every
User-Interfaces (UI).

mented at Modeling Gate in Fig. 3. After the relationship information gathered
from every component, the Modeling Engine creates a whole relationship graph
among components. We name the integrated relationship information World
Model. Figure 5 illustrates that the Modeling Engine notifies the World Model
to each User interface (UI). In this research, the term of User Interface (UI)
defines not only for the graphical visualization tools but also management mid-
dleware, which can collect information of other components. Each UI has a
process to generate command to other components.

There is opportunity that multiple users try to build application at the same
time. Figure 6 shows the procedure of application building by user. At first, a
user can recognize components running in a smart space. Second, by viewing the
component information, a user builds an application. Third, when a UI received
the user’s request of rebuilding, the UI generates a command which is notified to
components. Fourthly, after a component catches the command, the component
tries to negotiate to other component. Fifthly if the command is succeeded, the
component sends new relationship information to the Modeling Engine. The

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



980 A Flexible Modeling Engine Enabling Inter-service Management

Fig. 6 Procedure of application building by user.

Modeling Engine updates world model, and then sends the model to every UI.
Finally the UI updates the world model after rebuilding.

Through this process by users, there is a possibility that some other users tries
to rebuild the applications. After a user change a new component relationship,
each UI has a locked “world model”. When the updated model is different from
the locked world model, users can detect that from unlocked UIs. The collision
detection mechanism of building by multiple users will be described in Section 4
in detail.

2.4 Issue4: Platform Restrictions of Application Building
Providing platforms of building applications for users are also challenging. In

a smart space, there are many sorts of PCs and PDAs. Users will select different
type of user interfaces (UIs) for building application according to their circum-
stances and preferences. Users who are outside home need use web browsers of
their cellular phones or PDAs. Exparter computer users prefer to use a character-
based UI just like Unix shell. For homeuse, users wish to build applications by
using their own PCs. Therefore, to providing many sort of UIs is usable for users.

uBlocks provides four UIs to configure the event paths for distributed com-
ponents visually. With these UIs, users can create ad-hoc distributed systems

without the cost of configuration. Such UIs can also allow users to control dis-
tributed ubiquitous applications with no programming.

Users may not stay at the same place for long, therefore their circumstances
change frequently. We need to provide user-interfaces which can adapt to users’
various environment. We have developed various UIs. Java2D-based UI, Java3D-
based UI, Web-based interface, and shell type UI.

Each UI is developed on a fundamental module named “UIBase.” UIBase holds
component’s name, component status, and connection vector. Using UIBase,
various kinds of interfaces can run simultaneously.

3. Flexible Communication

In Section 2.2, we mentioned the issue about complex and unpredictable com-
munication between components. The middleware layer have to hide such a
complex mechanism from user side. we describe the detail of flexible communi-
cation mechanism named RT/Dragon. We will mention six communication styles:
push, callback, pull, future push, future callback, and future pull. Additionally,
we describe about mechanism of Fintering Engine.

3.1 Inter-component Communication Style
Limited to say about the communications between two components, a certain

component notifies events to components.
Events include numerical values, strings, objects, XML files, URLs, binary

data, and etc. Figure 4 shows that a component sends an event to another com-
ponent. The component which generated the event is defined as a source compo-
nent. Sensors which can detect something from real world are usually classified
to source. The component which receives the event from source component is
defined as target components. Some appliances which can act to real world is
categorized to target component. Applications in a smart space are constructed
by linking source components and target components.

Classification by Synchronization
When a source component transmits events of to a Target component, it is able

to classify the communication to two generally: synchronous communication and
asynchronous communication. In this paper, we have divided style communica-
tion into two: asynchronous communication and synchronous communication. In

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



981 A Flexible Modeling Engine Enabling Inter-service Management

Fig. 7 Classficication of communication style.

synchronous communication, each component has no time lag to return or to send
an event after the component received a request for data. As synchronous com-
munication can realize swift transmission, this style is suitable for the component
which needs to notify as soon as possible. However, with this communication style
components needs to wait for a result of the event notification. While waiting,
the component can not process other events.

In cases that the network condition is not fine, such that bandwidth is satu-
rated, the synchronous event transmission might not be suitable. For such case,
RT/Dragon provides components with an asynchronous communication style,
called future communication style. With the future communication style, com-
ponents can hold several events in certain duration and send to another stream
in future.

On the other hand in asynchronous communication, which we name future
communication style, each component holds request events in certain duration
and sends the holed event will be sent to the other component in future. Future
communication style can transfer events without considering the partner compo-
nent by using event pool (see Fig. 7). A component is able to continue original

Table 2 Classification of communication styles.

Name trigger comes from data cames from
push N/A source

Synchronous callback source target
pull source upstream

future push N/A source
Future future callback source target

future pull source upstream

processing without blocking it.
With the future communication style, however, there is some delay from the

actual event occurrence to the transmission, and there are possibility that trans-
mission of events is not send perfectly.

Classification by the Initiative of Communication
In the description above, we assume that a source component initiates the event

transmission. In addition to such a “push” communication style, RT/Dragon
provide the following two styles: callback and pull.

In callback communication style, a target component receives a trigger event
from a source component firstly. The trigger event dose not contain data or
messages in it. However, it contains information of source components. Using
this information from the trigger event, target components send back a new
event, which contains data or messages (see Table 2). When a target component
decides that it does not have room to send event to source, a target component
can stop sending back events to source. In callback communication style, a target
component is a leader of communication who can decide to send or not to send
events to source components.

Final case is a pull communication style. In the pull communication style, a
target component receives a trigger event from a source component. The trigger
event includes information of a source component. Then when it is necessary
to get events which contain data or message from the source component, the
target component tries to pull events from source component actively using the
information from the trigger event (see Table 2).

Selection of Various Communication Style
RT/Dragon has a novel flexible communication mechanism which never device

the communication style of itself until a target component receives a trigger

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



982 A Flexible Modeling Engine Enabling Inter-service Management

Fig. 8 Experiment with five reference components.

event. By this evaluation, each component can decide its communication style
on execution time. The trigger event is sent from a source component and is
describe which communication style the source component intends to. After
the target receives the trigger event from the source component, it decides the
communication style from six: push, pull, callback, future push, future pull,
and future callback. Because each components developer can not estimate the
communication style of target components beforehand, these styles are needed
to communicate various kinds of components.

3.2 Experiment for Flexible Communication
This subsection explains the effectiveness of flexible communication among

component with different versions.
We prepare five reference components: a colored light component, a simple

light component, a button component, a light brightness controller component
and a light coloring controller component. Figure 8 shows a screen shot of the
experiment.

A colored light component is a component of a light which has a function to
change its color. A simple light component is also a component of a light, which
only can switch on/off its power. This simple light component can not handle an
event that commands to change its color.

A button component is a source component which can generate the most simple

events: DSequentialEvent. A light brightness controller component can send a
command which can change brightness of a light. A light coloring controller
component can also send a command to control a light. The difference between a
light coloring controller and a light brightness controller is that coloring controller
can send an event to change the color of a light. Each source component is
itemized as follows.
• The button component generates DSequentialEvent.
• The brightness controller component generates DLightControlEvent, which is

a subclass of DSequentialEvent.
• The coloring controller component generates DColoredLightControlEvent,

witch is a subclass of DLightControlEvent.
Each target components are itemized as follows.
• The simple light component can handle DSequentialEvent. When this com-

ponent recerives an event of DColoredLightControlEvent, this component can
not handle the function of coloring. However, DColoredLightControlEvent is
a subclass of DSequentialEvent. So the simple light can handle this event as
a DSequentialEvent.

• The colored light component can handle DSequentialEvent, DLightControl-
Event, DColoredLightControlEvent. When the colored light component re-
ceive events of DSequentialEvent or DLightControlEvent, this component
turns a light to a default color.

3.3 System Evaluation
We have evaluated the system performance of push, callback, and pull com-

munication style in RT/Dragon. Each components sends events of DSequential-
Event, which is 968 k byte. We use Pentium 2 GHz CPU and WindowsXP OS
for evaluation.

To evaluate push, callback, and pull communication style, a source component
send events to target component 150 times.

Figure 9 shows a overhead of communication to finish the communication.
Gray is a ratio of trials finished within 1–9 ms. Light gray is a ratio of trials

finished within 10–19 ms. White is a ratio of trials finished within 20–29 ms.
Push communication style can finish transaction within 9 ms at a 147 times

while 150 trials, This communication is implemented to withstand highly periodic

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



983 A Flexible Modeling Engine Enabling Inter-service Management

Fig. 9 Comparison with cost of Push/Callback/Pull communication style.

event transaction.
Callback communication style can finish transaction with 10–19 ms at 38% of

whole trials (see Fig. 9). This result is caused by two RMI sessions. First is for
transmission of a trigger event, and second is for transmission of a callback event
from target component to a source component. Callback style needs compara-
tively high communication cost. In the case of a push communication style, only
one trial take 20 ms-over to finish communication in 150 trials and over 70% trails
succeed to finish communication with in 10 ms.

4. uBlocks Modeling Engine

In Section 2.3, we mentioned the issue about Model Collisions in Application
Building from Multiple users. We can not assume that each component is running
on a PC with rich resources. In Smart Space computing environment, some of
the components are executed on embedded machines and some of them on PDAs
with restricted resources. Therefore, a scheme to reduce the component-side
computation is needed. We will compare three schemes: component-side model-
ing scheme, interface-side modeling scheme, and independent modeling scheme.
And we will mention the collision detection mechanism for enabling multiple
users build applications simultaneously. Finally, we will show multi-modal user
interfaces which can be used by various level of users at various circumstance.

4.1 Modeling Scheme Comparison
As mentioned in Section 1, users should be able to recognize distributed devices

and build applications for smart spaces by themselves. Furthermore, we need a

scheme to balance of component-side computation load work.
Definition of terms
We have selected four elements in distributed component-based application:

Hardware, Component, ModelingEngine, and User Interface. Hardware are
physical devices such as a networked camera or doors with embedded sensors.
Hardware is abstracted by software components. Component (C) is the soft-
ware abstraction of distributed hardware. A component must send a relationship
list of its communication parties to the ModelingEngine. ModelingEngine (M)
gathers each distributed component relationship from the network and generates
the model by merging them. ModelingEngine notifies the model to every UI
when the new model is generated. User Interface (UI) is a client software
that can deploy distributed application visually. Using these terms, we will dis-
cuss schemes for simultaneous modeling distributed components from multiple
users. We will at first classify the modeling schemes into three parts. This novel
classification intends to clarify up which method is most suitable when gathering
distributed component relationship and holding gathered total relationships as a
common world model.

Component-side Modeling Scheme
Component-side Modeling Scheme is a system where each component has a

ModelingEngine and a User Interface. Therefore, each component is homoge-
neous from one another, but this in turn makes it hard to keep a common model
among numerous ModelingEngines.

Interface-side Modeling Scheme
Interface-side Modeling Scheme is a system in which each UI has a Modeling-

Engine. Every component runs independently. When there is only a small num-
ber of UI, there is little load for each component to process. However, as the
number of UI increases, thin components may lack resources when processing
data sent from numerous ModelingEngines.

Independent Modeling Scheme
Independent Modeling Scheme is suitable for an environment where many com-

ponents are found on embedded computers with limited computation resources.
This scheme completely separates components, UI, and ModelingEngines. We as-
sume at least one ModelingEngine on a relatively fast computer on this scheme.

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



984 A Flexible Modeling Engine Enabling Inter-service Management

Table 3 Parameters list (Number of transaction per second).

f Number of fault components per second (f � 1)

d Number of discovered components per second (d � 1)

c
Number of commands issued by users
to modify the relationship of components per second

N Total number of user interfaces (UI) and components (C)

x Number of UIs independent from components

TrCin
Number of component’s transaction that is notified
from other components (per second)

TrCout
Number of component transaction to notify
other components (per second)

TrCtotal Total number of transactions by a component (per second)

TrUIin Number of UI transactions notified from other UIs (per second)

TrUIout Number of UI transactions notified to ModelingEngine (per second)

TrUItotal Total number of transactions from a UI (per second)

TrMin
Number of ModelingEngine transactions
notified from components and UIs (per second)

TrMout Number of ModelingEngine transaction notified to UIs (per second)

TrMtotal Number of total ModelingEngine transaction (per second)

Even when many user interfaces are running, a system using this scheme will
have less load on its components, because most of the load processing is done on
one of the ModelingEngine.

To compare the three schemes, we will explain using a mathematical expression.
Let parameters be defined as Table 3. In Section 2.2, we mentioned that

components are unreliable in a ubiquitous computing environment. The system
needs to detect which components stopped or restarted. For this reason, we
define f and d parameters. c represents how many times users issue commands
to change the relationship of components through a UI per second. We name the
new relationship as “changed-model”. c varies according to the number of both
users and applications in the environment.

4.1.1 Efficiency of Component-side Modeling Scheme
As shown in Fig. 10, Component-side Modeling Scheme assumes that

ModelingEngine, UI and Component are on the same node.
Let us discuss component Ci. Ci holds UIi and Mi on the same runtime node.

Each component notifies the change by the users’ command to other components
except themselves. The incoming transaction of Ci is the total transaction from

Fig. 10 Details of component-side modeling scheme.

C1, C2, Ci−1, Ci+1, . . . , CN . TrCin and TrCout can be written as:

TrCin =
N∑

i=2

(c + f) = (c + f)(N − 1) + d (1)

TrCout = (c + f)(N − 1) (2)

The total number of transactions for a component is the sum of every incoming
transaction and outgoing transaction. TrCtotal can be written as:

TrCtotal = TrCin + TrCout = 2(c + f)(N − 1) + d

4.1.2 Efficiency of Interface-side Modeling Scheme
Figure 11 shows details of Interface-side Modeling Scheme. In Interface-side

Modeling Scheme, each component is independent from both UI and Modeling-
Engine.

x is number of user interface. UI1 receive changed-model messages from each
component when they are changed. The number of commands from one UI to
one component is c

(N−x) . Therefore, TrUIin and TrUIout can be expressed as
follows.

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



985 A Flexible Modeling Engine Enabling Inter-service Management

Fig. 11 Details of interface-side modeling scheme.

TrUIin =
N∑

i=x+1

TrCout + d (3)

TrUIout =
c

(N − x)
(N − x)d = c + d (4)

In Fig. 11, Cx+1 must notify the changed-model of itself to all UIs.
Accordingly, TrCtotal can be expressed following.

TrCin =
x∑

i=1

c

TrCout =
x∑

i=1

(TrCin + f) = x(xc + f)

TrCtotal = TrCout + TrCin = cx2 + (f + c)x (5)
Because the transaction of TrCtotal is x squared order, it can be said the trans-
action for the components is heavy.

In the same way, TrUIin and TrUIout are x cubed order transaction.

Fig. 12 Details of independent modeling scheme.

TrUIin =
N∑

i=x+1

TrCout + d

= x(N − x)(xc + f) + d

TrUIout = TrUIin + TrUIout

= x(N − x)(xc + f) + d + c (6)

Efficiency of Independent Modeling Scheme
As shown in Fig. 12, Independent Modeling Scheme gathers the connection

information from each component.
Since each UI command is issued by a user, TrUIout and TrUIin are as follows:

TrUIout = c

TrUIin = TrMout

TrUItotal = TrUIin + TrUIout

= (N − x)(cx + f) + d + c (7)
Each component accepts commands from every UI.

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



986 A Flexible Modeling Engine Enabling Inter-service Management

TrCin =
x∑

i=1

TrUIout = cx

TrCout = TrCin + f = cx + f

TrCtotal = TrCin + TrCout = 2cx + f (8)

On the other hand, a ModelingEngine accepts the relations of all components,
and generates and notifies a graph showing the relations to all UIs. So, TrMin

and TrMin can be expressed as follows.

TrMin =
N∑

i=x+1

TrCout + d = (N − x)(cx + f) + d

TrMout =
x∑

j=1

TrMin = x((N − x)(cx + f) + d)

TrMtotal = TrMin + TrMout

= c(N − x)(x2 + 1) + (f + d)(x + 1) (9)
The total number of transactions for component of Independent Modeling

Scheme is x order. This study shows that the Independent Modeling Scheme
is suited for management of distributed components.

4.2 Platform Independency of uBlocks UI
In Section 2.4, we mentioned about platform restrictions of application build-

ing. Users may not stay in the same place for a long time; therefore their circum-
stances may change frequently. We need to provide user interfaces (UI) which
can adapt to various users’ environment. uBlocks provides four UIs which visu-
ally configure the event paths for distributed components. With these UIs, users
can create ad-hoc distributed systems without increasing the cost of configura-
tion. Such user interfaces can also allow users to control distributed ubiquitous
applications with no programming.

2D User Interface
Figure 13 shows a screenshot of the 2D User Interface. Users who have no

programming skills can view which type of components exists on the network
and setup the event-driven system.

When a user brings the mouse cursor on top of an icon, the icon shows the
component details: name, location, vendor name, and serial number. When the

Fig. 13 A screen shot of connecting icons on 2D UI (left)/3D UI (right).

user clicks the icon, the icon shows the interface and the lines to connect to other
components. Then, the user moves the mouse cursor to another component icon.
If the interfaces match, the editor repaints the icon and lines with the color blue,
then shows the details of the component. If the interfaces do not match, the
editor repaints the icons with the color red.

The user clicks on the blue colored icons to connect them. This action is trans-
mitted immediately to the target distributed components. Each target compo-
nent tries to register itself towards the source components in the event stream.
The users can configure event path with three simple types of connections: nor-
mal connection, priority-based connection �1, and disconnection. This simplicity
eases users’ setup during the construction of distributed components.

Web User Interface
Users are always moving from one place to another in the ubiquitous comput-

ing environment. In any circumstance, users may wish to construct distributed
ubiquitous application through their cellular phone.

This web User Interface page structure is shown in Fig. 14 right. However, It is
difficult to represent rich context of components because of the limited resources
of cellular phones. Accordingly, we designed these character interfaces simply.
Users can control and setup distributed ubiquitous applications through cellular
phone.

As shown in Fig. 14, multiple UIs can run with consistency. If a user creates an
application through a cellular phone, other users who are viewing from the 2D

�1 Priority-based connection is mentioned in the paper 12)

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



987 A Flexible Modeling Engine Enabling Inter-service Management

Fig. 14 WEB user interface and 2D user interface are working together with consistency.

UI can see the updated distributed application immediately. This is the result
of the Independent Modeling Scheme.

4.3 System Evaluation
In this section, we measure the system performance to evaluate the stability

of model transmission. In addition, we mention about two different kinds of
applications to show useful scenarios using uBlocks.

Notification Time to Multiple UI When the Model is Changed
The first evaluation is based on the 2D User Interface commands components

on networks to change the relationship between them. The number of UIs in-
creased from 1 to 13. We measured the notification time to all other 2D UIs
50 times. In Fig. 15, we plot the average, maximum, and minimum time. UIs
are on a Windows XP (Pentium4 3 GHz) host, and the Modeling Engine is on a
different FreeBSD (Duron 800 M) host. Two components are running on another
WindowsXP (Pentium4 2.4 G).

We can approximate the notification time t in milliseconds as a linear equation
as t = 13.477x + 75.207 (g � 13). x is the number of UIs. Calculation quantity
of t can be estimated as O(x).

Notification Time between Different Kinds of UIs
In this measurement, we changed the combination of the notifying UI and the

UI which accepts the changed-model. We evaluated the time to finish notification
fifty times. Table 4 shows the minimal time, average time, and maximal time.
In this table, Web User Interface represents the time to change the model at the
server-side. 2D UI is inferior to others, however we reached a conclusion that

Fig. 15 Notification time of changed-model to all UIs.

Table 4 Model notification time from a UI to other (milliseconds).

Model Notifying UI Model Receiving UI MIN AVG MAX
Web UI 2D UI 62 93.7 172
Web UI Character 46 65.9 94
2D UI Web UI 62 74.0 93
2D UI Shell UI 47 75.2 110

each UI has finished notification within 100 milliseconds.
Summary of Evaluation
Increase of embedded devices will make the maintenance of such devices im-

possible. Wireless connection among embedded devices also prevents users from
having a clear grasp of what types of applications that are running on them. As
well-skilled system engineers or developers are not always available, the user’s
inability to keep track of the devices will make the ubiquitous computing envi-
ronment completely useless.

To overcome the user’s inability, we have developed uBlocks which enables user
user-level visual composition.

The evaluation shows that uBlocks supports multiple-user construction of com-
ponent distributed application at a same time. The evaluation shows that
uBlocks has a suitable performance for multimodal visualization.

We have evaluated 2D UI, 3D UI and a web UI accessible through a cellular

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



988 A Flexible Modeling Engine Enabling Inter-service Management

phone. Providing these multi-modal user interfaces enables users of variable skill-
levels to utilize distributed devices and building useful application and reduce the
cost of management and construction of distributed applications.

5. Applications and Related Works

To ensure the effectiveness of uBlocks, we have developed several applications
based upon uBlocks targeted at different areas. In addition to the home area,
uBlocks is usable for other situations. We will show applications for home domain
and media transcoding.

5.1 Application for Home Living Domain
Room Mode Changer is an application which controls many devices with one

click through the cellular phone. Room Mode Changer is created by the user as
shown in Fig. 16. Several networked appliances consist this application. One
of networked appliance is an electronic power supply controller, CD player and
ambient light. The user can drag the icon of the mode switcher to the icons of
these devices. After this operation, the user can control the registered devices
simultaneously.

For example, when the user clicks the “sleep mode” button on a cellular phone,
all selected devices turns off. In turn, when the user clicks the “wakeup mode”
button, all selected devices turn on. From this application, we confirm that it is
simple for users to recognize the relationship among components with uBlocks
middleware. Furthermore, we have shown that heterogeneous devices can connect
with one another in uBlocks.

5.2 Application for Media Transcoding
The Ubiquitous Doorbell enables picture delivery of the entrance door to any-

Fig. 16 Room mode changer application constructed upon uBlock UI.

where the home owner is located. At first, the user connects the entrance door
camera and PC in the living room. If the entrance doorbell button is pushed, a
picture captured by a USB camera will be immediately displayed on the living
room PC. When the user is not home, they will want to know who is visiting
their house, so the picture is delivered from the PC to their cellular phone via a
web-based UI. In this case, our application can dynamically reduce the picture
size and drop the colors to gray scale (Fig. 17).

5.3 Related Work on Flexible Service Building
In this section, we describe related work of platforms to construct distributed

application. Then, we summarize the related work and uBlocks in Table 5. Then
we certificate that uBlocks is a novel middleware and has features for building
application by users in Smart Space.

Gaia Project 3),17) is a CORBA-based powerful distributed middleware that has
a application building tool for active space. However, this tool is not friendly for
unskilled users. One of our goals is to provide user friendly simple UIs like web
UI and Java UI that are controllable with mouse or cell phones. uBlocks realizes
simple modeling and can reduce the cost of building application by users.

Fig. 17 Pictures of delivered to a user’s cellular phone.

Table 5 Related work of application building.

name method/who Num. of UI Modeling

Carp@ 4) mouse click/engineers single Independent

ICrafter 19) xml UI/user multi- User-side

SIENA 2) message header/user - event routing

COCA 18) mouse click/user single User-side

VNA 13) xml /engineer multi Comp.-side
uBlocks multimodal-UI/user multi independent

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



989 A Flexible Modeling Engine Enabling Inter-service Management

A reflection based tool for observing Jini service (Carp@) 4) is a management
tool for dynamic distributed Jini systems. Carp@ allows observation of services
and clients, their interconnections and messages exchanged among them. The
tool extracts an architectural component model based on components, ports and
connectors. RT/Dragon can offer a more flexible event communication than
Carp@. In addition, RT/Dragon can offer soft reliable communication mecha-
nism. However, Carp@ is not aimed at multimodal UIs.

COCA 18) can transform heterogeneous ubiquitous computing resources
through a process called classification into a conceptualized representation, which
allows high-level manipulation and configuration by ubiquitous computing appli-
cations. However, COCA is neither supports multiple-users nor multi-modal UI.
uBlocks provides a scheme for developing distributed application by multiple
users through multimodal UIs.

i-LAND 23) is a project that enables automatic collaboration among heteroge-
neous devices. Our uBlocks focuses not only on Computer Supported Cooperative
Work (CSCW) but collaboration among small computation power devices. Thus,
at the sacrifice of automatic collaboration, we designed uBlocks to be as simple
as possible.

ICrafter 19) realizes client-side dynamic GUI rendering using XML. Through
a single GUI of ICrafter, a user can control multiple devices at the same time.
However, ICrafter does not focus on building applications with distributed com-
ponents. On the other hand, our uBlocks is aimed at creating ad-hoc ubiquitous
application by connecting each distributed component directly.

Table 5 shows a comparison of application building middlware.uBlocks is the
only middleware which is support building applicaitons through multimodal UI.
Furthermore, uBlocks allows users to build application with less workd load for
both each component and UI.

5.4 Related Work on Messaging among Distributed Components
There are some related work of messaging middleware comparing with

RT/Dragon.
Common Object Request Broker Architecture (CORBA) 15) is a general-

purpose, internet-scale software architecture for distributed system using the
object-oriented paradigm. CORBA Event Service is one of the Common Ob-

ject Services in CORBA specifications. CORBA Event Service defines a set of
interfaces that provide the synchronous event communication mechanism. The
interfaces support pull-style and push-style communication. Furthermore, mul-
ticast distribution among event suppliers and event consumers is accommodated
with event channels. RT/Dragon has no multicast communication but compre-
hend 6 communication styles.

Unlike event data of CORBA Event Service, RT/Dragon has hierarchical
events which can communicate with many types of components. The Real-Time
CORBA 6) has a scheme of scheduling of event groups into one ORB object.
RT/Dragon does not decide one object for event controlling. All the components
have reliable communication mechanism.

Java Event Channel (JECho) 26) aims to support distributed group communi-
cation by offering the notions of events and event channels. Event Channel is a
logical construction that links some number of endpoints to each other. JECho
employs multicast transmission. Therefore, every distributed object must sup-
port and understand related and non-related event. In the case of low compu-
tation power machine like sensors and appliances, controlling multicast channel
and groups cause difficult problems. Managing which service has to join which
multicast channel and how to discover services users want, are unsolved problems.

SIENA 2) is middleware for distributed event service. SIENA restricts type
of event’s contents strictly, because SIENA depends on contents based event
routing. SIENA also offers “patterns.” “A Pattern” is an expression whose basic
elements are filters. However, patterns have very restricted expression. On the
contrary, RT/Dragon permits any type of serializable object as event object, so
programmers of each component has to decide the detailed behaviors of each
Event Filtering Engine. We can adapt more strict filtering models, including
SIENA’s Pattern model.

Digital Living Network Alliance �1 is an international, the collaboration of con-
sumer electronics, computing industry companies. DLNA is has a http-based
XML messaging architecture. We can use DLNA appliances as a component
module. However, DLNA does not contain sensors and user defined appliances.

�1 http://www.dlna.org/home

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



990 A Flexible Modeling Engine Enabling Inter-service Management

DLNA, unlike uBlocks, can not support various communication style, which sup-
ports mainly media contents streaming by http.

6. Summary and Results

To enable users to build and manage applications, we have accomplished in cre-
ating a high-level simple abstraction of the communication among components.
We have designed, developed, and evaluated a novel middleware named uBlocks.
uBlocks has solved two challenges found when building applications by users.

The first challenge is flexible communication mechanism. We have classified
six communication styles and provided a mechanism of a lazy communication
style decision. Furthermore, uBlocks has event hierarchy which can connect
components widely.

The second challenge is to ensure universal modeling of relationship among
various components. We have compared three modeling schemes and figured
out that the Independent Modeling Scheme allows construction of distributed
applications by multiple users with fewer loads on components. uBlocks also
provides multi-modal interfaces, which allows construction of component-based
distributed applications in various ways that depend on the user’s situation. To
show the versatility of the middleware, we have implemented and tested two
applications built upon uBlocks: home domain and media transcoding.

With the features mentioned above, uBlocks can reduce the cost of building and
management of distributed applications by the users themselves. This research
has reached to the conclusion that the idea of building applications by users is
practical and effective. In the area of computer science, this research accelerates
to advance the paradigm of middleware research from targeting system engineers
to users.

We plan to extend uBlocks to enterprise component-based system develop-
ment. Enterprise component-based system development using Java, such as EJB,
WSDL, is currently popular, however maintenance and development costs of en-
terprise systems are still high. The simple and visual building application method
of uBlocks will contribute within this area.

Acknowledgments This research research has been done as a part of
CREST/OSOITE project and KAKEN Grant-in-Aid for Young Scientist (B).

References

1) Brumitt, B., Meyers, B., Krumm, J., Kern, A. and Shafer, S.: Easyliving: Tech-
nologies for intelligent environments, Second International Symposium on Handheld
and Ubiquitous Computing, HUC 2000, pp.12–29 (Sep. 2000).

2) Carzaniga, A., Rosenblum, D.S. and Wolf, A.L.: Achieving Expressiveness and
Scalability in an Internet-Scale Event Notification Service, Nineteenth ACM Sym-
posium on Principles of Distributed Computing (July 2000).

3) Hess, C.K., Roman, M. and Campbell, R.H.: Building Applications for Ubiquitous
Computing Environments, Pervasive 2002, LNCS 2414, pp.16–29 (Aug. 2002).

4) Fahrmair, M., Salzmann, C. and Schoenmakers, M.: A Reflection Based Tool for
Observing Jini Services, Reflection and Software Engineering, pp.209–227 (June
2000).

5) Leymann, F. and IBM Software Group: Web Services Flow Language 1.0 (May
2001).

6) Harrison, T.H., Levine, D.L. and Schmidt, D.C.: The Desighn and Performance of
a Real-time CORBA Object Event Service, OOPSLA (Oct. 1997).

7) Harter, A. and Hopper, A.: A distributed location system for the active office,
IEEE Network Magazine, Vol.8, No.1 (Jan. 1994).

8) Iwai, M. and Tokuda, H.: Distributed Data-centric Application Development us-
ing Multiple Mobile Devices, Proc. 6th International Conference on Mobile Data
Management (MDM2005 ), pp.200–210 (2005).

9) Kidd, C.D., Orr, R., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyre, B.,
Mynatt, E., Starner, T.E. and Newsletter, W.: The aware home: A living labo-
ratory for ubiquitous computing research, Proc. Second International Workshop on
Cooperative Buildings—CoBuild’99 (Oct. 1999).

10) Lawrance, J., Clarke, S., Burnett, M. and Rothermel, G.: How well do professional
developers test with code coverage visualizations? An empirical study, VLHCC ’05:
Proc. 2005 IEEE Symposium on Visual Languages and Human-Centric Computing,
pp.53–60, Washington, DC, USA, IEEE Computer Society (2005).

11) Ito, M., Iwaya, A., Saito, M., Nakanishi, K., Matsumiya, K., Nakazawa, J., Nishio,
N., Takashio, K. and Tokuda, H.: Smart furniture: Improvising ubiquitous hot-spot
environment, IEEE 3rd International Workshop on Smart Appliances and Wearable
Computing (May 2003).

12) Iwai, M., Nakazawa, J. and Tokuda, H.: Dragon: Soft Real-Time Event Deliv-
ering Architecture for Networked Sensors and Appliances, The 7th International
Conference on Real-Time Computing System and Applications, pp.425–432 (Dec.
2000).

13) Nakazawa, J., Tobe, Y. and Tokuda, H.: On Dynamic Service Integration in VNA
Architecture, IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences, Vol.E84-A, No.7, pp.1610–1623 (July 2001).

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan



991 A Flexible Modeling Engine Enabling Inter-service Management

14) Nardi, B.A., Miller, J.R. and Wright, D.J.: Collaborative, programmable intelligent
agents, Commun. ACM, Vol.41, No.3, pp.96–104 (1998).

15) Object Management Group: The Common Object Request Broker Architecture
and Specification 2, 2ed, CORBA Event Service (Feb. 1998).

16) Okoshi, T., et al.: Smart space laboratoty project: Toward the next generation
computing environment, IWNA2001 (Feb. 2001).

17) Roman, M., Hess, C., Cerqueira, R., Renganat, A., Campbell, R.H. and Nahrstedt,
K.: Gaia: A middleware infrastructure to enable active spaces, IEEE Pervasive
Computing, pp.74–83 (Dec. 2002).

18) Schubiger-Banz, S. and Hirsbrunner, B.: A Model for Software Configuration in
Ubiquitous Computing Environments, Pervasive 2002, LNCS 2414, pp.181–194
(Aug. 2002).

19) Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P. and Winograd, T.: ICrafter:
A Service Framework for Ubiquitous Computing Environments, UBICOMP 2001,
LNCS 2201 (Oct. 2001).

20) Sun Microsystems Inc.: Jini Discovery and Join Specification (Oct. 2000).
http://www.sun.com/jini/specs/core1 1.pdf

21) Sun Microsystems Inc.: Jini Distributed Leasing Specification (Oct. 2000).
http://www.sun.com/jini/specs/core1 1.pdf

22) Sun Microsystems, Inc.: Enterprise Java Beans Technology (2001).
http://java.sun.com/products/ejb/

23) Tandler, P.: Software Infrastructure for Ubiquitous Computing Environments Sup-
porting Synchronous Collaboration with Multiple Single- and Multi-User Devices,
UBICOMP 2001, LNCS 2201, pp.96–115 (Aug. 2002).

24) Weiser, M.: The Computer for the Twenty-First Century, Scientific American,
Vol.265, No.3, pp.94–104 (Sep. 1991).

25) Welsh, M., Culler, D.E. and Brewer, E.A.: SEDA: An architecture for well-
conditioned, scalable internet services, Symposium on Operating Systems Princi-
ples, pp.230–243 (2001).

26) Zhou, D., Schwan, K., Eisenhauer, G. and Chen, Y.: JECho—Interactive High
Performance Computing with Java Event Channels, International Parallel and Dis-
tributed Processing Symposium (Apr. 2001).

(Received June 11, 2008)
(Accepted December 5, 2008)

(Original version of this article can be found in the Journal of Information Pro-
cessing Vol.17, pp.119–137.)

Masayuki Iwai received Ph.D. in Media and Governance from
Keio University in 2002. He is currently a Project Associate Pro-
fessor of Tokyo Denki University. His research interests include
distributed middleware, visual programming, wireless sensor ap-
plications, and RFID systems. He is a member of IPSJ and JSSST.

Yoshito Tobe received Ph.D. in Media and Governance from
Keio University in 2000. He is currently a Professor at Tokyo
Denki University. His research includes multimedia communica-
tions and sensor networks. He is a member of IEEE Communica-
tions Society, ACM, and IPSJ.

Hideyuki Tokuda received Ph.D. in Computer Science from
the University of Waterloo in 1983. He is currently a Profes-
sor in the Faculty of Environmental Information, Keio University.
His research interests include distributed real-time systems, mul-
timedia systems, mobile systems, ubiquitous system, and sensor
networks. He is a member of IPSJ, IEEE, ACM.

IPSJ Journal Vol. 50 No. 3 973–991 (Mar. 2009) c© 2009 Information Processing Society of Japan


