
A Performance Analyzer for Task Parallel Applications based-on Execution Time Stretches

An Huynh,† Jun Nakashima† and Kenjiro Taura†

1. Introduction

Speedup of parallel programs is rarely per-
fect, especially when an application executes
on a large number of cores. As an example,
Fig. 1 shows the speedup of a recursive task
parallel matrix multiply running on a node with
32 cores of AMD Opteron 8354. The speedup
is nearly perfect until 16 cores, after which it
begins to degrade.

Fig. 1 Scalability

In general, a degradation of speedup is con-
tributed by three factors: idle time, overhead,
and work time stretch. The first factor, idle
time, is the time that workers do not have any
work to do. In task parallel systems, it is the
time in which workers are trying to steal work
from other workers. The second factor, over-
head, refers to the time spent on extra instruc-
tions that would would not be necessary in se-
rial execution. In task parallel systems, this in-
cludes the time to create/terminate tasks. The
last factor, work time stretch, refers to the de-
gree to which the same application-level code
takes longer in parallel execution than in serial
execution. A dominating cause of work time
stretch is an increased cache miss ratio caused
by task distribution (load balancing).
Among the three factors, we believe the work

time stretch is most difficult to identify and
most important for the programmer in future
multi- and many-core systems. This is be-
cause the dynamic load balancing by the work
stealing scheduler1) changes which cores access
which part of data, in a way not easy to pre-

† The University of Tokyo

dict by the programmer and analyzing/mitigat-
ing the effect of such changes in access pattern
will be more important than ever in future. To
this end, we are trying to develop a profiler that
can clarify the contribution of work time stretch
in application’s slowdown and show the stretch
factors of selected tasks.

2. Related Work

There have been many performance analy-
sers. Two popular systems are the TAU sys-
tem2) and Intel VTune Amplifier3). TAU is
open source and has a powerful automatic in-
strumentation toolset. VTune Amplifier uses
sampling method and does not need to instru-
ment the executable. However, these tools eval-
uate only one execution of application. For ex-
ample, they analyse the most costly part of the
application, figuring out the code blocks that
consume most of the execution time. Our ap-
proach is different, we compare the executions
on one and many cores, then we analyze per-
formance basing on changes of work time.

3. Profiler Structure

The profiler’s target is to collect information
of individual runs of individual tasks so that it
can distinguish work time out of idle time and
runtime system’s overhead. We have instru-
mented measurement code in MassiveThreads4)

task parallel runtime system. We instrumented
at positions where a task is going to be started
or stopped so that we can keep track on indi-
vidual runs of tasks.
The profiler also pays attention to the length

of linked lists. When it reaches a predefined
limit (which is specified by environment vari-
able), the profiler will pause worker thread,
write data to file, releasing memory for new
measured data, avoiding memory thrashing.

4. Detection of task execution time’s
stretch

We used the profiler to analyse the slowdown
of matrix multiply application. The profiler has

ⓒ 2013 Information Processing Society of Japan 148

先進的計算基盤システムシンポジウム SACSIS2013 
Symposium on Advanced Computing Systems and Infrastructures

SACSIS2013
2013/5/23



Fig. 4 Time amount corresponding to L3 cache miss
count

shown that increase in work time (stretch fac-
tor) contributes the most in the slowdown. Par-
ticularly, it accounts for 78% on 20 cores, and
increases gradually to 91% on 32 cores.

Fig. 2 Task Stretch’s proportion

5. Cache Miss Count Observation

Fig. 3 shows L3 cache miss count (blue
columns with left y-axis) together with the ex-
ecution time of the matrix multiply application
(red columns with right y-axis). We can realize
that along with the stretch in execution time,
cache miss count also increases.

Fig. 3 L3 cache miss count

We have measured the latency of a single L3
cache miss on the machine, which was about
300 nanoseconds. Using this number we convert
cache miss count into equivalent time amout.
Then we redraw only the increased amount
of time derived from cache miss count (blue
columns) together with the increased amount
of application’s execution time (red column),
we got Fig. 4.

In Fig. 4, the time caused by increase in cache
miss count is much more than the actual in-
crease in application’s execution time. This can
be understood by considering that processors
can overlap several cache misses so each cache
miss does not necessarily incur the full latency
of 300 nanoseconds.

6. Conclusion and Future Work

Our work has demonstrated that work time
stretch is the main factor that makes applica-
tions’ performance degrade on large numbers
of cores, beside the factors of idleness and run-
time overhead. Moreover, it’s also shown that
work time stretch is accompanied with the in-
crease in cache miss count. Indeed parallel ex-
ecution is likely to cause a surplus amount of
data loads when multiple worker threads load
the same data to their different associated phys-
ical memory.
We have decomposed the work time stretch

to task levels, but this is not useful enough.
Programmers need to know specific code blocks
that stretch so that they can know where they
need to improve their programs. Therefore, in
future work we would like to develop the pro-
filer so that it can provide stretch information
and other additional information like cache miss
count regarding specific code blocks.

References

1) Robert D. Blumofe, Charles E. Leiserson.
Scheduling multithreaded computations by work
stealing. 35th Annual Symposium on Founda-
tions of Computer Science, 1994 Proceedings.

2) Sameer S. Shende, Allen D. Malony. The
Tau Parallel Performance System. Interna-
tional Journal of High Performance Comput-
ing Applications - IJHPCA , vol. 20, no. 2, pp.
287-311, 2006.

3) Intel VTune Amplifier http://software.intel.
com/en-us/intel-vtune-amplifier-xe.

4) 中島潤，田浦健次朗．高効率な I/Oと軽量性を
両立させるマルチスレッド処理系．情報処理学
会論文誌 プログラミング (PRO)．Vol.4，No.1，
pp.13-26．2011年 3月．

5) S. Browne, J. Dongarra, N. Garner, K. Lon-
don, P. Mucci. A scalable cross-platform infras-
tructure for application performance tuning us-
ing hardware counters. ACM/IEEE Conference
on Supercomputing, 2000.

6) Omer Zaki, Ewing Lusk, William Gropp, Deb-
orah Swider. Toward Scalable Performance Vi-
sualization with Jumpshot. International Jour-
nal of HPCA 1999.

ⓒ 2013 Information Processing Society of Japan 149

先進的計算基盤システムシンポジウム SACSIS2013 
Symposium on Advanced Computing Systems and Infrastructures

SACSIS2013
2013/5/23


