
CUDA Enabled for Android Tablets through DS-CUDA 
EDGAR JOSAFAT MARTINEZ-NORIEGA†, ATSUSHI KAWAI ‡, KAZUYUKI 

YOSHIKAWA†, KENJI YASUOKA‡ AND TETSU NARUMI† 
 

                                                   
† Faculty of Informatics and Engineering, The University of Electro-Communications 
‡ Faculty of Science and Technology, Keio University  

1. Introduction 

The usage of GPUs (Graphics Processor Units) 
for parallel computing, GPGPU 
(General-Purpose Computing on GPU), has 
become a natural way to increase dramatically 
the performance of computer applications and 
simulations. Some of the top 10 super computers 
are already equipped with many GPU 
accelerators [1]. Since its first appearance in 
2006, NVIDIA’s CUDA [2] (Compute Unified 
Device Architecture) has become one of the most 
complete and common frameworks for parallel 
computing using GPUs. CUDA has already 
successfully accelerated many applications in an 
enormous variety of fields [3-4]. 

On the other hand, the way we interact with 
computers has been changed since the 
appearance of smartphones and tablets. These 
relative new devices offer a new way to 
represent data and interact (i.e. touch displays) 
with it taking input from different sources (i.e. 
gyro, accelerometer, camera etc.). However their 
computing power is still very limited compared 
with PCs. 

In this paper, we propose to use DS-CUDA 
(Distributed-Shared CUDA), on Android tablet 
in order to merge these two worlds, mobility and 
high performance computing. 

2. DS-CUDA Overview 

DS-CUDA is a middleware that allows you to 
manage NVIDIA’s GPUs on a distributed 
network. A single client node and various server 
nodes compose one DS-CUDA system. The 
server nodes have one or more CUDA capable 

GPUs that are handled by server processes. An 
application on the client side can use these 
parallel devices to process data without having a 
physical GPU. The program sees all GPUs 
contained into a cluster as if they were actually 
attached to the client node. Therefore, DS-CUDA 
is a kind of GPU-virtualization tool at source 
code level. When the client calls native CUDA 
API, the DS-CUDA preprocessor handles the 
correct wrapper function, which communicates 
with the server nodes through an InfiniBand 
(IB-Verb) or RPC (Remote Procedure Call) 
socket. A more detailed description is on another 
paper [5]. 

3. System Architecture  

On Figure 1, we show the proposed system. 
The mobile device, client node, is a Nexus 7 
tablet running Android 4.2.2. A PC (server node) 
with 2 GeForce 460 GTX GPUs and DS-CUDA is 
the server node. The PC and the tablet are 
connected in the same LAN through wireless 
network. Table 1 summarizes some important 
specifications of the system. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Proposed system. 

ⓒ 2013 Information Processing Society of Japan 115

先進的計算基盤システムシンポジウム SACSIS2013 
Symposium on Advanced Computing Systems and Infrastructures

SACSIS2013
2013/5/23



4. Implementation 

We implemented a matrix multiplication 
program using the algorithm within the 
NVIDIA’s CUDA-SDK “mutrixMul” [6]. The 
product of matrices A and B is calculated into 
matrix C. The contents of each matrix are 
floating numbers generated randomly.  

First, DS-CUDA compiler processes the CUDA 
code of the matrix program, then two files are 
generated: source C code of a main program 
and .ptx file (low level code for GPU). These two 
files are mounted manually into the Android SD 
memory. We used a console environment to run 
the executable file in Android as in a normal 
linux environment. 

5. Results 

Figure 2 shows the time spent to produce 
matrix C. X-axis is the total amount of 
operations generated during the process. Total 
number of FLOPS (Floating-Point Operations 
per second) is represented on Y-axis. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
On ‘CUDA Native’, we performed the 

algorithm via CUDA Driver API, on ‘DS-CUDA 
x86’ we used the node server also as a client to 
generate the C Matrix. ‘DS-CUDA Tablet’ uses 
Android’s Nexus 7 to perform the calculations. 

6. Conclusion 

In this paper we propose to use DS-CUDA as a 
linkage between a mobile device and GPGPU 
computing. DS-CUDA virtually enables Tablet 
to use GPUs in a server mode. Current work is 
focused on the detailed analysis of the 
communication time between server and client. 
How this time affects the performance of the 
application. Besides the comparison between the 
native CUDA API and CUBLAS (CUDA Basic 
Linear Algebra Subroutines) [7] will be also 
tested. The usage of DS-CUDA with Java trough 
JNI (Java Native Interface) [8], in order to run 
native application on Android´s Tablet, will be 
also a future topic. Running N-Body or 
Dynamics Molecular Simulations on Android’s 
tablet is one of the primary targets of future 
research. 

References 
[1] http://www.top500.or/ TOP500 supercomputers website 

[retrieved: November 2012 List] 
[2] The NVIDIA website. 

https://developer.nvidia.com/category/zone/cuda-zone 
[retrieved: march, 2012] 

[3] Wen-Mei, W. Hwu, “GPU Computing Gems, Emerald 
Edition” , book, Morgan Kaufmann Publishers, 2011. 

[4] http://gpgpu.org. General-Purpose Computation on 
Graphics Hardware site. [retrieved: march, 2012] 

[5] Atsushi Kawai, Kenji Yasuoka, Kazuyuki Yoshikawa, 
and Tetsu Narumi, “Distributed-Shared CUDA: 
Virtualization of Large-Scale GPU Systems for 
Programability and Reliability”, The Fourth 
International Conference on Future Computational 
Technologies and Applications, Nice, France, 2012. 

[6] https://developer.nvidia.com/cuda-downloads Nvidias’s 
Developer Kit site. [retrieved: March 2013] 

[7] www.developer.nvidia.com/cublas Nvidias’s developer 
site [retrieved: March 2013].  

[8] www.developer.android.com/tools Android’s developer 
site [retrieved: March 2013]. 

Client Node 
Tablet Nexus 
7 

GPU ARM-Tegra 3, Quad-core, 1.7 GHz. 
Memory 1GiB 
GPU N/A 
OS Android 4.2.2 

Server Node 
PC 

CPU Intel Core i7 920, 2.7GHz, 8 cores 
Memory 6 GiB 
GPUx2 
 
 
 

 

NVIDIA GeForce 460 GTX, 
7 Multiprocessors, 
1.3 GHz 
336 CUDA cores 
Global memory 1024MB 

OS Ubuntu 12.04 x86 Linux 
CUDA Driver 310.32, toolkit 4.1, SDK 4.1 

Interconnect  Ethernet 1 Gibit/sec (theoretical throughput) 
Wireless 

802.11n
@2.4GHz 

39 Mbit/sec 
 

 

Table 1. Specifications of components of a system. 

Figure 2. Calculation speed of matrix 
multiplication. 

ⓒ 2013 Information Processing Society of Japan 116

先進的計算基盤システムシンポジウム SACSIS2013 
Symposium on Advanced Computing Systems and Infrastructures

SACSIS2013
2013/5/23


