Regular Paper

NP-completeness of Arithmetical Restorations

Tomomi Matsui ${ }^{1, \text { a) }}$
Received: July 30, 2012, Accepted: January 11, 2013

Abstract

This paper deals with a variation of crypt-arithmetics, called "arithmetical restorations." Arithmetical restorations are problems dealing with the reconstruction of arithmetical sums from which various digits have been erased. We show the NP-completeness of a problem deciding whether a given instance of arithmetical restorations of multiplication sums has a solution or not.

Keywords: crypt-arithmetic, word crypt-arithmetics, alphametics, NP-complete

1. Introduction

Crypt-arithmetic is a type of mathematical puzzle in which the digits of arithmetical sums are replaced by symbols. The objective of the puzzle is to break a code used. That is, to replace each symbol of the crypt-arithmetics by a numeral so that the resulting mathematical expression becomes true. In a typical case, called alphametic puzzle, digits are replaced by letters of the alphabet and there is a one-to-one correspondence between the numbers and the letters replacing them. That is, the same digit is always represented by the same letter or symbol. Eppstein [1] showed that the problem of determining if an alphametic puzzle has a solution is NP-complete, when generalized to arbitrary bases. It is easy to see that when we fix the numeral base, there exists a naive linear time algorithm.

This paper deals with a variation of crypt-arithmetics, called "arithmetical restorations." Arithmetical restorations are problems dealing with the reconstruction of arithmetical sums from which various digits have been erased. We show the NPcompleteness of a problem deciding whether a given instance of arithmetical restorations of multiplication sums has a solution or not. The problem remains NP-complete even if we fix the numerical base to $r \geq 3$. Our proof also gives ASP-completeness of the problem.

2. Arithmetical Restorations

In this paper, we set the numerical base to 10 , unless specifically stated. We deal with arithmetical restorations of multiplication sums in which most of the digits have been replaced by asterisks. Each missing digit may be $1,2,3, \ldots, 9$ or 0 . When the number of digits of a row is greater than 1 , the first digit is not equal to 0 . Figure 1 gives an example of arithmetical restorations and its answer.

[^0]
3. NP-completeness

Given a problem of arithmetical restorations and a solution to the problem, it is not hard to see that we can verify the solution quickly. Thus, arithmetical restorations are in NP and it remains to show that they are complete for NP.

First, we introduce Monotone One-in-Three 3SAT, which is a well-known NP-complete problem.
Monotone One-in-Three 3SAT (e.g., see Ref. [2])
Input: A $p \times q$ matrix A such that (i) each entry is 0 or 1 , and (ii) every row contains exactly three 1 s .
Question: Is there a vector $z \in\{0,1\}^{q}$ satisfying $A z=\mathbf{1}_{p}$? (The vector $\mathbf{1}_{p}$ denotes the p-dimensional all one vector.)

Given an instance, a $p \times q$ matrix A, of Monotone One-in-Three 3SAT, we construct an instance of arithmetical restorations for multiplication sums whose first and second rows represent numbers with $1+p q(q+1)$ digits and $p(q+1)(q-1)+1$ digits, respectively. We describe a procedure to construct rows of an instance of arithmetical restorations. Figure 2 gives an example of the following procedure. Each row of an instance of arithmetical restorations is a number. In the following, we denote the number by a vector whose entries are digits of the number.
1st row: We construct the first row in 2 steps as follows. First, we construct a $(1+p q)$-dimensional row vector $\left(1, \boldsymbol{a}_{1}^{\top}, \boldsymbol{a}_{2}^{\top}, \ldots, \boldsymbol{a}_{q}^{\top}\right)$ where \boldsymbol{a}_{j} is the j-th column vector of a given matrix A. Next, we insert a q-dimensional zero-vector $\mathbf{0}_{q}^{\top}$ (indicated by underlines in the first row of Fig. 2) for each pair of consecutive elements of the above vector and obtain a $(1+p q(q+1))$-dimensional vector. 2nd row: The second row is obtained from a q-dimensional all-

(a) Problem.

Fig. 1 Arithmetical restorations.

Given instance of Monotone One-in-Three 3SAT $\left(\begin{array}{cccc}1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1\end{array}\right)\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3} \\ z_{4}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

×)

* $00000000000000^{*} 00000000000000 * 00000000000000^{*}$
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

[^0]: 1 Department of Information and System Engineering, Chuo University, Bunkyo, Tokyo 112-8551, Japan
 a) matsui@ise.chuo-u.ac.jp

