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Finding a Hamiltonian Path in a Cube
with Specified Turns is Hard
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Abstract: We prove the NP-completeness of finding a Hamiltonian path in an N×N×N cube graph with turns exactly
at specified lengths along the path. This result establishes NP-completeness of Snake Cube puzzles: folding a chain of
N3 unit cubes, joined at face centers (usually by a cord passing through all the cubes), into an N × N × N cube. Along
the way, we prove a universality result that zig-zag chains (which must turn every unit) can fold into any polycube after
4 × 4 × 4 refinement, or into any Hamiltonian polycube after 2 × 2 × 2 refinement.
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1. Introduction

Snake Cube puzzles [6], [7], [8] are physical puzzles consist-
ing of a chain of unit cubes, typically made out of wood or plas-
tic, with holes drilled through to route an elastic cord. The cord
holds the cubes together, at shared face centers where the cord ex-
its/enters the cubes, but permits the cubes to rotate relative to each
other at those shared face centers. Figure 1 shows photographs of
a wooden Snake Cube from its initial to solved state. As in most
physically existing Snake Cube puzzles, it consists of 27 cubes
and the goal is to make a 3 × 3 × 3 cube.

The origin of Snake Cube puzzles seems to be unknown; the
simplicity of the idea may have led to many copies and varia-
tions. Singmaster’s puzzle collection [9] lists his earliest purchase
of such a puzzle as 1990 in Paris. Jaap’s Puzzle Page [8] lists
two tradenames for different versions of the puzzle: Kev’s Kubes
(wooden, made by Trench Puzzles), and Cubra Finger Twist-
ing Puzzler (plastic, made by Parker Hilton Ltd circa 1998 [5],
later acquired by Falcon Games) which has five color-coded
variations—Mean Green, Bafflin’ Blue, Twist yer ’ead Red, ’Or-
rible Orange, and Puzzlin’ Purple. Figure 2 shows a packaged
Cubra Puzzlin’ Purple. The two Snake Cube puzzles we own (in-
cluding Fig. 1) happen to match the geometry of the Cubra Baf-
flin’ Blue puzzle.

Larger 4 × 4 × 4 puzzles are sold under the name “King
Snake” [1]. A custom 5 × 5 × 5 puzzle was built at the Smith
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1.1 Our Results
In this paper, we study the natural generalization of Snake

Cube puzzles to a chain of N3 cubes whose goal is to fold into
an N × N × N cube. The puzzle can be specified by a sequence

→ →

Fig. 1 A commercially available Snake Cube puzzle consisting of 27 cubes
in the pattern SSTSTSTSTTTTSTSTTTSTTSTTTSS.

Fig. 2 The commercially available Cubra Puzzlin’ Purple puzzle consisting
of 27 cubes in the pattern STTTTSTSTTTTTTTTTTTSTSTTTTS. Photo
from the Slocum Collection [5] courtesy of The Lilly Library, Indi-
ana University, Bloomington, Indiana.
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of N3 binary symbols (S or T), each representing a cube whose
cord either passes straight through the cube and thus prevents the
chain from turning (S), or turns 90◦ at the cube and thus forces
the chain to turn (T).

We prove that it is NP-complete to decide whether such a puz-
zle has a folded state in the shape of an N × N × N cube. Our
NP-hardness reduction is from the classic 3-Partition problem,
whose goal is to divide 3n integers, v1, . . . , v3n, into n triples of
equal sum. We represent each integer vi as a sequence of cubes
that must effectively fold into a narrow “peg” of width propor-
tional to vi. In Sections 4 and 5, we build an infrastructure for
these pegs to fit into, consisting of n “slots” whose widths are
proportional (with the same constant as pegs) to the target sum
of each triple. Finally, in Section 8, we connect the infrastruc-
ture and pegs together with “filler” that lets the pegs move freely
relative to each other and the infrastructure.

To develop “filler” gadgets for our hardness proof, we also
prove universality results about zig-zag puzzles, which consist
solely of turning cubes (T). Specifically, in Section 6, we show
that the zig-zag puzzle of (4N)3 unit cubes can fold into the shape
of any N-cube polycube after 4 × 4 × 4 refinement. Furthermore,
in the special case of Hamiltonian polycubes (whose dual graph
has a Hamiltonian path), we show how to reduce the required re-
finement to just 2 × 2 × 2.

1.2 Related Work
A few research papers have already been motivated by Snake

Cube puzzles. Scherphuis [8] wrote a computer program to ex-
haustively enumerate all 11,487 possible 3 × 3 × 3 Snake Cube
puzzles, and found that 3,658 have unique solutions. (For ex-
ample, the puzzle in Fig. 1 has a unique solution, but the puzzle
in Fig. 2 has six solutions.) Ruskey and Sawada [7] characterized
when an MNK-cube zig-zag puzzle can fill an M×N×K box, and
generalized this result to d dimensions and toroidal space. Mc-
Donough [6] analyzed cube Hamiltonian paths that form nontriv-
ial knots, and multiple spanning paths that form nontrivial links.

2. Definitions

For convenience, we work on the standard, Cartesian coor-
dinate system, identifying the positive x-, y-, and z-directions
with right, forward, and up, respectively. We divide space into
unit cubes, which we call cells, according to the integer lattice,
Z

3. Each cell is identified by its left, back, bottom corner; in
other words, the cell at (x, y, z) has opposite corners (x, y, z) and
(x+1, y+1, z+1). A cell has six faces, and we identify co-located
faces on adjacent cells. For example, we identify the right face of
cell (x, y, z) with the left face of cell (x + 1, y, z).

An (abstract) puzzle of cubes is a sequence of Ss and Ts, rep-
resenting straight cells and turn cells, respectively. A configu-
ration of a length-n abstract puzzle is a sequence of distinct cells
c1, . . . , cn and faces f0, . . . , fn, such that
• for each 1 ≤ i ≤ n, fi−1 and fi are distinct faces of cell ci, and
• if the ith symbol in the puzzle is an S then fi−1 and fi are

opposite faces on cell ci; if this symbol is a T, faces fi−1 and
fi are adjacent.

Fig. 3 A depiction of the puzzle STS3TS2T2. In terms of real Snake Cube
puzzles, the blue and purple pipe illustrates the cord inside the cubes
to distinguish straight cubes from turn cubes.

In other words, such a configuration is a path of cells whose
straight and turn cells correspond to the specification of the ab-
stract puzzle. Faces f0 and fn are called the starting face and
ending face of the configuration, respectively.

A puzzle may be notated simply as a sequence of symbols
S and T and superscripts to indicate symbol repetition. For
example, Fig. 3 shows the puzzle STS3TS2T2. We introduce a
run-length encoding shorthand as follows: For positive integers
d1, . . . , dr, we define

〈d1, . . . , dr〉 = Sd1−1TSd2−2T · · · TSdr−1−2TSdr−1

if r > 1 and 〈d1〉 = Sd1 ; the integers di describe the lengths of
the bars, or maximal subsets of collinear cubes. For example, the
puzzle in Fig. 3 is abbreviated as 〈2, 5, 4, 2, 1〉. Note that 1 s may
appear in this notation only at the start or end of the sequence,
and, unless r = 1, they indicate that the first or last symbol of the
puzzle is a T. Two notable examples are 〈1〉 = S and 〈1, 1〉 = T.

For two puzzles C1 and C2 of n and m cubes respectively, we
define their concatenation C1◦C2 as the puzzle of n+m cubes ob-
tained by concatenating the underlying S-T sequences of C1 and
C2. In run-length encoding notation,

〈d1, . . . , dr〉 ◦ 〈e1, . . . , es〉 = 〈d1, . . . , dr−1, dr + e1, e2, . . . , es〉.
For example, if C1 = 〈1, 3, 4, 1〉 = TSTS2T and C2 = 〈5, 6〉 =
S4TS5, then C1 ◦ C2 = TSTS

2TS4TS5 = 〈1, 3, 4, 6, 6〉. A nota-
tion for iterated concatenation is also useful: For a puzzle C, the
notation Ck means C ◦C ◦ · · · ◦C, with k total copies of C.

Finally, we reduce from the 3-Partition problem, defined
as follows. An instance of this problem is a (multi)set V =

{v1, . . . , v3n} of positive integers such that 1
n

∑3n
i=1 vi = t is an in-

teger. We require additionally that t/4 < vi < t/2 for each i. A
3-partition of V is a partition of V into n groups each with sum
equal to the target sum, t; each group necessarily has three ele-
ments. The instance V is a YES instance if and only if it has a
3-partition. The 3-Partition problem was shown to be strongly
NP-hard by Garey and Johnson [4].
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Fig. 4 A depiction of the different parts of the hub-and-slots shape. Not
drawn to scale.

3. Overview

We first provide an informal description of the reduction that
also serves as an outline for the remainder of the paper.

From a 3-Partition instance V = {v1, . . . , v3n} with target sum
t, we will construct a puzzle R = R(V) that exactly fills a u×u×u

cube (where u = poly(n, t), specified later) if and only if there
exists a 3-partition for V .

The key idea for our reduction is as follows. Imagine a large
box—the “hub”—with n separate, long and skinny “slots” stick-
ing out of it, each with width 8t, length �, and height 1. Figure 4
illustrates this “hub-and-slots” shape. Now suppose that we have
3n separate puzzles, or “pegs”: for each 1 ≤ i ≤ 3n, form the puz-
zle Pi = 〈�, 2, �, 2, . . . , �〉, where there are 8vi bars of length �. If
� is long enough, then for any peg Pi to fit into the hub-and-slots,
it must in fact zig-zag along one of the slots, occupying 8vi of its
width (possibly partially poking into the hub). It follows that all
pegs P1, . . . , P3n can fit without overlap into the hub-and-slots if
and only if V has a 3-partition.

Our reduction exactly sets up this situation. Specifically, from
the 3-Partition instance V , our reduction constructs the puzzle

R = R(V) = R1 ◦ R2 ◦ R3 ◦ R4, (1)

where each Ri solves a specific, isolated task.
The first two portions, R1 and R2, “carve out” the hub-and-

slots shape from the u × u × u cube. In other words, no matter
how R1 ◦ R2 is positioned inside the u × u × u cube, it must fill
everything except the exact hub-and-slots shape needed. More
specifically, puzzle R1 (Section 4) carves out an a × b × c box
(with carefully chosen dimensions a < b < c) from the u × u × u

cube, and then R2 (Section 5) carves out the hub-and-slots shape
from this box.

Puzzle R3 (Section 7) includes the pegs P1, . . . , P3n described
above, so R1◦R2◦R3 can fit into the u×u×u cube only when there
exists a 3-partition. Inside puzzle R3, the pegs Pi are separated by
zig-zagging “filler material” (analyzed in Section 6) that is suffi-
ciently flexible to allow each peg to be independently placed in
the slots. This ensures that, when a 3-partition of V exists, puzzle
R3 can indeed fit into the hub-and-slots.

Finally, more zig-zagging filler material comprises puzzle R4

(Section 8). Its purpose is to fill all space inside the hub that was
not filled by R3. This ensures that, when a 3-partition exists, the
puzzle R1 ◦ R2 ◦ R3 ◦ R4 can fill all cells in the u × u × u cube

without gaps.

4. Cube to Box

We first formalize the notion of “carving out,” or excising a
region from a larger region as described in the Overview (Sec-
tion 3). This allows us to analyze different sections of R sepa-
rately, for example, arguing that R1 excises a box from the u×u×u

cube and therefore the R2 portion of R1 ◦R2 must operate entirely
inside this box. Since we wish to analyze R1 and R2 separately,
some care must be taken to ensure that their endpoints join prop-
erly.
Definition 1. A region is a face-connected collection of cells in

the unit grid. A nontrivial mark on a region S is a pair (c, f ),
where c is a cell in S and f is a face of c. A puzzle configuration

in S starts/ends at mark (c, f ) if its first/last cell-and-face pair is

(c, f ). For convenience, we also introduce a trivial mark, notated

by (∅, ∅), and we declare that any puzzle configuration in S vacu-

ously starts/ends at the trivial mark. A marked region is a region

with a mark, which may be trivial or nontrivial.

The trivial mark is simply a notational convenience: it allows
uniform treatment of regions with a chosen start or end location
(nontrivially marked regions) and regions with no preferred start
or end (trivially marked regions). Also, though it is not required,
face f of a nontrival mark will usually be a boundary face of
S . Such marks may be specified from face f alone, because cell
c ∈ S is then uniquely determined.

Suppose we have two marked regions S and S ′, with marks
(c, f ) and (c′, f ′) � (∅, ∅) respectively, where f ′ is on the bound-
ary of S ′. We would like to say that a puzzle C “excises” S ′ from
S if every configuration of C inside S starting at (c, f ) must fill
all of S except for a region congruent to S ′ and must end at face
f ′ of this copy of S ′. This is not quite the condition we need: for
example, if puzzle C ends with a T cube, then even if the configu-
ration leaves an S ′-shaped hole, the last cube may be turned away
from S ′. We disallow this by requiring that the configuration be
“extensible” inside S , in such a way that this extension must enter
cell c′ via face f ′.
Definition 2. Let S and S ′ be two (trivially or nontrivially)
marked regions with marks (c, f ) and (c′, f ′) respectively, where

f ′ is on the boundary of S ′ if (c′, f ′) � (∅, ∅). A puzzle C excises
S ′ from S if, for every configuration of C inside S starting at

(c, f ) and ending at some cell-and-face pair (c′′, f ′′) in S , if the

cell adjacent to f ′′ other than c′′ is in S and not filled by the con-

figuration, then the unfilled portion of S must be congruent to S ′

in such a way that, if (c′, f ′) � (∅, ∅), then f ′′ = f ′. Furthermore,

at least one such configuration of C must exist.

At least in the case where S ′ is nontrivially marked, the fol-
lowing fact (which follows directly from the previous definition)
shows that such an excision allows perfect separation of matters
inside S ′ from those outside it:
Theorem 3. If C excises marked region S ′ with nontrivial mark

(c′, f ′) from marked region S (with mark (c, f )), and if C′ is any

other nonempty puzzle, then C ◦ C′ can be configured inside S

starting at (c, f ) if and only if C′ can be configured inside S ′

starting at (c′, f ′).
With these definitions in place, the following two lemmas show
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how to excise an arbitrary box from an appropriately chosen cube.
These lemmas use puzzles called tribars, each of which consists
of three consecutive bars of length greater than 2. A horseshoe
configuration of a tribar is one where the three bars lie in a plane
and the two parallel bars point in opposite directions, thus form-
ing a “horseshoe” or “U” shape.
Lemma 4. Given integers a < b < c, let B be an a × b × c box,

marked at a unit square in the corner of an a × c face of the box.

Let B′ be an a × b′ × (c − 1) box satisfying a < b′ < (c − 1) and

2(b′+2) > b, marked at a unit square in the corner of an a×(c−1)
face of the box. Then there exists a puzzle C excising B′ from B.

Proof: We construct C by concatenating a “filler” puzzle to
a sequence of tribar puzzles. The filler puzzle is a puzzle
〈c, 2, c, 2, . . . , c, 1〉. The relevant tribar puzzle in this proof has
shape 〈1, c, b′ + 2, c, 1〉. Let us first consider the behavior of the
filler puzzle in B and then examine the behavior of the tribar puz-
zles.

A filler puzzle must lie inside B with its length-c bars along
the long axis of B. The filler puzzle can fill a box of size
a× (b− b′ − 2)× c with a(b− b′ − 2) length-c bars if the long bars
are laid next to each other in a×c×1-size layers. The filler puzzle
alone does not, however, excise an a × (b′ + 2) × c box from B,
because the puzzle may adopt other configurations in B. Hence,
we use the additional structure imposed by the tribar puzzles to
excise B′ from B.

A tribar 〈1, c, b′+2, c, 1〉must lie inside B with its length-c bars
along the long axis of B. Because b′ + 2 > a, the length-(b′ + 2)
bar must lie along either the length-c or length-b axis of B, and
because it lies in a different direction from the length-c bars, it
must lie along the length-b axis of B. This tribar must then be in
a horseshoe configuration.

In a sequence of tribars as above, the subsequent horseshoe
configurations must lie on top of each other, since two horseshoe
configurations cannot lie side-by-side in B because 2(b′ + 2) > b.
Thus, from box B, a sequence of a tribars cuts out two or three
rectangular regions. One region (inside the horseshoes) has di-
mensions a × b′ × (c − 1), and the final cube in the sequence of
tribars must be a turn cube in the corner of an a × (c − 1) face
of this region. The remaining two regions, meanwhile, must have
total volume a × (b − b′ − 2) × c.

Prepending a filler puzzle with a(b − b′ − 2) length-c bars to
a sequence of a tribars as above produces a puzzle where, inside
box B, the filler puzzle must fill an a× (b−b′ −2)×c box. Hence,
the puzzle C consisting of a filler puzzle of a×(b−b′ −2) length-c
bars concatenated to a sequence of a tribar puzzles excises box B′

from B. �

Lemma 5. Given integers a < b < c with c − b ≥ 2, let B be an

a×b×c box marked at a unit square in the corner of an a×c face

of the box. Then there exist u < 4c and a puzzle C that excises B

from an unmarked u × u × u cube U.

Proof: Our first step is to excise a (u − 1) × (u − 3) × a box
from U. To excise this shape, we first use a sequence of tribars
H = 〈1, u, u, u, 1〉. Consider the possible ways to arrange the puz-
zle H2 = H ◦H = 〈1, u, u, u, 2, u, u, u, 1〉 inside the cube. Without
loss of generality, the first two edges of H2 must lie in a plane P

parallel to the bottom face of the box, with the first bar pointing
forward and the second pointing right.

For the sake of contradiction, suppose that the third bar of H2

lies perpendicular to P. This implies that the end of the third
bar is in either the right, forward, upper corner or the right, for-
ward, lower corner of U, and hence, no matter which direction
the subsequent length-2 bar points, the other end of the length-2
bar cannot be in a corner. The second H must therefore lie in a
plane perpendicular to P, and all four such configurations inter-
sect one of the bars already placed in U. Hence the first three bars
of H2 must all lie in P, forming a horseshoe configuration where
the end of the third bar lies along the front right edge of the cube.

Now consider how the remainder of H2 can be arranged. If the
length-2 bar points left, then both of the possible arrangements
of the subsequent H intersect one of the bars that has already
been placed. The length-2 bar must therefore point up or down,
and without loss of generality, let this bar point up. In this case
the subsequent H forms a horseshoe that lies on top of the first
horseshoe in either the same arrangement or a similar arrange-
ment rotated by 90◦.

Suppose now that we extend puzzle H2 to Hu. By a similar ar-
gument, Hu must adopt an arrangement in the cube in which each
H forms a horseshoe, and the set of Hs together form a stack of
u horseshoes in the cube, possibly with different rotations. We
say that a stack of horseshoes is orderly if all horseshoes have the
same rotation.

To complete this first excision and guarantee that the stack of
horseshoes formed from packing Hu into U are orderly, we con-
catenate onto Hu a “filler” puzzle followed by a sequence of tribar
puzzles I = 〈1, u, u − 1, u, 1〉. Consider concatenating the filler
puzzle F = 〈1, u, 1〉(u−1)(u−2−a) followed by the sequence Ia to Hu.
Notice that the puzzle Hu ◦ 〈1, u, 1〉 must be packed into U with
the final length-u bar perpendicular to the length-u bars in Hu, and
thus concatenating 〈1, u, 1〉 to Hu forces the horseshoes formed
from packing Hu to be orderly. Hence, let us assume that the
horseshoes in Hu are orderly and focus on the behavior of F ◦ Ia

inside a u×(u−1)×(u−2) box X marked at a corner of a u×(u−1)
face. This analysis is very similar (though not identical) to that in
the proof of Lemma 4.

First, consider packing Ia into the volume of X. To pack Ia

inside X, each length-u bar in Ia must lie parallel to the length-
u edge of X. Because the length-(u − 1) bars in Ia cannot also
lie parallel to the length-u edges of X, each such bar must lie in
the direction with extent (u − 1). Consequently, each tribar I in
X must be packed in a horseshoe configuration, and the resulting
stack of horseshoes must be orderly.

Now, consider packing F ◦ Ia into X. To pack F into X, each
length-u bar of F must lie in the direction with extent u. Further-
more, in order to pack Ia into X afterwords, F must be packed to
fill a (u− 2− a)× (u− 1)× u volume that shares a (u− 1)× u face
with X. Finally, the last cube in the puzzle Ia must lie adjacent
to a corner of an a × (u − 1) face of the remaining volume. Let
X0 denote the a × (u − 3) × (u − 1) empty space left after packing
F ◦ Ia into X, and consider X0 marked at a corner of an a× (u− 1)
face.

To complete the proof, we excise the desired a × b × c box B
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from X0 using repeated applications of Lemma 4. For i > 0, let Xi

denote the box of dimensions a × bi × ci that results from apply-
ing Lemma 4 to Xi−1 with bi = max(�bi−1/2 , b). Notice that the
markings on region Xi are compatible with the markings on Xi−1.
At most r ≤

⌈
lg u−3

b

⌉
+ 1 applications of Lemma 4 are needed to

obtain br = b and thus to excise an a × b × (u − 1 − r) box Xr

from X0. Choosing u such that c = u − 1 − r completes the proof.
�

The first part of the reduction is as follows:
Definition 6. From an instance V = {v1, . . . , v3n} with target sum

t, define (a, b, c) = (8, 120tn + 1, 240tn + 9), and define R1(V) as

the puzzle excising an a×b×c box (marked at a corner of an a×c

face) from a u×u×u cube as in Lemma 5, where u ≤ 4·(240tn+9)
is as guaranteed in the lemma.

5. Hub and Slots

We now describe the precise measurements of the hub-and-
slots shape, illustrated in Fig. 4, and show how to excise it from
an appropriately-chosen box.
Definition 7. Fix a 3-Partition instance V = {v1, . . . , v3n} with

target sum t. The shape of the hub is an hw × h� × 8 box, where

hw = 120tn and h� = hw + 4. For convenience, we introduce a co-

ordinate system so that the hub is situated with opposite corners

at (0, 0, 0) and (hw,−h�, 8). There are n slots, each an 8t × � × 1
box where � = h� + 4, with the ith slot having opposite corners

at (16i + 8t(i − 1), 0, 0) and (16i + 8ti, �, 1). In particular, the

slots are spaced 16 units apart adjacent to the bottom of the front

face of the hub, with width-16 padding on the left and width-

(hw − 8tn − 16n) padding on the right. We refer to the union of

these box shapes as the hub-and-slots shape.

For technical reasons, we also discuss an augmented hub-
and-slots shape. This shape is obtained by adjoining to the hub-

and-slots shape the box with opposite corners at (−1,−h�, 1) and

(0, 0, 8). Equivalently, this shape is the result of widening the

hub by one unit in the negative x direction and then removing a

1 × h� × 1 box from the bottom-left edge.

Puzzle R1, as defined in Section 4, excises a box of dimensions
8 × (hw + 1) × (h� + � + 1) from a cube. We next show how to
excise the augmented hub-and-slots shape from a box of these
dimensions:
Lemma 8. Let B be the box with opposite corners at (−1,−h�, 0)
and (hw, � + 1, 8) marked at the left face of cell (−1,−h�, 0). Let

S ′ be the trivially-marked augmented hub-and-slots shape, using

the same coordinates as in Definition 7. There exists a puzzle C

excising S ′ from B. Furthermore, there exists a configuration of

C in B ending at the front face of cube (−1, 0, 7) (in the coordinate

frame chosen for S ′).
Proof: We construct C by combining three smaller puzzles:
C = C1 ◦ C2 ◦ C3, where C1 traces the outline of the slots, C2

can be used to fill in the rest of the bottom two layers, and C3 can
be used to fill the remaining six layers.

The puzzle C1 is given as follows:

C1 = 〈1, h� + 1, 2〉 ◦ 〈15, � + 1, 8t + 2, � + 1, 1〉n ◦
〈hw − 8tn − 16n − 1, 1〉 .

Fig. 5 An example of how the chain H0 is arranged to fill part of the space
between slots.

When configuring C1 starting at the left face of cell (−1,−h�, 0),
each of the bars longer than hw (namely, those of length h�+1 and
length � + 1) can only fit along the y direction, and so the other
bars must lie in the x direction (as they are longer than the vertical
dimension of 8). In fact, because 2�+ 1 is longer than the longest
dimension of the enclosing box, the length-(�+1) bars must alter-
nate between the positive and negative y direction. Furthermore,
the bars between these must all face in the positive x direction;
otherwise, an intersection is quickly forced. It follows that, when
C1 is configured starting at the left face of cell (−1,−h�, 0), it
must trace the outline of the slots and the front edge of the hub,
terminating in cell (hw − 1, 0, 0).

The next portion, C2, is defined in pieces. Define
H0 = 〈1, �, 2, � − 1, 2, � − 1, 2, �, 1〉, whose preferred (but not
forced) configuration is shown in Fig. 5. Also define H1 =

〈1, �, 2, �, 2, . . . , 2, �, 1〉, where there are 8t + 2 bars of length �.
We define

C2 = 〈� − 1, 2, �, 1〉 ◦ Hhw/2−4tn−8n−1
0 ◦ (H1 ◦ H7

0)n ◦ H0 .

Though it is not forced, puzzle C2 can be configured (starting at
the end of C1’s configuration) to cover the first two layers of the
enclosing box with the exception of the interiors of the slots: the
H0 instances are in their preferred configurations and fill the por-
tions between the slots, while each H1 covers one of the slots.
Again, this configuration for C2 is not forced, but it exists.

The final portion, C3, is quite simple: C3 =

〈1, �, 2, �, 2, . . . , 2, �〉, where there are 6(hw + 1) bars of length �.
If C2 is configured as described in the previous paragraph, then
C3 may be configured, starting at the end of C2’s configuration,
to fill the remaining six layers lying over the slots, one layer at
a time. In this configuration, C3 ends at the back face of cube
(0, 0, 7), proving that C1 ◦ C2 ◦ C3 has a configuration whose
complement is the hub-and-slots shape and whose endpoint is
the required face.

It remains to show that C1 ◦C2 ◦C3 must cut out the hub-and-
slots shape. Consider any configuration of C1 ◦ C2 ◦ C3 with the
specified starting face. We already showed that C1 must trace the
outlines of the slots. In puzzle C2 ◦ C3, there are long bars of
length at least � − 1 alternating with length-2 bars. By a similar
argument as used for C1, these long bars must alternate between
the positive and negative y direction in the y ≥ 0 portion of the
enclosing box. Because of the design of C2 ◦ C3, it can be ob-
served that each of these long bars must touch the front-most face
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(a) (b)

(c) (d)

Fig. 6 The configurations of Z(8) that can be used to connect adjacent
cubes.

of the enclosing box. It follows that none of these long bars can
lie inside a slot, because C1 blocks the front box-face. So the
slots must remain empty. Because the total number of cubes in
C2 ◦ C3 equals the total amount of space in the y ≥ 0 portion of
the box not covered by C1 or the slots, it follows that C2 ◦ C3

must exactly fill this region. So C1 ◦ C2 ◦ C3 does indeed excise
the hub-and-slots shape. �

Definition 9. For a 3-Partition instance V, the second portion

of the reduction, R2(V), is defined as the puzzle C excising the

hub-and-slots shape from an 8 × (hw + 1) × (h� + � + 1) box as in

Lemma 8.

6. Zig-Zag Universality

Define the length-k zig-zag puzzle as Z(k) = Tk =

〈1, 2, 2, . . . , 2, 1〉, where the run-length encoding has k − 1 twos.
In preparation for the second half of the reduction, we prove a
few universality results for classes of regions that can always be
filled with zig-zags. In particular, zig-zags can fill arbitrary paths
of 2× 2× 2 cubes (i.e., paths of cells as defined in Section 2 after
2× 2× 2 subdivision of each cell) and arbitrary paths of 4× 4× 4
cubes, as well as arbitrary polycubes of 4×4×4 cubes. As usual,
we must be careful about starting and ending positions. All three
of these positive results will be used in the following sections to
cleanly navigate and fill the hub.

We say that cell (i, j, k) is even or odd depending on the parity
of i + j + k; this defines a checkerboard-style labeling of the cells
in the infinite grid.
Theorem 10. Suppose we are given a path A of r face-adjacent

2 × 2 × 2 cubes of cells, two cells c0, c1 of opposite parity in the

first and last cubes of A respectively, and boundary faces f0, f1
of c0, c1 on the boundaries of their respective 2 × 2 × 2 cubes of

A. Then the puzzle Z(8r) can be configured inside A starting at

(c0, f0) and ending at (c1, f1).
Proof: First we verify the case r = 1. As c0 and c1 have opposite
parity, these cells are either adjacent or diametrically opposite in
cube A. In the former case, one of the three configurations of Z(8)
shown in Fig. 6 suffices, up to symmetry of the cube and/or rever-

(a) (b)

Fig. 7 The configurations of Z(8) that can be used to connect two opposite
cubes.

sal of direction. If c0 and c1 are opposite, then one of the paths in
Fig. 7 works.

The general statement follows by induction on r. Suppose
r ≥ 2, and write A’s cubes in order as A0, . . . , Ar−1. We may
assume that c0 is an even cell. Let c′0 be one of the odd cells in A0

adjacent to A1 along the cell face f ′0 . By the base case there is a
configuration of Z(8) in A0 starting at f0 and ending at f ′0 , and by
induction there is a configuration of Z(8r − 8) inside A \ A0 from
f ′0 to f1. �

Next we show an analogous statement for 4× 4× 4 cubes. The
proof will be almost identical, except that the r = 1 case requires
more casework.
Theorem 11. Suppose we are given a path A of r face-adjacent

4 × 4 × 4 cubes of cells, two cells c0, c1 of opposite parity in the

first and last cubes of A respectively, and boundary faces f0 of c0

and f1 of c1 on the boundaries of their respective 4 × 4 × 4 cubes

of A. Then the puzzle Z(64r) can be configured inside A starting

at (c0, f0) and ending at (c1, f1).
Proof: As above, it suffices to check only the case r = 1. A
4 × 4 × 4 box decomposes as the union of eight 2 × 2 × 2 boxes
called its octants. Let V0 and V1 be the octants containing c0 and
c1 respectively. We consider four cases depending on the relative
position of V0 and V1.

If V0 and V1 are adjacent, then the desired result follows from
Theorem 10 using a path of the eight octants starting at V0 and
ending at V1. The same argument works if V0 and V1 are oppo-
sites. In the other two cases no such path of octants exists, so we
must work a bit harder.

If V0 and V1 share an edge but not a face, as in Fig. 8, we may
proceed as follows: Choose faces f ′0 and f ′1 as in Fig. 8 (b); use
Theorem 10 to join faces f0 and f ′0 while filling the upper-right
octants; connect this to H from Fig. 8 (a), which connect faces f ′0
and f ′1 while filling the upper-left octants; and use Theorem 10 to
connect f ′1 and f1 while filling the bottom octants.

Finally, suppose V0 = V1. Up to symmetry, there are six cases
to check (recall that c0 and c1 have opposite parity). These are
shown in Fig. 9, and in each case we use Theorem 10 to join faces
f ′0 and f ′1 while filling all octants except V0 = V1. �

Finally, we show that zig-zags can cover not only paths of
4×4×4 blocks, but also arbitrary polycubes formed from 4×4×4
blocks, at the expense of slightly less control over endpoints:
Theorem 12. Let A be a connected polycube of r face-adjacent

4 × 4 × 4 cubes of cells, and take any mark (c, f ) on A. Then the

puzzle Z(64r) can be configured in A starting at (c, f ).
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(a) The chain H. The red face is f ′0 , the green face is f ′1 .

(b) An example of how to select the faces f ′0 and f ′1 , given f0 and f1.

Fig. 8 How to connect f0 to f1 when V0 (upper right back) and V1 (lower
right front) share an edge but not a face.

Proof: As shown in Ref. [2], if we subdivide each 4 × 4 × 4
block of A into its eight octants and consider A as a polycube
of 2 × 2 × 2 cubes, then there is a hamiltonian cycle through all
of these 2 × 2 × 2 cubes. This implies that A may be represented
as a path of 2 × 2 × 2 cubes starting at the one containing mark
(c, f ); if (c, f ) = (∅, ∅), we may pick this starting cube arbitrarily.
By Theorem 10, this path may be filled by Z(64r). �

7. Fitting the Pegs

We now define the third part of the reduction, R3, showing
roughly that it fits into the hub-and-slots shape if and only if the
3-Partition instance V has a 3-partition.
Definition 13. For each 1 ≤ i ≤ 3n, define peg Pi =

〈�, 2, �, 2, . . . , 2, �〉, where there are 8vi bars of length �. Then

define

R3 = C0 ◦ Z1 ◦ P1 ◦ Z2 ◦ P2 ◦ Z3 ◦ · · · ◦ Z3n ◦ P3n,

where

• C0 = 〈1, 7, 2, 7, 2, . . . , 2, 7, 1〉, with h� bars of length 7,

• Z1 = Z(128t + 256 + 16h�), and

• Z2 = · · · = Z3n = Z(k), with k = 64 · 30tn.

First we prove the easier direction:
Lemma 14. If R3 can be configured in the augmented hub-and-

slots shape (with unconstrained starting and ending positions),
then V has a 3-partition.

Proof: In fact, if just the pegs P1, . . . , P3n can be configured in
the hub-and-slots shape without overlap, then V has a 3-partition.

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Given any pair of faces f0 and f1 on the outside surface of the 4×4×4
cube, these are the different ways to connect f0 to f ′0 (the red face)
and f1 to f ′1 (the green face) within a single 2 × 2 × 2 box.

Call the length-� bars in the pegs Pi long bars; there are 8tn long
bars among the pegs.

Because � > h� and � > hw + 1, each long bar cannot fit fully
in the hub and must therefore stick (at least partially) into a slot,
meaning it must lie parallel to the y-axis and in the z = 0 plane.
Furthermore, no two long bars can occupy the same x-coordinate
(because 2� > h�+�), so the 8tn long bars must occupy exactly the
8tn x-coordinates of the slots. Finally, each peg Pi must have all
of its long bars in a single slot, because the length-2 bars force the
parallel long bars of a single peg to be adjacent. So the widths of
the pegs in each slot add exactly to the width of the slot, and these
widths (divided by 8) exactly give a 3-partition for {v1, . . . , v3n}.

�

The other direction is more difficult: we must show that, if
there is a 3-partition, then R3 can be configured in the hub-and-
slots shape. As usual, we pay special attention to the endpoints.
Lemma 15. If V has a 3-partition, then there is a configuration of

R3 in the augmented hub-and-slots shape starting at the front face

of cell (−1, 0, 7), such that the unfilled region is a face-connected

polycube of 4 × 4 × 4 cubes and such that the configuration ends

at a boundary face of this polycube.

Proof: The hub—specifically, the box with opposite corners at
(0,−h�, 0) and (hw, 0, 8)—may be partitioned into 4×4×4 boxes,
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Fig. 10 An example of how Zi might be configured. Each cube is a 4×4×4
brick; the path indicates the order that Zi passes through the bricks.
Within each brick, the configuration of Zi will be determined by
Theorem 11; the oscillations serve as a visual reminder that the
path of cubes winds through the 64 cells in each brick.

which we refer to as bricks and identify in coordinates by their
left, back, bottom corners.

Because there exists a 3-partition of V , the pegs P1, . . . , P3n

may be positioned to exactly fill the slots. Do so in such a way
that each peg starts and ends on the boundary of the hub, with the
starting face to the right of the ending face. The brick adjacent
to the starting face of Pi is the starting brick for Pi, and the end-
ing brick is defined similarly. We may further assume that peg
P1 is chosen as the rightmost peg in the leftmost slot, so its start-
ing brick is located at (8t + 12,−4, 0). The 3n starting bricks and
the 3n ending bricks are all distinct, and their left, back, bottom
corners all have y = −4 and z = 0.

Configure C0 to fill the “augmentation” of the augmented hub-
and-slots: it starts at the front face of cell (−1, 0, 7), has its length-
7 bars in the z-direction and its length-2 bars in the negative y-
direction, and ends at the right face of cell (−1,−h�, 7).

Now everything has been filled except for the hub, which is
currently empty. We must show how to configure Z1, . . . ,Z3n in
the hub so that they connect where they must, don’t overlap each
other, and leave a connected polyomino of bricks as their com-
plement.

First we position Z1. Consider the path of bricks that starts
at brick (0,−h�, 4) in the left, back, top corner of the hub, then
moves right, down, and then forward to the starting brick of P1,
namely (8t+12,−4, 0). This path has 2t+4+h�/4 bricks. By The-
orem 11, we may configure Z1 to exactly fill this path of bricks
starting at the left face of cell (0,−h�, 7) (an odd cell) and ending
at the front face of cell (8t+ 15,−1, 0) (an even cell). These faces
are, respectively, where C0 ends and where P1 starts.

Finally, we describe how to configure each puzzle Zi, for
2 ≤ i ≤ 3n. Construct a path of bricks connecting the ending
brick of Pi−1 (say this brick has coordinates (4q,−4, 0) with q

odd) to the starting brick of Pi (with coordinates (4r,−4, 0) with
r even) as follows. If q < r, then:
• Start at (4q,−4, 0),
• proceed back, then up, then right to (s,−12i, 4) (parameter s

is explained below),
• step forward one brick to (s,−12i + 4, 4),
• then move left, then down, then forward to the starting brick

of Pi, (4r,−4, 0).
An example is shown in Fig. 10. If q > r, follow these instruc-
tions instead from (4r,−4, 0) to (4q,−4, 0) and then reverse its
direction. Here, s > max(4q, 4r) is chosen so that the path covers

a total of 30tn bricks: s = 60tn+2(q+ r)−12i−2, and we indeed
have s > 60tn − 36n ≥ 8tn + 16n > max(4q, 4r). (Note also that
4 | s because q + r is odd.) Now, by Lemma 11, we may config-
ure path Zi to exactly fill this path of bricks, starting at the ending
brick of Pi−1 and ending at the starting brick of Pi. More specifi-
cally, we may configure Zi in this path so that it starts at the front
face of cell (4q,−4, 0)—this cell is even and this face is the ending
face of Pi−1—and ends at the front face of cell (4r+3,−4, 0)—an
odd cell and the starting face of Pi.

Why do these configured puzzles Zi not intersect each other?
In the top layer of bricks, each Zi is contained in a different set of
rows: for 2 ≤ i ≤ 3n, Zi touches only rows −12i and −12i + 4,
and Z1 touches only row −h� < −36n. In the bottom layer of
bricks, each Zi for 1 ≤ i ≤ 3n is contained only in the columns
corresponding to the starting and/or ending bricks it touches, and
these columns are all distinct.

Let M be the complement of the Zi configurations in the hub.
Why is M connected? The top layer of M is connected because no
individual configuration Zi separates any bricks in the top layer,
and no two configurations Zi and Zj are adjacent in the top layer.
For each column in the bottom layer, the portion of the row con-
tained in M is a connected sequence of bricks that is adjacent to at
least one of the bricks in the top layer of M. Hence, M is indeed
connected.

Finally, P3n ends at a face adjacent to its ending brick, and this
brick is contained in M. �

8. Filling the Gaps

In the final portion of the reduction, we define R4(V) as a zig-
zag with enough cubes to exactly fill the remaining portion of the
original cube: R4(V) = Z(u3 −vol(R1(V)◦R2(V)◦R3(V))), where
vol counts the number of cubes in the puzzle. With the results
built up in the previous sections, the full result is now readily
proved:
Theorem 16. Take a 3-Partition instance V and build the result-

ing puzzle R(V) = R1(V) ◦ R2(V) ◦ R3(V) ◦ R4(V) of u3 cubes as

in the previous sections. Then puzzle R(V) can be configured to

exactly fill a u × u × u box if and only if there exists a 3-partition

of V.

Proof: If R1 ◦ R2 ◦ R3 can be configured in a u × u × u box, then
Lemmas 5, 8, and 14 guarantee that V has a 3-partition. Con-
versely, if V has a 3-partition, then Lemmas 5, 8, and 15 imply
that R1 ◦ R2 ◦ R3 may be configured so that the unfilled portion is
a connected polycube of 4×4×4 cubes, ending at a face adjacent
to this polycube. By configuring R4 in this region by Theorem 12,
we obtain a configuration of R1 ◦ R2 ◦ R3 ◦ R4 filling the entire
cube. �

Corollary 17. The problem of deciding if a given puzzle can ex-

actly fill a cube is NP-complete.

Proof: Such a configuration may be easily verified, so the prob-
lem is in NP. By Lemma 5, for an instance V = {v1, . . . , v3n}
with target sum t, the chosen cube side-length u is at most
4(h�+�+1) = poly(t, n), and the length of R(V) is u3 = poly(t, n).
The explicit map V �→ R(V) may be computed in polynomial
time, and Theorem 16 guarantees this is a valid Turing reduction.
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Because 3-Partition is strongly NP-complete, the result follows.
�

9. Open Questions

In this paper we have analyzed a natural generalization of the
Snake Cube puzzles, but many related questions remain open:
• We only address whether a solved configuration of the puz-

zle exists. The actual puzzle, however, must be physically
moved into its solved state. Can every solved configura-
tion be reached by a continuous, non-self-intersecting mo-
tion from the initial (flat and monotone) configuration? If
not, can this decision problem be solved efficiently?

• Is the analogous 2-dimensional problem also hard? Specif-
ically, is it NP-complete to decide whether an S-T sequence
of squares can pack into an N × N grid of squares, where S
and T represent “straight” and “turn” squares as before? This
is equivalent to the 3-dimensional problem of packing a puz-
zle into an N ×N ×1 box. This also relates to the problem of
finding simple, planar configurations of fixed-angle chains, a
version of which was shown to be NP-hard in [3]. The meth-
ods from this paper, however, do not seem to directly apply
to this setting.

• What if the target shape is allowed to have large “holes”?
For example, is it still NP-hard to decide if a puzzle of α ·N3

cubes can be configured inside an N × N × N cube, for all
constants 0 < α < 1?
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