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Abstract: In this paper, we address a multichannel signal separation problem and propose a new hybrid method uti-
lizing both directional clustering and supervised nonnegative matrix factorization (NMF) with norm regularization
term. Conventional hybrid method concatenating supervised NMF after directional clustering has a problem that the
extracted signal suffers from considerable spectral distortion because directional clustering yields spectral chasms. To
solve this problem, we propose a new supervised NMF algorithm that regards the spectral chasms as unseen observa-
tions and reconstructs the target source components via spectrogram extrapolation. In addition, this paper addresses an
issue on importance of regularization introduced in the superresolution procedure. Our experimental results show that
the proposed hybrid method with regularization greatly improves the separation performance for stereo signals.

1. Introduction
In recent years, music signal separation based on nonnegative

matrix factorization (NMF) [1], which is a type of sparse rep-
resentation algorithm, has been a very active area of signal pro-
cessing research [2], [3]. NMF for acoustical signals decomposes
an input spectrogram into the product of a spectral basis matrix
and its activation matrix. In particular, supervised NMF (SNMF)
[4], [5], which includes a priori training with some sample sounds
of a target instrument, can extract the target signal to some extent,
particularly in the case of a small number of instruments. How-
ever, for the case of a mixture consisting of many sources, such as
more realistic musical tunes, the source extraction performance
is markedly degraded when only single-channel observation is
available.

Multichannel NMF, which is a natural extension of NMF for
a stereo or multichannel music signal, has been proposed as an
unsupervised method [6], [7]. However, such unsupervised sep-
aration is a difficult problem, even if the signal has multichan-
nel components, because the decomposition is underspecified.
Hence, these algorithms involve strong dependence on initial val-
ues and lack robustness.

As another means for addressing multichannel signal separa-
tion, directional clustering has also been proposed as an unsuper-
vised method [8], [9]. This method quantizes directional infor-
mation via time-frequency binary masking under the assumption
that the sources are completely sparse in the time-frequency do-
main. However, there is an inherent problem that sources located
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in the same direction cannot be separated using the directional in-
formation. To cope with this problem, a hybrid method for multi-
channel signal separation, which concatenates SNMF after direc-
tional clustering, has been proposed [10]. However, this hybrid
method also has a problem that the extracted signal suffers from
considerable distortion because the signal obtained by directional
clustering has many spectral chasms. This results in the cascaded
SNMF being forced to incorrectly mimic such artificial spectral
chasms.

In this paper, we propose a new SNMF algorithm for the hy-
brid method. Using index information generated by binary mask-
ing, the proposed SNMF regards the spectral chasms as unseen
observations, and finally reconstructs the target source compo-
nents via spectrogram extrapolation using supervised bases. In
other words, the proposed method can be categorized as super-
resolution because the degraded resolution in the time-frequency
domain resulting from the preceding binary masking can be re-
covered. In addition, this paper addresses an issue on impor-
tance of regularization introduced in the superresolution proce-
dure. Our experimental results show that the proposed method
outperforms several conventional methods and that the distortion
of the extracted signal can be mitigated by the effectiveness of the
superresolution-based method.

2. Conventional Method
2.1 Overview of Penalized SNMF

The unsupervised NMF approaches have difficulty in cluster-
ing decomposed spectral patterns into a specific target instru-
mental sound. Furthermore, each basis may be forced to in-
clude a multi-instrumental spectral pattern. To solve this prob-
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lem, SNMF has been proposed [4], [5]. In particular, a penalized
SNMF (PSNMF), which imposes a penalty term to force super-
vised bases and other bases to become uncorrelated with each
other, achieves good performance [5]. PSNMF consists of two
processes, a priori training and observed signal separation, as de-
scribed below in detail.
2.1.1 Training process of supervision

In PSNMF, as the supervision training process, a priori spectral
patterns (bases) should be trained in advance to achieve source
separation. Hereafter, we assume that we can obtain specific solo-
played instrumental sounds, which is the target of the separation
task. The trained bases are constructed by NMF as

Ytarget ≃ FQ, (1)

where Ytarget(∈ RΩ×Ts
≥ 0 ) is an amplitude spectrogram of the spe-

cific signal for training, F (∈ RΩ×K
≥ 0 ) is a nonnegative matrix

that involves bases of the target signal as column vectors, and
Q(∈ RK×Ts

≥ 0 ) is a nonnegative matrix that corresponds to the activa-
tion of each basis of F . In addition, Ω is the number of frequency
bins, Ts is the number of frames of the training signal, and K is
the number of bases. Therefore, the basis matrix F constructed
by Eq. (1) is used for the supervision of the target instrumental
signal.
2.1.2 Signal separation process

The following equation represents the decomposition of
PSNMF using the trained supervision matrix F :

Y ≃ FG +HU , (2)

where Y (∈ RΩ×T
≥ 0 ) is an observed spectrogram, G(∈ RK×T

≥ 0 ) is an
activation matrix that corresponds to F , H(∈ RΩ×L

≥ 0 ) represents
the residual spectral patterns that cannot be expressed by FG,
and U (∈ RL×T

≥ 0 ) is an activation matrix that corresponds to H .
Moreover, T is the number of frames of the observed signal and L
is the number of bases of H . In PSNMF, the matrices G, H , and
U are optimized under the condition that F is known in advance.
Hence, ideally, FG represents the target instrumental compo-
nents and HU represents the components other than the target
sounds after the decomposition.
2.1.3 Cost function

In the decomposition of PSNMF, a cost function is defined us-
ing some measures of the distance between Y and FG +HU

as

JSNMF = D (Y |FG +HU ) + µ∥F TH∥2Fr, (3)

where D (·|·) is an arbitrary distance function, e.g., Itakura-
Saito divergence (IS-divergence), generalized Kullback-Leibler
divergence (KL-divergence), or the Euclidean distance (EUC-
distance). In this study, we use EUC-distance in the cost function.
In addition, µ is the weighting parameter for the penalty term and
∥·∥Fr represents the Frobenius norm. This penalty term indicates
that F and H are forced to become uncorrelated with each other
to avoid sharing the same basis.
2.1.4 Multiplicative update rules of PSNMF

The update rules based on EUC-distance are given by

gk,t ← gk,t

∑
ω fω,kyω,t∑
ω fω,krω,t

, (4)

hω,l ← hω,l

∑
t yω,tul,t∑

t ul,trω,t + 2µ
∑

k fω,k
∑
ω′ fω′,khω′,l

, (5)

ul,t ← ul,t

∑
ω hω,lyω,t∑
ω hω,lrω,t

, (6)

where yω,t, fω,k, gk,t, hω,l, and ul,t are the nonnegative entries of
matrices Y , F , G, H , and U , respectively, and

rω,t =
∑

k′
fω,k′gk′,t +

∑
l′

hω,l′ul′,t. (7)

2.1.5 Problem of PSNMF
PSNMF can extract the target signal to some extent, particu-

larly in the case of a small number of sources. However, for the
case of a mixture consisting of many sources, such as more realis-
tic musical tunes, the source extraction performance is markedly
degraded because of the existence of instruments with similar
timbre.

2.2 Directional Clustering and Its Hybrid Method with
PSNMF

Decomposition methods employing directional information for
the multichannel signal have also been proposed as unsupervised
separation techniques [8], [9]. These methods quantize direc-
tional information via time-frequency binary masking under the
assumption that the sources are completely sparse in the time-
frequency domain. Such directional clustering works well, even
in an underdetermined situation where the number of sources is
greater than that of inputs. However, there is an inherent problem
that sources located in the same direction cannot be separated us-
ing the directional information. Furthermore, the extracted signal
is likely to be distorted because of the effect of binary masking.

To solve this problem, a hybrid method that concatenates
PSNMF after the directional clustering has been proposed [10].
This hybrid method can effectively extract the target instrument
because the directionally clustered signal contains only few in-
struments. Moreover, the residual interfering signal in the same
direction can be removed by PSNMF.

3. Proposed Method
3.1 Motivation and Strategy

The conventional hybrid method has a problem that the ex-
tracted signal suffers from the generation of considerable distor-
tion. This is due to the binary masking in directional clustering.
The signal in the target direction, which is obtained by directional
clustering, has many spectral chasms because the assumption of
sparseness in the time-frequency domain does not always hold
completely. In other words, the resolution of the spectrogram
clustered as the target-direction component is degraded by time-
frequency binary masking. Figure 1 shows an example of the
spectrum of a signal separated by directional clustering. The ob-
tained spectrum has many chasms owing to the binary masking.
These spectral losses may deteriorate the performance of sepa-
ration because PSNMF is forced to incorrectly fit these spectral
chasms using supervised bases.

To solve this problem, in this section, we propose a new
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Fig. 1 Example of spectrum of signal separated by directional clustering.
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Fig. 2 Signal flow of proposed hybrid method.

superresolution-based SNMF algorithm as an alternative to the
conventional PSNMF for the hybrid method (see Fig. 2). This al-
gorithm utilizes index information determined in directional clus-
tering. For example, if the target instrument is localized in the
center cluster along with the interference, superresolution-based
SNMF is only applied to the existing center components using in-
dex information. Therefore, the spectrogram of the target instru-
ment is reconstructed using more matched bases because spectral
chasms are treated as unseen, and these chasms have no impact
on the cost function in SNMF. In addition, the components of the
target instrument lost after directional clustering can be extrapo-
lated using the supervised bases. In other words, the resolution
of the target spectrogram is recovered with the superresolution by
the supervised basis extrapolation.

To illustrate the separation mechanism step by step, Fig. 3 (a)
shows the configuration of source components in the stereo sig-
nal, (b) shows the separated components that are clustered around
the center direction by directional clustering, and (c) shows the
separated target component obtained by superresolution-based
SNMF. In Fig. 3 (a), the source components are distributed in
all directions with some overlapping. After directional cluster-
ing (Fig. 3 (b)), the center sources lose some of their components
(i.e., the tails on both sides), and the other source components
leak in the center cluster. After SNMF, the proposed algorithm re-
stores the lost components using the supervised bases (Fig. 3 (c)).

3.2 Regularization of Basis Extrapolation
The basis extrapolation in the proposed SNMF includes an un-

derlying problem. If the time-frequency spectra are almost un-
seen in the spectrogram, which means that the indexes are almost
zero, a large extrapolation error may occur. Then, incorrect bases
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Fig. 3 Directional source distribution of (a) observed stereo signal, (b) sepa-
rated components in center cluster, and (c) component separated and
extrapolated by superresolution-based SNMF.

are chosen and fitted to a small number of spectral grids by incor-
rectly modifying the activation matrix G. In the worst case, the
activation matrix G contains very large values and the extracted
signal is overloaded.

Figure 4 shows an example of the spectrogram that is extracted
signal with basis extrapolation error at the end of signal. In this
case, incorrect extrapolation occurred at the time frames that have
spectral chasms as many as 99% of frequency bins. To avoid this
error, we should add a new penalty term in the cost function, as
described below in detail.

3.3 Cost Function of Superresolution-Based SNMF
Here, the index matrix I(∈ RΩ×T

{0, 1} ) is obtained from the binary
masking preceding the directional clustering. This index matrix
has specific entries of unity or zero, which indicate whether or
not each grid of the spectrogram belongs to the target directional
cluster. The cost function in superresolution-based SNMF is de-
fined using the index matrix I as

J =D(I ◦ Y |I ◦ (FG +HU ))

+ µ∥F TH∥2Fr + λ∥I ◦ (FG)∥2Fr, (8)

where µ and λ are the weighting parameters for each penalty
term, · represents the binary complement of each entry in the in-
dex matrix, and ◦ indicates the Hadamard product of matrices.
Since the divergence D is only defined in grids whose index is
one, the chasms in the spectrogram are ignored in this SNMF de-
composition. In addition, the first penalty term has the same prop-
erty as the conventional method Eq. (3), and the second penalty
term forces the minimization of the norm ∥FG∥Fr in proportion
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Fig. 4 Spectrogram of extracted signal with basis extrapolation error. This

example incorrectly includes overloaded artifact around 4.5 sec.

to the number of zeros in the index matrix I . Hence, the super-
vised bases are chosen so as to minimize the norm ∥FG∥Fr to
avoid the extrapolation error. In other words, this penalty term
regulates the extrapolation.

3.4 Auxiliary Function for Cost Function
In this section, we derive auxiliary functions for Eq. (8) based

on EUC-distance for superresolution-based SNMF. Here, we can
rewrite Eq. (8) using EUC-distance as

J =
∑
ω,t

iω,t
(
y2
ω,t + vω,t + 2wω,t

)
+ µ
∑
k,l

∑
ω

fω,khω,l

2 + λ∑
ω,t

iω,t∑
k

fω,kgk,t

2 , (9)

where iω,t is the entry of index matrix I , which maps the values
of one and zero onto the time-frequency (ω-t) region. In addition,
vω,t and wω,t are given by

vω,t =

∑
k

fω,kgk,t

2 + ∑
l

hω,lul,t

2 , (10)

wω,t =

∑
k

fω,kgk,t

 ∑
l

hω,lul,t


− yω,t

∑
k

fω,kgk,t − yω,t
∑

l

hω,lul,t. (11)

Since it is difficult to analytically derive the optimal G, H , and
U that minimize Eq. (9), we define an auxiliary function that rep-
resents the upper bound of J as described below.

First, for vω,t, the upper bound function Q(vω,t) is defined using
auxiliary variables αk,ω,t ≥0 and βl,ω,t ≥0 that satisfy

∑
k αk,ω,t =1

and
∑

l βl,ω,t=1. Applying Jensen’s inequality to this, we have

vω,t ≤
∑

k

f 2
ω,kg

2
k,t

αk,ω,t
+
∑

l

h2
ω,lu

2
l,t

βl,ω,t

≡ Q(vω,t), (12)

where the equality in (12) holds if and only if the auxiliary vari-
ables are set as

αk,ω,t =
fω,kgk,t∑

k′ fω,k′gk′,t
, (13)

βl,ω,t =
hω,lul,t∑
l′ hω,l′ul′,t

. (14)

Second, for the penalized terms (hereinafter, referred to as
J(penalty)) in Eq. (9), the upper bound function Q(penalty) is de-
fined using the auxiliary variables γω,k,l ≥ 0 and δk,ω,t ≥ 0 that
satisfy

∑
ω γω,k,l = 1, and

∑
k δk,ω,t = 1. Similarly to Eq. (12), we

obtain

J(penalty) = µ
∑
k,l

∑
ω

fω,khω,l

2 + λ∑
ω,t

iω,t∑
k

fω,kgk,t

2

≤ µ
∑
k,l,ω

f 2
ω,kh2

ω,l

γω,k,l
+ λ
∑
ω,t,k

iω,t
f 2
ω,kg

2
k,t

δk,ω,t

≡ Q(penalty), (15)

where the equality in Eq. (15) holds if and only if the auxiliary
variables are set as follows:

γω,k,l =
fω,khω,l∑
ω′ fω′,khω′,l

, (16)

δk,ω,t =
fω,kgk,t∑

k′ fω,k′gk′,t
. (17)

Finally, using Eqs. (12) and (15), we can define the upper
bound function J+ for J as

J ≤ J+ =
∑
ω,t

iω,t
(
y2
ω,t + Q(vω,t) + 2wω,t

)
+ Q(penalty). (18)

3.5 Multiplicative Update Rules
In this section, we drive the update rules based on EUC-

distance. The update rules with respect to each variable are de-
termined by setting the gradient to zero. From ∂J+/∂gk,t = 0, we
obtain∑
ω

iω,t

 f 2
ω,kgk,t

αk,ω,t
+ fω,k

∑
l

hω,lul,t − yω,t fω,k

 + λ∑
ω

iω,t
f 2
ω,kgk,t

δk,ω,t
= 0.

(19)

By substituting Eqs. (13), (14), (16), and (17) into Eq. (19), we
can rewrite Eq. (19) as∑

ω

iω,t fω,krω,t + λ
∑
ω

iω,t fω,k
∑

k′
fω,k′gk′,t =

∑
ω

iω,tyω,t fω,k.

(20)

Then we can obtain the update rule by multiplying both sides of
Eq. (20) by gk,t as follows:

gk,t ← gk,t

∑
ω iω,tyω,t fω,k∑

ω iω,t fω,krω,t + λ
∑
ω iω,t fω,k

∑
k′ fω,k′gk′,t

. (21)

The update rules of the other variables based on EUC-distance
are similarly obtained as follows:

hω,l ←hω,l

∑
t iω,tyω,tul,t∑

t iω,tul,trω,t + µ
∑

k fω,k
∑
ω′ fω′,khω′,l

, (22)

ul,t ←ul,t

∑
ω iω,tyω,thω,l∑
ω iω,thω,lrω,t

. (23)
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Fig. 5 Scores of each instrument.

4. Evaluation Experiment
4.1 Experimental Conditions

To confirm the effectiveness of the proposed algorithm, we
compared five methods, namely, simple directional clustering [8],
simple PSNMF [5], multichannel NMF based on IS-divergence
[7], the conventional hybrid method using PSNMF after di-
rectional clustering [10], the proposed hybrid method using
superresolution-based SNMF without regularization after direc-
tional clustering (hereafter, referred to as Proposed method 1),
and the proposed hybrid method using superresolution-based
SNMF with regularization after directional clustering (hereafter,
referred to as Proposed method 2), in terms of their ability to sep-
arate simulated music signals. In this experiment, we used stereo
signals containing four instruments, an oboe sound (Ob.), a flute
sound (Fl.), a trombone sound (Tb.), and a piano sound (Pf.), as
the signal source. The scores of each instrument are depicted in
Fig. 5. These signals were artificially generated by a MIDI syn-
thesizer, and the observed signals Y were produced by mixing
four sources with an input SNR of 0 dB. The observed signal con-
tained one source in the left and right directions and two sources
in the center direction based on a sine law (see Fig. 6). The tar-
get instrument is always located in the center direction along with
another interfering instrument, and the left and right sources are
located at 40◦. In addition, we used the same MIDI sounds of the
target instruments as supervision for a priori training. The train-
ing sounds contained two octave notes that cover all notes of the
target signal in the observed signal. The sampling frequency of
all signals was 44.1 kHz. The spectrograms were computed us-
ing a 92-ms-long rectangular window with a 46-ms overlap shift.
The number of iterations for the training was 500 and that for the
separation was 400. Moreover, the number of clusters used in di-
rectional clustering was 3, the number of a priori bases was 100,
and the number of bases for matrix H was 30. In this experiment,
the weighting parameters µ and λ were empirically determined.

4.2 Experimental Results
We used the signal-to-distortion ratio (SDR), source-to-

interference ratio (SIR), and sources-to-artifacts ratio (SAR) de-
fined in [11] as the evaluation scores. Here, the estimated signal
ŝ (t) is defined as

ŝ (t) = starget (t) + sinterf (t) + sartif (t) , (24)

where starget (t) is the allowable deformation of the target source,

1

4
Left

Center
Right

4
2 3

Fig. 6 Panning of four sources with sine law used in experiment. Numbered
black circles represent locations of instruments in stereo format. For
example, if target is Ob., No.1 is set to Ob. and Nos.2, 3, and 4 are
combinations of Fl., Tb., and Pf.

sinterf (t) is the allowable deformation of the sources that account
for the interferences of the undesired sources, and sartif (t) is an
artifact term that may correspond to the artifacts of the sepa-
ration algorithm, such as musical noise, or simply undesirable
deformation induced by the nonlinear property of the separation
algorithm. The formulae for SDR, SIR, and SAR are defined as

SDR = 10 log10

∑
t starget(t)2∑

t {einterf(t) + eartif(t)}2
, (25)

SIR = 10 log10

∑
t starget(t)2∑
t einterf(t)2 , (26)

SAR = 10 log10

∑
t

{
starget(t) + einterf(t)

}2∑
t eartif(t)2 . (27)

SDR indicates the quality of the separated target sound, SIR in-
dicates the degree of separation between the target and other
sounds, and SAR indicates the absence of artificial distortion.

Figure 7 show the average SDR, SIR, and SAR for each
method, where the four instruments are shuffled with 12 com-
binations. From the SDRs in Fig. 7, we can confirm that direc-
tional clustering and multichannel NMF do not have sufficient
performance because they cannot discriminate the sources in the
same direction. In contrast, the methods using SNMF can give
better results and Proposed method 2 outperforms all other meth-
ods. Furthermore, the evaluation scores of Proposed method 1
are markedly lower than Proposed method 2. This indicates that
superresolution-based SNMF in Proposed method 1 has a risk to
cause the extrapolation error, whereas Proposed method 2 with
regularization can mitigate such an error.

5. Conclusions
In this paper, we propose a new SNMF algorithm for the

superresolution-based method to separate stereo signals and in-
dicated an effectiveness of the regularization. The proposed al-
gorithm utilizes index information that indicates the direction of
each component in the time-frequency domain, and restores the
target signal via the extrapolation of supervision bases with regu-
larization. From the experimental results, it can be confirmed that
the proposed method with regularization increases the separation
performance for stereo signals compared with the conventional
methods.
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Fig. 7 Average scores when θ = 40◦: (a) shows SDR, (b) shows SIR, and (c) shows SAR for conventional
and proposed methods.
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