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Computational Complexity of Piano-Hinged
Dissections
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Abstract: We prove NP-completeness of deciding whether a given loop of colored right isosceles triangles,
hinged together at edges, can be folded into a specified rectangular three-color pattern. By contrast, the same
problem becomes polynomially solvable with one color or when the target shape is a tree-shaped polyomino.
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1. Introduction

One of the simplest and most practical physical folding
structures is that of a hinge, as in most doors or attach-
ing the lid to a grand piano. Frederickson [4] introduced
a way to make folding structures out of such hinges that
can change their shape between “nearly 2D” shapes. The
basic idea is to thicken a (doubly covered) 2D polygon by
extruding it orthogonally into a height-2ε 3D prism, divide
that prism into two height-ε layers, further divide those lay-
ers into ε-thickened polygonal pieces, and hinge the pieces
together with hinges along shared edges. The goal in a
piano-hinged dissection is to find a connected hinging of ε-
thickened polygonal pieces that can fold into two (or more)
different 2ε-thickened polygons.

Piano-hinged dissections are meant to be a more practical
form of hinged dissections, which typically use point hinges
and thus are more difficult to build [4]. Although hinged
dissections have recently been shown to exist for any finite
set of polygons of equal area [1], no such result is known for
piano-hinged dissections.

Here we study a family of simple piano-hinged dissections,
which we call a piano-hinged loop: 4n identical ε-thickened
right isosceles triangles, alternating in orientation, and con-
nected into a loop by hinges on the bottoms of their isosce-
les sides; see Fig. 1. Frederickson [4], Chapter 11 mentions
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without proof that this piano-hinged dissection can fold into
any (2ε-thickened) n-omino, that is, any connected edge-to-
edge joining of n unit squares.

Three commercial puzzles, shown in Fig. 2, consist of
piano-hinged loops. GeoLoop is a piano-hinged loop with
n = 6 that was patented by Kenneth Stevens in 1993/1994
[6] and sold by Binary Arts*1 in 1996. The pieces alter-
nate between two colors, and by a checkerboard property
of the piano-hinged loop, the resulting squares of any poly-
omino will alternate in color (on either side), so this puzzle
is effectively uncolored. Ivan’s Hinge is a piano-hinged loop
with n = 4 that was patented by Jan Essebaggers and Ivan
Moscovich in 1993/1994 [3] and sold by Paradigm Games in
the mid-to-late 1990s [4] and recently by Fat Brain Toys*2.
Each piece is colored irregularly with one of two colors, and
the goal in this puzzle is to make not only the specified
tetromino shape but also the specified two-color pattern.
Tony’s Hinge is a variation of Ivan’s Hinge, sold by Kellogg
Company in 1988 but also copyright by Ivan Moscovitch
and made by Paradigm Games. It uses colored images and
requires putting certain images in particular places, in ad-
dition to the color constraints.
Our results.

In this paper, we investigate the computational complex-
ity of folding colored and uncolored piano-hinged loop puz-
zles into n-ominoes.

First we consider the uncolored piano-hinged loop, as in
GeoLoop. For completeness, we prove Frederickson’s claim
that this loop can realize any 2ε-thickened n-omino, by mim-
icking a simple inductive argument for hinged dissections of
polyominoes from [2]. For the special case of tree-shaped

polyominoes, where the dual graph of edge-to-edge adjacen-
cies among unit squares forms a tree, we prove further that

*1 Binary Arts changed its name to ThinkFun (http://www.
thinkfun.com) in 2003.

*2 http://www.fatbraintoys.com
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the folding of the piano-hinged loop is unique up to cyclic
shifts of the pieces in the loop.

Next we consider colored piano-hinged loops, as in Ivan’s
Hinge. For tree-shaped polyominoes, the previous unique-
ness result implies that the problem can be solved in O(n2)
time by trying all cyclic shifts. (In particular, this observa-
tion makes the n = 4 case of Ivan’s Hinge easy to solve in
practice, as each tetromino has either 1 or 4 spanning trees
to try.) For general polyominoes, we prove that the prob-
lem is NP-complete even if the number of colors is 3, each
piece is colored uniformly one color, and the target shape is
a rectangle.

2. Preliminaries

A piano-hinged loop consists of a loop of 4n consecu-
tive isosceles right triangles p0, q0, p1, q1, . . . , p2n−1, q2n−1,
as shown in Fig. 1. Every two consecutive triangular pieces
share one of two isosceles edges. The pi’s have a common
orientation (collinear hypotenuses when unfolded), as do the
qi’s, and these two orientations differ from each other. Each
shared edge is a piano hinge on the back side that permits
bending inward (bringing the two back sides together).

In a folded state of the piano-hinged loop into a doubly
covered polyomino, (1) each piano hinge is flat (180◦) or
folded inward (360◦); and (2) each unit square of the poly-
omino consumes exactly four triangles, with two triangles
on the front and two on the back side. Thus, in any folded
state, the exposed surface consists of all front sides of the
pieces, while the back sides of all pieces remain hidden on
the inside. Therefore, we can ignore the color of the back
side of each piece, so for simplicity we can assume that each
piece has a uniform color (instead of a different color on each
side). Let c(pi) and c(qi) denote the color of piece pi and
qi.

For the resultant polyomino P of n unit squares, we define
the connection graph G(P ) = (V, E) as follows: V consists
of n unit squares, and E contains an edge {u, v} if and only
if squares u and v are adjacent (share an edge) in P . Hav-
ing {u, v} ∈ E is a necessary but not sufficient condition for
there to be a hinge connecting the four pieces representing
square u to the four pieces representing square v; if there is
such a hinge, we call u and v joined.

The uncolored piano-hinged loop problem asks whether a
given polyomino can be constructed as (the silhouette of)
a folded state of a given piano-hinged loop. The “silhou-
ette” phrasing allows the folding to have unjoined squares,
which are adjacent in the polyomino but not attached by
a hinge in the folded state. The colored piano-hinged loop

problem asks whether a given colored polyomino pattern can
be similarly constructed from a given colored piano-hinged
loop.

The piano-hinged loop has a simple checkerboarding prop-
erty:

Observation 1 Consider two adjacent squares u and v

in a polyomino P , obtained as a folded state of a piano-
hinged loop. Without loss of generality, assume that the
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Fig. 3 An extension of four triangles

top side of u contains (the front side of) triangle pi. Then
(1) the other triangle of u on front side is pj for some j,
(2) the backside of u contains two qs, (3) the front side of v

contains two ps, and (4) the backside of v contains two qs.
Proof: In a polyomino, each piano-hinge takes one of two
possible state; it is folded or flat. Let t be any triangle, and
t′ be the next triangle sharing a hinge. Then t and t′ have
the different parity with respect to the group of ps or qs.
When the hinge is flat, t′ is on the same side of the neighbor
square of the square containing t. If the hinge is folded, t′ is
on the opposite side of the square containing t. These two
cases guarantee the checkerboarding property stated in the
observation. �

Ivan’s Hinge has a group of triangles that are monochro-
matic as assumed above, and a group of triangles with dif-
ferent colors on their front and back sides. However, these
groups directly correspond to the parity classes in Observa-
tion 1. Hence, for each unit square, the front side consists of
two triangles from the same group, and the back side consists
of two triangles from the other group. Thus, from a theoret-
ical point of view, we can again effectively assume that the
pieces are monochromatic. (Practically, the differing colors
can vary the color patterns, which can help visually.)

3. Uncolored Piano-Hinged loop

We begin with the universality theorem GeoLoop, claimed
by Frederickson [4]:

Theorem 2 ([4]) Any polyomino P of n unit squares
can be realized as a folded state of the piano-hinge loop of
4n pieces.
Proof: It is easy to see that for the case n = 1: The flat
state is already a unit square. In fact, Fig. 1 explicitly show
the case n = 3. We use an induction for n. Suppose all
polyomino of k unit squares can be folded from the piano-
hinge loop of 4k pieces. Let P be a polyomino of k + 1
unit squares. Consider a spanning tree T of the connection
graph G(P ). Let v be a leaf of T , and u the parent of v

in T . We remove the corresponding square v from P and
obtain a smaller polyomino P ′ of k unit squares. By induc-
tive hypothesis, P ′ can be realized as a folded state of the
piano-hinge loop of 4k pieces. Since P ′ is obtained from P

by removing v from u, the corresponding square u in P ′ con-
tains a boundary of P ′ such that this edge of u was attached
to v in P . It is not difficult to see that each boundary of a
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Fig. 1 Small piano-hinged loop and its folding way.

Fig. 2 GeoLoop, Ivan’s Hinge, and Tony’s Hinge.

polygon from a piano-hinge loop should be a hinge shared
by two consecutive triangles pi and qi, or qi and pi+1 for
some i. So we cut this boundary of u, attach four consecu-
tive isosceles right triangles (as illustrated in Fig. 3; in the
figure, the boundary of two consecutive triangles p and q

is cut, and a new four triangles 1, 2, 3, 4 are attached there,
which yields the extended sequence p, 1, 2, 3, 4, q), and fold
them to form v in P . �

Once we fix the spanning tree T of G(P ), we claim that
the folded state is uniquely determined up to cyclic shift of
the pieces. Both this corollary and the previous theorem
follow from a simple argument of repeatedly pruning leaves
in the graph of joinings.

Corollary 3 Let P be any polyomino of n unit squares
such that G(P ) is a tree. Then it can be uniquely folded
from the piano-hinge loop of 4n pieces, up to cyclic shift of
the pieces.

For a given tree-shaped polyomino, the piano-hinge loop
traverses the tree in the same manner as the depth-first
search without crossing. That is, if we imagine that we are
in the maze in the form of the tree, and traverse the maze
by the right-hand rule, then we traverse each edge twice,
and this is the order followed by the piano-hinge loop. This
intuition will be useful in some proofs in this paper.

4. General Piano-Hinged loop

Consider a polyomino P in which pieces pi and qi have

colors c(pi) and c(qi), respectively. When the connection
graph G(P ) is a tree (or the spanning tree of G(P ) is ex-
plicitly given), we still have a polynomial time algorithm to
solve the problem:

Theorem 4 Let P be any polyomino of n unit squares
such that G(P ) is a tree T . Then the general piano-hinge
loop problem can be solved in O(n2) time.
Proof: Once we fix a position of one triangle in L on T ,
the folded state forming T is uniquely determined by Corol-
lary 3. Hence, for each triangle in L, we temporarily put
it on a fixed point on T , and check if the color pattern is
achieved in this case in linear time. This gives us an O(n2)
time algorithm. �

Next we turn to the case that P is a general polyomino,
where the problem is NP -complete.

Theorem 5 The colored piano-hinge loop problem is
NP-complete, even if the number of colors is 3 and the tar-
get polyomino is a rectangle.
Proof: It is clear that this problem is in NP, we in the fol-
lowing show the hardness by reducing 3-PARTITION, de-
fined as follows.

3-PARTITION (cf. [5])
INSTANCE: A finite set A = {a1, a2, . . . , a3m} of 3m

weighted elements with w(aj) ∈ Z+, where w(aj) gives the
weight of aj , and a bound B ∈ Z+ such that each aj satis-
fies B/4 < w(aj) < B/2 and

P3m
j=1 w(aj) = mB.

QUESTION: Can A be partitioned into m disjoint sets
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A(1), A(2), . . . , A(m) such that
P

aj∈A(i) w(aj) = B for
1 ≤ i ≤ m?

It is well-known that 3-PARTITION is strongly NP -
complete, meaning that it is NP -hard even if the input
is written in unary notation [5]. In the following, we as-
sume that B = 10b for some positive integer b (otherwise,
multiply all values by 10). If A has a solution, we can
observe that each A(i) contains exactly three items since
B/4 < w(aj) < B/2 for each i and j.

The outline of the construction is illustrated in Fig. 4.
Our piano-hinge loop L consists of two parts (Fig. 4(a)).
The first part, which is called base part, is a series of black
triangles that will form m empty bins such that each bin
will filled by B gray unit squares. The second part, which
is called item part, is an alternative series of gray trian-
gles and white triangles. The ith consecutive gray triangles
represents the weight of an element ai for each i, and con-
secutive white triangles will be used to rearrange the items
to put them into bins in an arbitrary way.

Before precise construction, we here introduce a crossover

gadget, which is usually complicated and important part for
such a reduction. In the piano-hinge loop, it is easy to cross
since each square is doubly covered. It is achieved as is il-
lustrated in Fig. 5. In the figure, it is depicted how can
we cross a white piano-hinge loop of 16 pieces and a black
piano-hinge loop of 16 pieces. Each gray area is the back
side of each colored triangle. From the initial position (a),
we valley fold as in the figure. Then we have two squares
of area 2 in two loops such that they are not covered prop-
erly as in (b). Hence we flip the white loop vertically, and
put it on the black loop so that two squares doubly cover
one square as in (c). We note that the resultant polyomino
of 8 unit squares in (c) is doubly covered one. Using this
crossover gadget, we can make a crossing of a long vertical
sequence of unit squares and a long horizontal sequence of
unit squares. We note that these two sequences are shifted
one unit when they cross.

Now we turn to the precise construction of the general
piano-hinge loop of 4(12m(12m + b + 3) + 36m2 + 1) pieces
from an instance of 3-PARTITION A = {a1, a2, . . . , a3m}
and B = 10b. The base part is simple. In Fig. 4(b), the
black triangles doubly cover the black area, and four of each
back side of white slanted hexagons are covered by black
triangles as in Fig. 5(c). Thus, in total, the number BL of
black triangles is equal to 4(12m×3−3m×8+b×2m+1) =
32m + 8mb + 4.

The upper rectangle consists of 15m × 12m unit squares.
This rectangle is divided into two rectangles of size 12m ×
12m and 3m × 12m. Roughly, each of a1, a2, . . . will con-
sume a rectangle of size 12m × 4 from bottom to top in
the left rectangle, and they are connected in the right rect-
angle of size 3m × 12m. At the right rectangle, each ai

uses 8i − 4 unit squares. Let the item part consist of W0

white triangles, G1 gray triangles, W1 white triangles, . . .,
G3m gray triangles, and W3m white triangles in this order.

For each i = 1, 2, . . . , 3m, we set Gi = 4w(ai). We also set
W0 = 4(2×12m+4)+4, Wi = 4(4×12m+(8(i+1)−4))+8
with 0 < i < 3m, and W3m = 4(2 × 12m + 24m − 4) + 4.
Intuitively, W0 consists of the triangles in two lines before
a1 (= 4(2 × 12m)), in right rectangle (= 4 × 4), and the
triangles just before a1 (= 4). Wi consists of the triangles
in two lines after ai (= 4(2 × 12m)), two lines before ai+1

(= 4(2 × 12m)), in right rectangle (= 4 × (8i − 4)), the
triangles just after ai (= 4), and before ai+1 (= 4). The
last W3m consists of the triangles in two lines after a3m

(= 4(2 × 12m)), in right rectangle (= 4 × (24m − 4)), the
triangles just after a3m (= 4).

The pattern that the loop should represent is illustrated
in Fig. 4(b): The upper half is a rectangle of size 15m×12m

that consists of all white triangles. The lower half is a rect-
angle of size 12m× (b +3) with one black square on the top
right side, which is indicated by an arrow in the figure. The
left rectangle is almost surrounded by black squares, and
this area consists of m rectangular bins of size 10× b. Each
bin is filled by gray squares, and it is connected to the upper
white area by three hexagonal white triangles as shown in
the figure.

This is end of the construction of the general piano-hinge
loop with its required pattern. It is easy to see that the
reduction can be done in polynomial time. Hereafter, we
sometimes abuse the notation B, Wi, Gi as the set of trian-
gles in the sequence.

We first observe the gray squares in each Gi. It is not
difficult to see that any crossing yields a unit square that
consists of two triangles coming from the crossing sequences.
However, all gray triangles are in monochromatic squares.
Thus, there is no gray sequence crossing cross the different
color sequences. Thus, if the loop makes the pattern, all
triangles in Gi appear in the same bin. That is, if the de-
sired pattern appears, we obtain a certain partition of A,
and each gray sequence enters and exits at a white gate on
the top of a bin. By the universal theorem 2, once we have
the partition of A, we always can fill the bin. More precisely,
when a bin can filled by gray triangles from Gi, Gj , and Gk,
we first divide the area of the bin into three subareas such
that each subarea is attached to one of three white gate, and
each subarea consists of Gi, Gj , or Gk triangles. Then, the
universal theorem guarantees that we can doubly cover each
subarea by corresponding gray triangles.

By above observations, it is clear that if the general piano-
hinged loop has a solution, so does the 3-PARTITION.
Therefore, we now show that if the 3-PARTITION has a
solution, the general piano-hinged loop has a solution.

We first consider the black triangles. Each hexagonal
white triangles in the pattern represents the crossing of
white vertical sequence and black horizontal sequence. That
is, each hexagonal white triangles has four black triangles in
its back side. Thus, in the lower rectangle, all black trian-
gles are connected. On the other hand, using the univer-
sal theorem, the black triangles to form m bins illustrated
in Fig. 4(b), with two endpoints comes to the upper right
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Fig. 5 Crossover gadget

square (indicated by an arrow in the figure). The packing of
the gray squares has been already discussed above. Thus, it
is sufficient to show how can we arrange the gray triangles
to arbitrary gate of a bin using white triangles W0, W1, . . .,
W3m in the upper white rectangle.

We here show the way of an arrangement of the white
triangles for any given ordering of a1, a2, . . . , a3m. First we
pay attention to the left rectangle of size 12m × 12m. For

each ai, we design a cross of a 1×12m rectangle and 12m×2
rectangle as in Fig. 6(a). We note that, in the figure, the
colors are used to distinguish the gadgets, but all triangles
are white in the loop. The heights of 12m × 2 rectangles
represent the indices of ai. (In the figure, a1, a2, a3, a4 is
arranged from left to right.) The placement of 1×12m rect-
angle represents the position of bin. (In the figure, the items
are put in bins in order of a1, a4, a3, a2.) Now, we pile them
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Fig. 6 The placement of white triangles

in the same area (Fig. 6(b)), and apply the crossing gadget
at each crossing point (Fig. 6(c)). Now, most unit squares
in 12m×2 rectangle has an empty neighbor. This neighbor-
hood is checked in each dotted rectangle in Fig. 6(a), and
then each empty area has exactly one corresponding neigh-
bor as shown in Fig. 6(d). So we fill the empty area by the
corresponding neighbor in the same way in Fig. 3. After
these process, we can check that all the numbers of squares
used for each ai are the same.

Lastly, we join all gadgets above with one black square
(indicated by an arrow in Fig. 4(b)) in the left rectangle of
size 3m× 12m, which can be done in a straightforward way
as shown in Fig. 6(e).

In the final step, we show that any cross of a 1 × 12m

rectangle and 12m×2 rectangle in Fig. 6(a) is constructible.
We here gives a sketch of the adjustment of the length of the
cross since the details are so detailed that makes the argu-
ment unclear. For each i, we first wrap up the bottom half
of the horizontal bar, go down, put the gray triangles in a
bin. To do that, we use the 4(2×12m) triangles form Wi−1.
Then, we go up, wrap up the remainder horizontal bars with
vertical bars to the top using the 4(2× 12m) triangles from
Wi. To make a cross in Fig. 6(a), we need only 4(3 × 12m)
triangles. The other 4 × 12m triangles are used to fill up
the gaps in Fig. 6(d). In Fig. 6(d), we drew that each upper
square in the horizontal bar covers the upper gap, and each
lower square covers the lower gap to make the idea clear.
However, by Theorem 2, we can arrange that any square can
cover them. Therefore, using the squares before/after gray
triangles appropriately, we can adjust the crossing point. It
is not difficult to see that the extra 4 × 12m triangles are
enough to put the crossing point arbitrary. Therefore, we

can put the gray triangles into any bin. �
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