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Abstract: In this paper, we study the problem of finding a class of spatio-temporal patterns called (m, k)-
flock patterns (Gudmundsson and van Kreveld, Proc. ACM GIS’06; Benkert, Gudmundsson, Hubner, Wolle,
Computational Geometry, 41:11, 2008), which represent a groups of moving objects close each other within
width at most r» under Loo-norm in a given time segment of length at least k, in a collection of 2-dimensional
trajectories. For max-width » > 0, min-length k, and a collection S of n trajectories of legnth 7', the pro-
posed algorithm finds all length-maximal (m, k) flock patterns in an input collection of trajectory data in
O(pnT?) delay and O(p?) space, p = | X| is the size of ID set being enumerated. We also present a practical

Efficient Algorithms for Finding All Length-Maximal Flock Patterns

improvement using geometric indexes.

1. Introduction

1.1 Background
By rapid increase of a massive amount of trajectory
data have been accumulated, the research on trajectory

mining, i.e., efficient methods for extracting interesting
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patterns and rules from collections of trajectory data, has
attracted a great deal of attention for recent years [4], [7].

A trajectory database on the time domain T =
{L,...,T}isaset S = {s;|i =1,...,n} of trajecto-
ries for n moving objects, where each trajectory is a a se-
quence s; = $;[1] -+ - s;[T] of T points on the 2-dimensional
space R? and its ID 4 is drawn from a set of n identifiers
ID = {1,...,n}. For instance, GPS-trajectories of wild
animals, walking people with Wifi device, Probe car data

are examples of such trajectory databases [7].
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Temporal domain T = [1, 5]
Trajectory ids ID = {1, 2, 3, 4, 5}

Trajectory database
S ={s1, 82, S3, 84, S5 }

7

Pattern parameters
» diameter e = 1.0
*lengthp=3
ssupporty=3

1 Examples of a trajectory database S consisting of five
trajectories si,...,ss with ID set ID = {1,...,5}, and a
flock pattern P = (X = {2,3,4}, [t3, ¢5]) with diameter
r = 1.0, length k = 3, and support m = 3, where each line
indicates a trajectory, the figures associated with points
their time, and boxes indicate rxr rectangles forming flock

pattern Pj.

For such trajectory databases, Laube, Kreveld, and Im-
feld [10] and Gudmundsson and van Kreveld [8] intro-
duced a class of spatio-tempral patterns, called flock pat-
terns (See Fig. 1). For a positive number r > 0, called
a max-width, and non-negative integers k,m > 0, called
min-len and min-sup, an (r, k,m)-flock pattern in a tra-
jectory database S is a pair P = (X, [b,e]) of a set X
of trajectory ids and a time interval I = [b,e] on T that
represents a set of at least m moving objects that move
together with mutually distance at most r in Loo-norm,
that is, the largest of the x- and y-distances, along a con-
tinuous interval I of length at least k£ time points. Flock
patterns are useful in detecting a group of highly corre-
lated entities combining spatio-tempral features.

In this paper, we focus on pattern mining approach
that makes complete mining of all patterns in an input
database that satisfy a given set of constraints, as in fre-

quent pattern mining [12], [13], [17]. Particularly, we

study the problem of finding all (r,k)-flock patterns *!
((r,k)-FP for short), thus with max-width and min-len
constraints, from an input database of n trajectories of

length T

1.2 Main results

1.2.1 Classes of length-maximal flock patterns
Along the above line of research on closed patterns [1],

[13], by extending (r, k)-FPs above, we first introduce the

classes of RFPs and UFPs of closed flock patterns as fol-

*1 Our (r, k, m)-flock patterns use Loo-distance on R? to define

the diameter < m, while the original (r, k, m)-flock patterns
of Benkert et al. [5] used La-distance on R2.
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lows. Given a maximum width parameter r, it is often
useful to find all (r, k)-flock patterns P = (X, [b, e]) whose
time interval [b, e] are extended leftward or rightward as
long as possible along time line with preserving the diam-
eter r of trajectories, instead of separately discovering all
flock patterns of various lengths above length constraint
> k.

Then, we introduce the classes of rightward length-
maximal and unrestricted length-mazimal (r, k)-flock pat-
terns, denoted by (r,k)-RFPs and (r, k)-UFPs, respec-
tively, where a RFP can be extended rightward at given
start time b, while an UFP can be extended either the
start time b leftweard or the end time e rightward yield-
ing more flexibility and compression.

Unlike Gudmundsson and van Kreveld’s longest-
duration (r, k,m)-flock patterns [8] for which a search
problem for a pattern is NP-hard, the classes of RFPs and
UFPs allow polynmial time computation of search due to
the local nature of mazimality than the global nature of
maximumlity.

1.2.2 Polynomial delay and space algorithms

First of all as a main result, we present a depth-first
search mining algorithm RFPM (Algorithm 2) that finds
all rightward length-maximal (r, k)-flock patterns P, or
(r,k)-RFPs, in a given trajectory database S of n trans-
actions of length T' in O(mnT) delay (time per pattern)
and O(m?) space, where m = | X| is the number of trajec-
tories that the discovered P contains. Actually, BasicFPM
is a polynomial-delay and polynomial space algorithm for
(r, k)-RFPs without using any tabulation to avoid dupli-
cates (Theorem 1). We note that our algorithm works in
the d-dimensional continuous space with large d > 2 by
adding a factor of O(d).

Next, for the class of (r, k)-UFPs (unrestricted length-
maxmal flock patterns), for which extension is possible
for both sides, we give a characterization of UFPs us-
ing a technique, called leftward extension check. Using
this property, we show that a modification of the algo-
rithm BasicFPM finds all (r,k)-UFPs in O(mnT?) delay
and O(m?) space, where m = |X| is the number of tra-

jectories that the discovered P contains. (Theorem 2).

1.3 Related work

There are two lines of researches on trajectory mining:
trajectory clustering [4], [11] and disk-based trajectory
pattern mining [5], [7], [10].

The study of flock pattern mining started in the latter
context [5], [9], [10]. Gudmundsson and van Kreveld [§]
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Temporal domain T = [1, 5]
Trajectory ids ID = {1, 2, 3, 4, 5}

Trajectory database
S ={s1, 82, S3, 84, S5 }

Pattern parameters
» diameter e = 1.0
*lengthp=3
ssupporty=3

2 Examples of a trajectory database S1 on ID = {1,...,5}
and T = [1,7] and a (1.0,2,2)-flock pattern P, =
(X1, 1) = ({2,3,4},[3,5]) with diameter || Py ||oo”* < 1.0,
length len(P;) = 3, and support supp(P1) = 3. Here, each
line indicates a trajectory and the numbers attached to

points are time stamps.

showed that the problem of finding at least one length-
mazimum (r,k, m)-flock pattern is NP-hard, while they
gave an efficient 2-approximation algorithm, although it
does not make complete enumeration of all flock patterns.
Benkert et al. [5] proposed an (24 ¢) approximation algo-
rithm for fixed-length flock patterns, whose running time
is polynomial in m and %, but exponential in the length
k of a pattern, thus not polynomial delay.

Most closely related work is the work by Vieira,
Bakakov, and Tsotras [14], who took pattern mining
aproach at the first time. They presented an algorithm
that finds all (r, k, m)-flock patterns by systematically
combining discovered clusters by depth-first search using
the idea of intersection. Unfortunately, their algorithm is
neither polynomial delay nor polynomial space from the-

oretical point of view.

1.4 Organization
Sec.2 gives definitions, Sec.3 presents our algorithms,
and Sec.?? shows experimental results. Finally, Sec.4 con-

cludes.

2. Preliminaries

2.1 Basic definitions

Let R and N be the set of all real numbers and all non-
negative integers, respectively. For integers a,b (a < b),
we denote by [a,b] = {a,a+1,...,b} the discrete interval
between a and b. If a < b are real numbers, then [a, b]
denotes a continuous interval in R as usual. For a set A,
|A| denotes the cardinality of A, and A* denotes the set

of all possibly empty, finite sequences over A.
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2.2 Trajectory Database
Let n and T' > 0 are pre-determined nonnegative inte-
gers, which indicate the number of moving objects and the
maximum value for discrete time stamps, respectively. Let
R? be the 2-dimensional continuous space, or the plane.
A trajectory database on the space domain R? and the
time domain T = {1,...,T'} is a finite set

S={sili=1,...,n} C (R (1)

of the trajectories for n moving objects o1, ..., 0,, where
for every i =1,...,n,
e the index i, called the trajectory ID, is drawn from a
set of n identifiers ID = {1,...,n}, and

e the i-th trajectory s; is a sequence

s; = si[1] -~ s [T] € (RH)T

of T points on the 2-dimensional space R? such that
its ¢t-th point is s;[t] = (x4, ysr) € R2.

Examplel In Fig. 2, we show an example of a tra-
jectory database S, which consists of five trajectories of
length T'=17.

For example, GPS-trajectories of wild animals, walking
people with Wifi device, Probe car data (or floating car

data) are instances of such trajectory databases.

2.3 The class of flock patterns
For such trajectory databases, we introduce the class
FP of spatio-tempral patterns, called flock patterns,

*2_ Formally, the class of

based on Lo.-norm as follows
flock patterns is defined as follows.
Definitionl (FP) A flock pattern on T is a pair

P = (X,[b,e]), where

e X C ID is a finite set of ids, called the ID set of P, and
o [ =[be] is a discrete interval in [0,T] withb <e < T,

where b and e are called the start and end time of P.

We define the support, length, and width of a flock pat-

tern as follows.

e The support of P, denoted by supp(P), is defined by
the number of trajectory (ID) contained in X, that
is, supp(P) = |X]|.

e The length of P, denoted by len(P), is the width of
the interval I, that is, len(P) =e—b+ 1.

Clearly, we have 0 < supp(P) <mnand 0 < len(P) <T.

Example2 In Fig. 2, we show an example of a flock

pattern P = (X3, 1), where the ID set is X; = {2,3,4}
and the interval is I = [3, 5].

*2

The original version of flock patterns are defined based on
Ly-norm in [8], [10].
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To define the width, we require some definitions be-
low. For a point p = (z,y) on 2-dimensional plane R2,
the x- and y-coordinates of p are denoted by by p.xz = =
and p.y = 1y, respectively. For two points p and p’
on R2, we denote the L -distance between p and p’ by
Loo(p,p') = max{|p.x — p'.z|, |p.y — p'.y|}. By definition,
Loo(p,p’) is nonnegative, and coincides zero if and only if
p=p.

The diameter of a set A = {p1,...

noted by || A ||, is the maximum L..-distance between

,Pn} of points, de-

any two points in A, defined by
A co — ImaXx Ifoo D, p/ 5 2
|| H pp A ( ) ( )

The width || A || of a set A is always nonnegative, and
equals zero if and only if A consists of a single point. We
can show that || A || is linear time computable in n = |A]
on R2. For any d > 2, || A||s can be computed O(dn)
time in R?, which is still linear in n for fixed d.

In an input database S, the ¢-th time slice, denoted by
S[X][t], is the set of all points that appear in the trajec-
tories of X with time stamp ¢.

e The width ||P||S of a flock pattern P = (X,I) =
(X,[b,e€]) is defined by the maximum diameter of
the t-th time slice of the trajectories in X over all
tebe.

Actually, we have the next lemma.

Lemmal The width of P can be computed by Algo-

rithm 1 in O(m/f) time, where m = supp(X) is the support
of P and ¢ = len(P) is the length of P.

Algorithm 1 Computing the width || P||o.” of a flock
pattern P = (X,[b,e]) in a database S = { s;|i =

1,...,n}

1: width < 0;

2: fort+ b,b+1,...,edo

3: St + {sit]|i € X }; // the t-th slice
4: width < max{width, ||St||o };

5: return width;

Let » > 0 be a positive number, and k, m > 0 are non-
negative integers, respectively, called a mazimum width
(max-width), a minimum length (min-len), and a mini-
mum support (min-sup) parameters. Then, we define:

e an r-flock pattern is any flock pattern P such that

1Pl <,

Consider the class of r-flock patterns in a trajectory
database S.

e An (r,k)-flock pattern is any r-flock pattern P with
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len(P) > k.

Example3 The pattern P; of Fig. 2 in the last ex-
ample has diameter || P Hoosl < 1.0, length len(Py) = 3,
and support supp(Py) = 3. Thus, it is a (1.0, 2, 3)-flock
pattern for r = 1.0, k = 2, and m = 3.

In this paper, we consider all (r, k)-flock patterns in a

given trajectory database.

2.4 Rightward length-maximal patterns

For a given max-width parameter r > 0, it is often use-
ful to find only (r, k)-flock patterns P = (X, [b, e]) whose
time interval [b, €] are extended rightward along time line
as long as possible preserving the diameter r (See [§]).
This idea of length-mazximal mining is expected to reduce
the number of solutions and running time than just find-
ing all (r, k)-patterns.

A flock pattern P = (X, [b,e]) is said to be a right-
ward (rightward resp.) length-mazimal flock pattern in S
if its interval cannot be extended rightward (leftward or
rightward resp.) without changing the width of P in S.

Formally, it is defined as follows.

Definition2 (RFP) A flock pattern P = (X, [b, e]) in
S is a rightward length-mazimal flock pattern (RFP, for
short) if there is no other flock pattern P’ = (X', [V/,¢€'])
in S such that (i) X = X', and (ii) b=1V' and e < ¢'.

Definition3 (UFP) A flock pattern P = (X, [b, €]) in
S is a unrestricted length-mazimal flock pattern (UFP, for
short) if there is no other flock pattern P’ = (X', [V/,¢€'])
in S such that (i) X = X', and (ii) P’ has a strictly larger
interval than P, that is, [b,e] C [V/,€].

For a set I' of constraint parameters drawn from k, m,
and r, we denote by FP(I"), RFP(T'), and UFP(I') the
classes of I'-flock patterns, rightward length-maximal I'-
flock patterns, and unrestricted length-maximal I'-flock
Then, we have the inclusion UFP(r,k) C
RFP(r,k) C FP(r, k) for any r and k.

Example4 (RIGHTWARD  AND

patterns.

UNRESTRICTED
LENGTH-MAXIMAL FLOCK PATTERNS) Fig. 3 illustrates
the notion of rightward and unrestricted length-maximal
., 853 on T =[1,15]. In
the figure, the flock pattern Py = (X, [b1,e1]) starting at
by = 3 is an RFP, while P3s = (X, [bs, e3]) is an UFP On
the contrary, the flock pattern Py is neither an RFP or an
UFP. We also observe that for the UFP Py = (X, [bs, es])
of length £ =7, there exist { — 1 = 6 RFPs with the same
end point eg but different starts points 9 to 14. m|

patterns in database S = {sq,..

From the second observation in the above example, we

can say that UFPs and RFps compactly represent a set
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O P,: rightward
length-maximal

O P,: unrestricted

S length-maximal
1

1 1
I ]
S2 i H
1 1

S==
Sy f L----‘A? e Ss

P,: non-maximal P, Ps Pg .- Py Pyg
rightward length-maximal, but not unrestricted

tme 2 3 4 5 6 7 8 9 10 11 12 13 14 15
]
A A A A A A A A
start time b] bz b3 b4 b5 bﬁ bg bm

3 Concepts of rightward and unrestricted length-maximal
flock patterns as well as non length-maximal flock pat-
terns on a time line, where each line indicates a trajectory
and each rectangle a flock pattern.

of FPs in S.

Example5 In the example of Fig. 2, the flock pattern
P, = (X4,[3,5]) of length three is an RFP in S, while
P, = (X1,[3,4]) and P; = (X1,][3]) are non-rightward
length-maximal FPs, where X; = {2,3,4}. On the other
hand, P, has RFPs P, = (X1,[4,5]) and Ps = (X1, [5]).

2.5 The data mining problems

For any class name C € {FP,RFP,...} and any pa-
rameter values r,k > 0, we denote by C(r, k) the class
of all (r,k)-flock patterns within the class C. Similarly,
we define the classes C(r), and C(r,k,m) as well. From
now on, we consider the classes FP(r, k), RFP(r, k), and
UFP(r k).

We state our data mining problem as follows.

Definition4 (FLOCK PATTERN MINING PROBLEM
FOR PATTERN CLASS C) Let C be a class of flock pat-
terns. An input is a tuple (S,r, k) of an input trajectory
database S, and parameter values v and k > 0. The task
is to find all flock patterns P in S within class C without
repetition that have width at most r and length at least k.

Similarly, we can consider the flock pattern mining
problem with paramters (r, k,m).

We evaluate the performance of a flock pattern mining
algorithm A in terms of enumeration algorithms [3]. Let
N and M be the input size and the number of patterns
as solutions. A pattern mining algorithm A is said to
have polynomial delay (poly-delay) if the delay, which is
the maximum computation time between two consecutive
outputs, is bounded by a polynomial p(N) in N. A is of
polynomial space (poly-space) if the maximum size of its
working space, in addition to that of output stream O, is
bounded by a polynomial p(V).

We give the model of computation in this paper as fol-

lows. Let N and M be the size of input S and the num-
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Algorithm 2 An algorithm RFPM for finding all length-
maximal (r, k)-flock patterns appearing in a given trajec-
tory database S with ID for maximum width r and min-

imum length k.
1: procedure RFPM(ID, S, r, k)
2: for bo < 1,...,7 do // Each start time in T
for o« 1,...,ndo // Each id in ID
Po = ({io}, [bo, #]);
RecRFPM(Py, ID, S, r, k);

6: procedure RecRFPM(P = (X, [b,*]), ID, S, r, k)

7 P = (X,[b,e]) < RH_Closure((X, [b, %]); S, 7);

8: if len(P) < k then

9: return ; // P is not an (r, k)-flock pattern
10: output P;

11:  ID; « ID;

12: while ID; # 0 do

13: i = deletemin(ID1);
14: Py = (X U{i}, [b,%]);
15: RecRFPM(Pi, ID1, S, 1, k);

16: end while

ber of outputs in F on S, and p(IN) be a polynomial. In
our problem, the input size is the total size N = nT of
an input trajectory database S. An enumeration algo-
rithm A is of polynomial enumeration time (poly-enum)
if the amortized time for each solution x € § is bounded
by a polynomial p(N) in N. A is of polynomial delay
(poly-delay) or ezxact polynomial enumeration time if the
delay, which is the maximum computation time between
two consecutive outputs, is bounded by a polynomial p(INV)
in N. A is of polynomial space (poly-space) if the maxi-
mum size of its working space, without the size of output

stream O, is bounded by a polynomial p(N).
3. Algorithms

In this section, we present our pattern mining algo-
rithms for FPs and RFPs. We also give a speed-up tech-
nique using geometric indexes to prune redundant candi-

dates.

3.1 A polynomial delay and space algorithm for
RFPs

In Algorithm 2, we present the proposed algorithm
RFPM (rightward flock pattern miner) for RFPs (right-
ward length-maximal flock patterns), the class of right-
ward length-maximal flock patterns, with its subproce-
dure RecRFPM.
3.1.1 Outline of the algorithm

We describe the computation done by the algorithm
RFPM. The overall structure of RFPM is almost identi-
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cal to the basic algorithm FPM. Given a database S, the
main algorithm RFPM invokes the recusive subprocedure
RecFPM with an initial pattern P, as before.

Only the difference in the top level is that RFPM it-
erates only O(T) iteration here for the start position by
rather than O(T?) iteration in FPM using an initial pat-
tern Py = ({0}, bo, *) with missing end position eg = *,
called a partial pattern here.

The
RecRFPM proceeds in the following steps.

e Step 1: Receiving a partial RFP P, = (X, b, %) as ar-

guments, the recursive procedure RecFPM computes

computation of the recursive subprocedure

the rightward horizontal closure P = (X, [b,€]) from
P, by the procedure RH_Closure with max-width 7.
e Step 2: Next, if the obtained RFP P satisfies (r, k)-
constraints, then output it. Otherwise, we sefely
prune all descendants as before.
e Step 3: Finally, RecFPM recursively calls its copy
(X U{i}, [b,%]). To

avoid duplicated generation of patterns, the id ¢ is

with an extended pattern P, =

removed from the universe ID.

The pruning of all descendants in Step 2 above is justi-
fied by the following lemma, which says the class of (r, k)-
patterns has a kind of monotonicity w.r.t. set inclusion of
their ID sets.

Lemma2 (monotonicity) Let P, = (X;,1;) are two
flock patterns, where ¢ = 1,2. If P is an (r, k)-flock pat-
tern in S and if X; C X5 and Iy C Iy hold, then P; is
also an (r, k)-flock pattern in S.

From this lemma, once a candidate pattern P = (X, I)
does not satisfy the width and length constrants, any de-
scendant of P obtained by adding new trajectory (ids) to
X no longer satisfies the constraints. Therefore, we can
prune the whole search sub-space for descendants of P for
(r, k)-flock patterns.

On the running time and space of the algorithm FPM,
we have the following lemma.

3.1.2 Rightward horizontal closure

From the view of frequent pattern mining, RFPs in a
trajectory database are a sort of closed patterns, which
have been extensively studied in frequent itemset mining
(FIM) field [13], [17] as well as formal concept analysis
(FCA) field. Many efficient closed pattern mining algo-
rithms use a class of operation, called closure operation,
which enlarge a given, possibly non-closed pattern to ob-
tain its closed version.

For RFPs, we actually have a rightward horizontal clo-

sure operation that extends the interval of a given non
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Algorithm 3 An algorithm for computing the unique
rightward length-maximal flock pattern.  Note that

[| S[X][t]||oc is defined to be oo for ¢ & [1,T].

1: procedure RH_Closure((X, [bo, eo]); S, 7)
2 t < bo;

3 while || S[X][t] ||oc <7 doO

4: t—1t+1;

5 b« bo;e+t—1;

6 return (X, [b, ¢]);

RFPs to obtain a proper RFP.

Definition5 (rightward horizontal closure) Let
P = (X,I = [be]) be any flock pattern in a database
S.  Then, the rightward horizontal closure of P in
S, denoted by RH_Closure(P;S,r), is the unique flock
pattern Ppu,; = (X, I = [b, emaz]) such that emq, € [0,7]
is the maximum value of end position €’ satisfying the
equality

HP/:(Xv[bve,])”oo:HP”oo' (3)

Note that the rightward horizontal closure operation
only change the end position e, but not change the ID
set X or starting time b of the original P at all.

In Algorithm 3, we show the procedure RH_Closure that
computes the rightward horizontal closure of non-RFP P
in O(k() time, where k = supp(P) = |X| = O(n) and
0= len(Ppaz) = O(T).

The following lemmas show the correctness of the right-
ward horizontal closure. First, the key of the correctness is
the following characterization, which can be easily shown
from definition of RFPs.

Lemma3 (characterization) Let P = (X,[b,¢]) be
an (r, k)-flock pattern in S. Then, P is rightward length-
maximal if and only if

[| S[X][t]||oo < 7 for all ¢t € [b, €], and

I1S[X]le + 1 loo > 7,
where we extend the ¢-th time slice || S[X][t] ||cc to be oo
if either ¢ < 1 or ¢t > T holds for convenience.

From the above lemma, we have the correctness below.

Lemma4 The rightward horizontal closure P,,,, of
a possibly non-rightward length-maximal r»-FP P is the
unique longest r-RFP such that the ID sets and the start
time are identical to those of P.

Since len(Pmax) > len(P) always holds for P, we
see that if P satisfies the (r, k)-constraint then so does the
obtained RFP P,,,,. Hence, P4, is the unique longest
(r, k)-RFP version of P that share the ID set and start
time.

3.1.3 Analysis

From a similar argument to [13] based on reverse search
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technique of [3], we have the following time and space
complexities of RFPM.

Theoreml Let S be an input trajectory database S of
n trajectories with length 7. Then, the algorithm RFPM
in Algorithm 2 solves the flock pattern mining problem
for the class RFPM(r, k) of (r, k)-flock patterns in S. It
uses O(mnT) time per pattern and O(m?) words of space,
respectively, where m = supp(X) = |X]| is the support of
the pattern X being enumerated.

We can generalize RFPM for the case of the d-
dimensional space R? for every d > 1 with extra O(d)
factor in time and space by only modifying the procedure
RH_Closure for R<.

3.2 An algorithm for UFPs

In this subsection, we show how to extend the algo-
rithm BasicFPM in the previous subsection to solve the
flock pattern mining problem for the class UFP(r, k)(S)
in poly-enum and poly-space.

From Lemma 3, we already know that any (r, k)-UFP
is also a proper (r, k)-RFP. Conversely, Lemma 5 below
shows that exactly when a given (r, k)-RFP is a proper
(r, k)-UFP.

Lemma5 (FILTERING LEMMA) A rightward length-
maximal (7, k)-flock pattern P = (X,[b,e]) in S is
also unrestricted length-maximal in S if and only if
1SIX] 1] [|oo > 1.

Proof: The proof from the definition of UFPs. [ |

We refer to the condition in the above lemma as the
leftward extension test. Let us denote by UnrestRecFPM
the version of recursive procedure RecFPM in Algorithm 2
that is modified by replacing Line 10

9: output P;
with the following code for leftward extension test:
9: if (|| S[X][b — 1] ||oo < ) then output P;

From Lemma 5, we can show the correctness of the mod-
ified procedure UnrestRecFPM for all (r, k)-UFPs belong-
ing to UFP(r,k)(S) since UnrestRecFPM finds all (r, k)-
RFPs as candidate, tests the discovered RFPs, and dis-
cards all non (r, k)-RFPs by the leftward extension test.

The remaining task is to show that the modified al-
gorithm has the poly-enum and poly-space complexities.
To see this, we estimate an upperbound of the number
of RFPs in terms of that of UFPs. Let us denote by
H#RFP(r,k)(S) and #UFP(r,k)(S) the numbers of all
(r,k)-RFPs and all (r, k)-UFPs in a given database S.

In Fig. 3, we observe that an (r,k)-UFP has a set of
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equivalent (r,k)-RFPs with the same ID set X and end
time e. Generalizing this observation, we have the follow-
ing theorem, where T' = |T|.

Lemma6 For any database S, we have the inequality
H#RFP(r,k)(S) <T - #UFP(r, k)(S). (4)

Proof: From the proof of Lemma 4, every unrestricted
length-maximal (r, k)-flock pattern P in UFP(r,k)(S)
that has length ¢ can have at most ¢ rightward length-
maximal (r, k)-flock patterns with the same ID set X and
the same end point e, including P itself. Therefore, we
have the next lemma. ]

The above lemma says that #UFP(r, k)(S) is not much
larger than #RFP(r,k)(S). Therefore, we have the fol-
lowing theorem for UFPs.

Theorem2 (POLY-DELAY AND POLY-SPACE MINING
FOR UFP) Let S be a trajectory database, r > 0 a max-
width, and k a min-length. Then, there exists some al-
gorithm that finds all unrestricted length-maximal (r, k)-
flock patterns in S in O(mnT?) time per pattern without
duplicates using O(m?) words of space, where m = |X|
is the size of ID set being enumerated, n = |ID|, and
T=|T|.

Proof: From Lemma 6, for finding each (r, k)-UFP as
solution, we test at most T (r, k)-RFP as candidate by us-
ing UnrestRecFPM as subprocedure that requires O(knT)
time per RFP. This completes the proof. [ |

4. Conclusion

This paper study the problem of complete mining of
flock patterns from a large trajectory database. For
the classes of rightward and unrestricted length-maxmal
flock patterns, We presented a poly-delay and poly-space
depth-first mining algorithm.

Our mining algorithm can work with higher dimension
d > 2 due to L-distance. An open question is if it is
still true with other metric such as Lg-distance for any
k=1,2,.... There are known difference between L., and
L. For instance, linear time computation is easy for min-
imum bounding rectangles, while it seems rather compli-
cated for minimum bounding circles [6]. Also, rectangles
are closed under intersection, but the circles not.

From the view of closed pattern mining [1], it will be
an interesting question if fast closed itemset mining tech-
nique, e.g., LCM [13], can be applied to closed flock pat-
terns. Other possiblity is to study the geometric coun-
terpart of the classes of flexible patterns, such as closed

sequence patterns or closed sequential episodes such as
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[2], [15]. Thus, extension of this framework to the flexble
pattern mining will be interesting as in [7].

Massive trajectory data wil be collected on cloud plat-
forms in future. From this view, it is interesting to study
how to efficiently store, search, and mine flock patterns

on trajectory data on such environment.
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