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長さ極大な群れパターンを軌跡集合から効率良く発見するア

ルゴリズム

有村 博紀1 耿 暁亮1 宇野 毅明2

概要：本論文では，(Gudmundsson and van Kreveld, ACM GIS 2006; Benkert, Gudmundsson et al.,

Computational Geometry, 41(111), 2008)によって導入された群れパターン（flock pattern）の軌跡集合

データからの発見問題について考察する．L2 ノルムをもつ 2次元平面上の軌跡集合に対して，最大幅と最

小長さが固定の時に，最大数の軌跡を含む群れパターンを見つける問題は，直径の 2− δを許しても NP困

難である．その一方で，最小軌跡数と最大幅が固定で，長さ最大の群れパターン一つは多項式時間で求ま

ることが示されている．これに対して，本論文では，L∞ ノルムをもつ 2次元平面上の n本の長さ T の軌

跡の集合に対して，最大幅 rかつ最小長さ k以上で，長さ（方向の区間）極大の群れパターンを O(mnT 2)

遅延と O(m2) 領域ですべて列挙する多項式時間遅延かつ多項式領域の列挙アルゴリズムを与える．ここ

に，m = |X| は列挙されるパターンのサイズ（それが含む軌跡数）である．

Efficient Algorithms for Finding All Length-Maximal Flock Patterns
from a Set of Trajectories

Hiroki Arimura1 Xiaoliang Geng1 Takeaki Uno2

Abstract: In this paper, we study the problem of finding a class of spatio-temporal patterns called (m, k)-
flock patterns (Gudmundsson and van Kreveld, Proc. ACM GIS’06; Benkert, Gudmundsson, Hubner, Wolle,
Computational Geometry, 41:11, 2008), which represent a groups of moving objects close each other within
width at most r under L∞-norm in a given time segment of length at least k, in a collection of 2-dimensional
trajectories. For max-width r > 0, min-length k, and a collection S of n trajectories of legnth T , the pro-
posed algorithm finds all length-maximal (m, k) flock patterns in an input collection of trajectory data in
O(pnT 2) delay and O(p2) space, p = |X| is the size of ID set being enumerated. We also present a practical
improvement using geometric indexes.

1. Introduction

1.1 Background

By rapid increase of a massive amount of trajectory

data have been accumulated, the research on trajectory

mining, i.e., efficient methods for extracting interesting
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patterns and rules from collections of trajectory data, has

attracted a great deal of attention for recent years [4], [7].

A trajectory database on the time domain T =

{1, . . . , T} is a set S = { si | i = 1, . . . , n } of trajecto-

ries for n moving objects, where each trajectory is a a se-

quence si = si[1] · · · si[T ] of T points on the 2-dimensional

space R2 and its ID i is drawn from a set of n identifiers

ID = {1, . . . , n}. For instance, GPS-trajectories of wild

animals, walking people with Wifi device, Probe car data

are examples of such trajectory databases [7].
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図 1 Examples of a trajectory database S1 consisting of five

trajectories s1, . . . , s5 with ID set ID = {1, . . . , 5}, and a

flock pattern P1 = (X = {2, 3, 4}, [t3, t5]) with diameter

r = 1.0, length k = 3, and support m = 3, where each line

indicates a trajectory, the figures associated with points

their time, and boxes indicate r×r rectangles forming flock

pattern P1.

For such trajectory databases, Laube, Kreveld, and Im-

feld [10] and Gudmundsson and van Kreveld [8] intro-

duced a class of spatio-tempral patterns, called flock pat-

terns (See Fig. 1). For a positive number r > 0, called

a max-width, and non-negative integers k,m ≥ 0, called

min-len and min-sup, an (r, k,m)-flock pattern in a tra-

jectory database S is a pair P = (X, [b, e]) of a set X

of trajectory ids and a time interval I = [b, e] on T that

represents a set of at least m moving objects that move

together with mutually distance at most r in L∞-norm,

that is, the largest of the x- and y-distances, along a con-

tinuous interval I of length at least k time points. Flock

patterns are useful in detecting a group of highly corre-

lated entities combining spatio-tempral features.

In this paper, we focus on pattern mining approach

that makes complete mining of all patterns in an input

database that satisfy a given set of constraints, as in fre-

quent pattern mining [12], [13], [17]. Particularly, we

study the problem of finding all (r, k)-flock patterns *1

((r, k)-FP for short), thus with max-width and min-len

constraints, from an input database of n trajectories of

length T .

1.2 Main results

1.2.1 Classes of length-maximal flock patterns

Along the above line of research on closed patterns [1],

[13], by extending (r, k)-FPs above, we first introduce the

classes of RFPs and UFPs of closed flock patterns as fol-

*1 Our (r, k,m)-flock patterns use L∞-distance on R2 to define
the diameter ≤ m, while the original (r, k,m)-flock patterns
of Benkert et al. [5] used L2-distance on R2.

lows. Given a maximum width parameter r, it is often

useful to find all (r, k)-flock patterns P = (X, [b, e]) whose

time interval [b, e] are extended leftward or rightward as

long as possible along time line with preserving the diam-

eter r of trajectories, instead of separately discovering all

flock patterns of various lengths above length constraint

≥ k.

Then, we introduce the classes of rightward length-

maximal and unrestricted length-maximal (r, k)-flock pat-

terns, denoted by (r, k)-RFPs and (r, k)-UFPs, respec-

tively, where a RFP can be extended rightward at given

start time b, while an UFP can be extended either the

start time b leftweard or the end time e rightward yield-

ing more flexibility and compression.

Unlike Gudmundsson and van Kreveld’s longest-

duration (r, k,m)-flock patterns [8] for which a search

problem for a pattern is NP-hard, the classes of RFPs and

UFPs allow polynmial time computation of search due to

the local nature of maximality than the global nature of

maximumlity .

1.2.2 Polynomial delay and space algorithms

First of all as a main result, we present a depth-first

search mining algorithm RFPM (Algorithm 2) that finds

all rightward length-maximal (r, k)-flock patterns P , or

(r, k)-RFPs, in a given trajectory database S of n trans-

actions of length T in O(mnT ) delay (time per pattern)

and O(m2) space, where m = |X| is the number of trajec-

tories that the discovered P contains. Actually, BasicFPM

is a polynomial-delay and polynomial space algorithm for

(r, k)-RFPs without using any tabulation to avoid dupli-

cates (Theorem 1). We note that our algorithm works in

the d-dimensional continuous space with large d ≥ 2 by

adding a factor of O(d).

Next, for the class of (r, k)-UFPs (unrestricted length-

maxmal flock patterns), for which extension is possible

for both sides, we give a characterization of UFPs us-

ing a technique, called leftward extension check . Using

this property, we show that a modification of the algo-

rithm BasicFPM finds all (r, k)-UFPs in O(mnT 2) delay

and O(m2) space, where m = |X| is the number of tra-

jectories that the discovered P contains. (Theorem 2).

1.3 Related work

There are two lines of researches on trajectory mining:

trajectory clustering [4], [11] and disk-based trajectory

pattern mining [5], [7], [10].

The study of flock pattern mining started in the latter

context [5], [9], [10]. Gudmundsson and van Kreveld [8]
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図 2 Examples of a trajectory database S1 on ID = {1, . . . , 5}
and T = [1, 7] and a (1.0, 2, 2)-flock pattern P1 =

(X1, I1) = ({2, 3, 4}, [3, 5]) with diameter ||P1 ||∞S1 ≤ 1.0,

length len(P1) = 3, and support supp(P1) = 3. Here, each

line indicates a trajectory and the numbers attached to

points are time stamps.

showed that the problem of finding at least one length-

maximum (r, k,m)-flock pattern is NP-hard, while they

gave an efficient 2-approximation algorithm, although it

does not make complete enumeration of all flock patterns.

Benkert et al. [5] proposed an (2+ ε) approximation algo-

rithm for fixed-length flock patterns, whose running time

is polynomial in m and 1
ε , but exponential in the length

k of a pattern, thus not polynomial delay.

Most closely related work is the work by Vieira,

Bakakov, and Tsotras [14], who took pattern mining

aproach at the first time. They presented an algorithm

that finds all (r, k,m)-flock patterns by systematically

combining discovered clusters by depth-first search using

the idea of intersection. Unfortunately, their algorithm is

neither polynomial delay nor polynomial space from the-

oretical point of view.

1.4 Organization

Sec.2 gives definitions, Sec.3 presents our algorithms,

and Sec.?? shows experimental results. Finally, Sec.4 con-

cludes.

2. Preliminaries

2.1 Basic definitions

Let R and N be the set of all real numbers and all non-

negative integers, respectively. For integers a, b (a ≤ b),

we denote by [a, b] = {a, a+1, . . . , b} the discrete interval

between a and b. If a ≤ b are real numbers, then [a, b]

denotes a continuous interval in R as usual. For a set A,

|A| denotes the cardinality of A, and A∗ denotes the set

of all possibly empty, finite sequences over A.

2.2 Trajectory Database

Let n and T ≥ 0 are pre-determined nonnegative inte-

gers, which indicate the number of moving objects and the

maximum value for discrete time stamps, respectively. Let

R2 be the 2-dimensional continuous space, or the plane.

A trajectory database on the space domain R2 and the

time domain T = {1, . . . , T} is a finite set

S = { si | i = 1, . . . , n } ⊆ (R2)T (1)

of the trajectories for n moving objects o1, . . . , on, where

for every i = 1, . . . , n,

• the index i, called the trajectory ID , is drawn from a

set of n identifiers ID = {1, . . . , n}, and
• the i-th trajectory si is a sequence

si = si[1] · · · si[T ] ∈ (R2)T

of T points on the 2-dimensional space R2 such that

its t-th point is si[t] = (xit, yit) ∈ R2.

Example1 In Fig. 2, we show an example of a tra-

jectory database S, which consists of five trajectories of

length T = 7.

For example, GPS-trajectories of wild animals, walking

people with Wifi device, Probe car data (or floating car

data) are instances of such trajectory databases.

2.3 The class of flock patterns

For such trajectory databases, we introduce the class

FP of spatio-tempral patterns, called flock patterns,

based on L∞-norm as follows *2. Formally, the class of

flock patterns is defined as follows.

Definition1 (FP) A flock pattern on T is a pair

P = (X, [b, e]), where

• X ⊆ ID is a finite set of ids, called the ID set of P , and

• I = [b, e] is a discrete interval in [0, T ] with b ≤ e ≤ T ,

where b and e are called the start and end time of P .

We define the support, length, and width of a flock pat-

tern as follows.

• The support of P , denoted by supp(P), is defined by

the number of trajectory (ID) contained in X, that

is, supp(P ) = |X|.
• The length of P , denoted by len(P ), is the width of

the interval I, that is, len(P ) = e− b+ 1.

Clearly, we have 0 ≤ supp(P ) ≤ n and 0 ≤ len(P ) ≤ T .

Example2 In Fig. 2, we show an example of a flock

pattern P1 = (X1, I1), where the ID set is X1 = {2, 3, 4}
and the interval is I1 = [3, 5].

*2 The original version of flock patterns are defined based on
L2-norm in [8], [10].
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To define the width, we require some definitions be-

low. For a point p = (x, y) on 2-dimensional plane R2,

the x- and y-coordinates of p are denoted by by p.x = x

and p.y = y, respectively. For two points p and p′

on R2, we denote the L∞-distance between p and p′ by

L∞(p, p′) = max{|p.x − p′.x|, |p.y − p′.y|}. By definition,

L∞(p, p′) is nonnegative, and coincides zero if and only if

p = p′.

The diameter of a set A = {p1, . . . , pn} of points, de-

noted by ||A ||∞, is the maximum L∞-distance between

any two points in A, defined by

||A ||∞ = max
p,p′∈A

L∞(p, p′), (2)

The width ||A ||∞ of a set A is always nonnegative, and

equals zero if and only if A consists of a single point. We

can show that ||A ||∞ is linear time computable in n = |A|
on R2. For any d ≥ 2, ||A ||∞ can be computed O(dn)

time in Rd, which is still linear in n for fixed d.

In an input database S, the t-th time slice, denoted by

S[X][t], is the set of all points that appear in the trajec-

tories of X with time stamp t.

• The width ||P ||S∞ of a flock pattern P = (X, I) =

(X, [b, e]) is defined by the maximum diameter of

the t-th time slice of the trajectories in X over all

t ∈ [b, e].

Actually, we have the next lemma.

Lemma1 The width of P can be computed by Algo-

rithm 1 in O(mℓ) time, wherem = supp(X) is the support

of P and ℓ = len(P ) is the length of P .

Algorithm 1 Computing the width ||P ||∞S
of a flock

pattern P = (X, [b, e]) in a database S = { si | i =

1, . . . , n }
1: width← 0;

2: for t← b, b+ 1, . . . , e do

3: St ← { si[t] | i ∈ X }; // the t-th slice

4: width← max{width, ||St||∞};
5: return width;

Let r > 0 be a positive number, and k,m ≥ 0 are non-

negative integers, respectively, called a maximum width

(max-width), a minimum length (min-len), and a mini-

mum support (min-sup) parameters. Then, we define:

• an r-flock pattern is any flock pattern P such that

||P ||∞ ≤ r,

Consider the class of r-flock patterns in a trajectory

database S.

• An (r, k)-flock pattern is any r-flock pattern P with

len(P ) ≥ k.

Example3 The pattern P1 of Fig. 2 in the last ex-

ample has diameter ||P1 ||∞S1 ≤ 1.0, length len(P1) = 3,

and support supp(P1) = 3. Thus, it is a (1.0, 2, 3)-flock

pattern for r = 1.0, k = 2, and m = 3.

In this paper, we consider all (r, k)-flock patterns in a

given trajectory database.

2.4 Rightward length-maximal patterns

For a given max-width parameter r ≥ 0, it is often use-

ful to find only (r, k)-flock patterns P = (X, [b, e]) whose

time interval [b, e] are extended rightward along time line

as long as possible preserving the diameter r (See [8]).

This idea of length-maximal mining is expected to reduce

the number of solutions and running time than just find-

ing all (r, k)-patterns.

A flock pattern P = (X, [b, e]) is said to be a right-

ward (rightward resp.) length-maximal flock pattern in S

if its interval cannot be extended rightward (leftward or

rightward resp.) without changing the width of P in S.

Formally, it is defined as follows.

Definition2 (RFP) A flock pattern P = (X, [b, e]) in

S is a rightward length-maximal flock pattern (RFP, for

short) if there is no other flock pattern P ′ = (X ′, [b′, e′])

in S such that (i) X = X ′, and (ii) b = b′ and e < e′.

Definition3 (UFP) A flock pattern P = (X, [b, e]) in

S is a unrestricted length-maximal flock pattern (UFP, for

short) if there is no other flock pattern P ′ = (X ′, [b′, e′])

in S such that (i) X = X ′, and (ii) P ′ has a strictly larger

interval than P , that is, [b, e] ⊂ [b′, e′].

For a set Γ of constraint parameters drawn from k,m,

and r, we denote by FP(Γ), RFP(Γ), and UFP(Γ) the

classes of Γ-flock patterns, rightward length-maximal Γ-

flock patterns, and unrestricted length-maximal Γ-flock

patterns. Then, we have the inclusion UFP(r, k) ⊆
RFP(r, k) ⊆ FP(r, k) for any r and k.

Example4 (rightward and unrestricted

length-maximal flock patterns) Fig. 3 illustrates

the notion of rightward and unrestricted length-maximal

patterns in database S = {s1, . . . , s5} on T = [1, 15]. In

the figure, the flock pattern P1 = (X, [b1, e1]) starting at

b1 = 3 is an RFP, while P3 = (X, [b3, e3]) is an UFP On

the contrary, the flock pattern P2 is neither an RFP or an

UFP. We also observe that for the UFP P3 = (X, [b3, e3])

of length ℓ = 7, there exist ℓ− 1 = 6 RFPs with the same

end point e3 but different starts points 9 to 14. 2

From the second observation in the above example, we

can say that UFPs and RFps compactly represent a set
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図 3 Concepts of rightward and unrestricted length-maximal

flock patterns as well as non length-maximal flock pat-

terns on a time line, where each line indicates a trajectory

and each rectangle a flock pattern.

of FPs in S.

Example5 In the example of Fig. 2, the flock pattern

P1 = (X1, [3, 5]) of length three is an RFP in S1, while

P2 = (X1, [3, 4]) and P3 = (X1, [3]) are non-rightward

length-maximal FPs, where X1 = {2, 3, 4}. On the other

hand, P1 has RFPs P4 = (X1, [4, 5]) and P5 = (X1, [5]).

2.5 The data mining problems

For any class name C ∈ {FP,RFP, . . .} and any pa-

rameter values r, k ≥ 0, we denote by C(r, k) the class

of all (r, k)-flock patterns within the class C. Similarly,

we define the classes C(r), and C(r, k,m) as well. From

now on, we consider the classes FP(r, k), RFP(r, k), and

UFP(r, k).

We state our data mining problem as follows.

Definition4 (flock pattern mining problem

for pattern class C) Let C be a class of flock pat-

terns. An input is a tuple (S, r, k) of an input trajectory

database S, and parameter values r and k ≥ 0. The task

is to find all flock patterns P in S within class C without

repetition that have width at most r and length at least k.

Similarly, we can consider the flock pattern mining

problem with paramters (r, k,m).

We evaluate the performance of a flock pattern mining

algorithm A in terms of enumeration algorithms [3]. Let

N and M be the input size and the number of patterns

as solutions. A pattern mining algorithm A is said to

have polynomial delay (poly-delay) if the delay , which is

the maximum computation time between two consecutive

outputs, is bounded by a polynomial p(N) in N . A is of

polynomial space (poly-space) if the maximum size of its

working space, in addition to that of output stream O, is

bounded by a polynomial p(N).

We give the model of computation in this paper as fol-

lows. Let N and M be the size of input S and the num-

Algorithm 2 An algorithm RFPM for finding all length-

maximal (r, k)-flock patterns appearing in a given trajec-

tory database S with ID for maximum width r and min-

imum length k.

1: procedure RFPM(ID , S, r, k)

2: for b0 ← 1, . . . , T do // Each start time in T
3: for i0 ← 1, . . . , n do // Each id in ID

4: P0 = ({i0}, [b0, ∗]);
5: RecRFPM(P0, ID , S, r, k);

6: procedure RecRFPM(P = (X, [b, ∗]), ID , S, r, k)

7: P = (X, [b, e])← RH Closure((X, [b, ∗]);S, r);
8: if len(P ) < k then

9: return ; // P is not an (r, k)-flock pattern

10: output P ;

11: ID1 ← ID ;

12: while ID1 ̸= ∅ do
13: i = deletemin(ID1);

14: P1 = (X ∪ {i}, [b, ∗]);
15: RecRFPM(P1, ID1, S, r, k);

16: end while

ber of outputs in F on S, and p(N) be a polynomial. In

our problem, the input size is the total size N = nT of

an input trajectory database S. An enumeration algo-

rithm A is of polynomial enumeration time (poly-enum)

if the amortized time for each solution x ∈ S is bounded

by a polynomial p(N) in N . A is of polynomial delay

(poly-delay) or exact polynomial enumeration time if the

delay , which is the maximum computation time between

two consecutive outputs, is bounded by a polynomial p(N)

in N . A is of polynomial space (poly-space) if the maxi-

mum size of its working space, without the size of output

stream O, is bounded by a polynomial p(N).

3. Algorithms

In this section, we present our pattern mining algo-

rithms for FPs and RFPs. We also give a speed-up tech-

nique using geometric indexes to prune redundant candi-

dates.

3.1 A polynomial delay and space algorithm for

RFPs

In Algorithm 2, we present the proposed algorithm

RFPM (rightward flock pattern miner) for RFPs (right-

ward length-maximal flock patterns), the class of right-

ward length-maximal flock patterns, with its subproce-

dure RecRFPM.

3.1.1 Outline of the algorithm

We describe the computation done by the algorithm

RFPM. The overall structure of RFPM is almost identi-

c⃝ 2013 Information Processing Society of Japan 5

Vol.2013-AL-144 No.3
2013/5/17



情報処理学会研究報告

IPSJ SIG Technical Report

cal to the basic algorithm FPM. Given a database S, the

main algorithm RFPM invokes the recusive subprocedure

RecFPM with an initial pattern P0 as before.

Only the difference in the top level is that RFPM it-

erates only O(T ) iteration here for the start position b0

rather than O(T 2) iteration in FPM using an initial pat-

tern P0 = ({i0}, b0, ∗) with missing end position e0 = ∗,
called a partial pattern here.

The computation of the recursive subprocedure

RecRFPM proceeds in the following steps.

• Step 1: Receiving a partial RFP P∗ = (X, b, ∗) as ar-
guments, the recursive procedure RecFPM computes

the rightward horizontal closure P = (X, [b, e]) from

P∗ by the procedure RH Closure with max-width r.

• Step 2: Next, if the obtained RFP P satisfies (r, k)-

constraints, then output it. Otherwise, we sefely

prune all descendants as before.

• Step 3: Finally, RecFPM recursively calls its copy

with an extended pattern P1 = (X ∪ {i}, [b, ∗]). To

avoid duplicated generation of patterns, the id i is

removed from the universe ID .

The pruning of all descendants in Step 2 above is justi-

fied by the following lemma, which says the class of (r, k)-

patterns has a kind of monotonicity w.r.t. set inclusion of

their ID sets.

Lemma2 (monotonicity) Let Pi = (Xi, Ii) are two

flock patterns, where i = 1, 2. If P2 is an (r, k)-flock pat-

tern in S and if X1 ⊆ X2 and I1 ⊆ I2 hold, then P1 is

also an (r, k)-flock pattern in S.

From this lemma, once a candidate pattern P = (X, I)

does not satisfy the width and length constrants, any de-

scendant of P obtained by adding new trajectory (ids) to

X no longer satisfies the constraints. Therefore, we can

prune the whole search sub-space for descendants of P for

(r, k)-flock patterns.

On the running time and space of the algorithm FPM,

we have the following lemma.

3.1.2 Rightward horizontal closure

From the view of frequent pattern mining, RFPs in a

trajectory database are a sort of closed patterns, which

have been extensively studied in frequent itemset mining

(FIM) field [13], [17] as well as formal concept analysis

(FCA) field. Many efficient closed pattern mining algo-

rithms use a class of operation, called closure operation,

which enlarge a given, possibly non-closed pattern to ob-

tain its closed version.

For RFPs, we actually have a rightward horizontal clo-

sure operation that extends the interval of a given non

Algorithm 3 An algorithm for computing the unique

rightward length-maximal flock pattern. Note that

||S[X][t] ||∞ is defined to be ∞ for t ̸∈ [1, T ].

1: procedure RH Closure((X, [b0, e0]);S, r)

2: t← b0;

3: while ||S[X][t] ||∞ ≤ r do

4: t← t+ 1;

5: b← b0; e← t− 1;

6: return (X, [b, e]);

RFPs to obtain a proper RFP.

Definition5 (rightward horizontal closure) Let

P = (X, I = [b, e]) be any flock pattern in a database

S. Then, the rightward horizontal closure of P in

S, denoted by RH Closure(P ;S, r), is the unique flock

pattern Pmax = (X, I = [b, emax]) such that emax ∈ [0, T ]

is the maximum value of end position e′ satisfying the

equality

||P ′ = (X, [b, e′]) ||∞ = ||P ||∞. (3)

Note that the rightward horizontal closure operation

only change the end position e, but not change the ID

set X or starting time b of the original P at all.

In Algorithm 3, we show the procedure RH Closure that

computes the rightward horizontal closure of non-RFP P

in O(kℓ) time, where k = supp(P ) = |X| = O(n) and

ℓ = len(Pmax) = O(T ).

The following lemmas show the correctness of the right-

ward horizontal closure. First, the key of the correctness is

the following characterization, which can be easily shown

from definition of RFPs.

Lemma3 (characterization) Let P = (X, [b, e]) be

an (r, k)-flock pattern in S. Then, P is rightward length-

maximal if and only if

• ||S[X][t] ||∞ ≤ r for all t ∈ [b, e], and

• ||S[X][e+ 1] ||∞ > r,

where we extend the t-th time slice ||S[X][t] ||∞ to be ∞
if either t < 1 or t > T holds for convenience.

From the above lemma, we have the correctness below.

Lemma4 The rightward horizontal closure Pmax of

a possibly non-rightward length-maximal r-FP P is the

unique longest r-RFP such that the ID sets and the start

time are identical to those of P .

Since len(Pmax) ≥ len(P ) always holds for Pmax, we

see that if P satisfies the (r, k)-constraint then so does the

obtained RFP Pmax. Hence, Pmax is the unique longest

(r, k)-RFP version of P that share the ID set and start

time.

3.1.3 Analysis

From a similar argument to [13] based on reverse search
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technique of [3], we have the following time and space

complexities of RFPM.

Theorem1 Let S be an input trajectory database S of

n trajectories with length T . Then, the algorithm RFPM

in Algorithm 2 solves the flock pattern mining problem

for the class RFPM(r, k) of (r, k)-flock patterns in S. It

uses O(mnT ) time per pattern and O(m2) words of space,

respectively, where m = supp(X) = |X| is the support of

the pattern X being enumerated.

We can generalize RFPM for the case of the d-

dimensional space Rd for every d ≥ 1 with extra O(d)

factor in time and space by only modifying the procedure

RH Closure for Rd.

3.2 An algorithm for UFPs

In this subsection, we show how to extend the algo-

rithm BasicFPM in the previous subsection to solve the

flock pattern mining problem for the class UFP(r, k)(S)

in poly-enum and poly-space.

From Lemma 3, we already know that any (r, k)-UFP

is also a proper (r, k)-RFP. Conversely, Lemma 5 below

shows that exactly when a given (r, k)-RFP is a proper

(r, k)-UFP.

Lemma5 (filtering lemma) A rightward length-

maximal (r, k)-flock pattern P = (X, [b, e]) in S is

also unrestricted length-maximal in S if and only if

||S[X][b− 1] ||∞ > r.

Proof: The proof from the definition of UFPs.

We refer to the condition in the above lemma as the

leftward extension test . Let us denote by UnrestRecFPM

the version of recursive procedure RecFPM in Algorithm 2

that is modified by replacing Line 10

9: output P ;

with the following code for leftward extension test:

9: if (||S[X][b− 1] ||∞ ≤ r) then output P ;

From Lemma 5, we can show the correctness of the mod-

ified procedure UnrestRecFPM for all (r, k)-UFPs belong-

ing to UFP(r, k)(S) since UnrestRecFPM finds all (r, k)-

RFPs as candidate, tests the discovered RFPs, and dis-

cards all non (r, k)-RFPs by the leftward extension test.

The remaining task is to show that the modified al-

gorithm has the poly-enum and poly-space complexities.

To see this, we estimate an upperbound of the number

of RFPs in terms of that of UFPs. Let us denote by

#RFP(r, k)(S) and #UFP(r, k)(S) the numbers of all

(r, k)-RFPs and all (r, k)-UFPs in a given database S.

In Fig. 3, we observe that an (r, k)-UFP has a set of

equivalent (r, k)-RFPs with the same ID set X and end

time e. Generalizing this observation, we have the follow-

ing theorem, where T = |T|.
Lemma6 For any database S, we have the inequality

#RFP(r, k)(S) ≤ T ·#UFP(r, k)(S). (4)

Proof: From the proof of Lemma 4, every unrestricted

length-maximal (r, k)-flock pattern P in UFP(r, k)(S)

that has length ℓ can have at most ℓ rightward length-

maximal (r, k)-flock patterns with the same ID set X and

the same end point e, including P itself. Therefore, we

have the next lemma.

The above lemma says that #UFP(r, k)(S) is not much

larger than #RFP(r, k)(S). Therefore, we have the fol-

lowing theorem for UFPs.

Theorem2 (poly-delay and poly-space mining

for UFP) Let S be a trajectory database, r > 0 a max-

width, and k a min-length. Then, there exists some al-

gorithm that finds all unrestricted length-maximal (r, k)-

flock patterns in S in O(mnT 2) time per pattern without

duplicates using O(m2) words of space, where m = |X|
is the size of ID set being enumerated, n = |ID |, and

T = |T|.
Proof: From Lemma 6, for finding each (r, k)-UFP as

solution, we test at most T (r, k)-RFP as candidate by us-

ing UnrestRecFPM as subprocedure that requires O(knT )

time per RFP. This completes the proof.

4. Conclusion

This paper study the problem of complete mining of

flock patterns from a large trajectory database. For

the classes of rightward and unrestricted length-maxmal

flock patterns, We presented a poly-delay and poly-space

depth-first mining algorithm.

Our mining algorithm can work with higher dimension

d ≥ 2 due to L∞-distance. An open question is if it is

still true with other metric such as Lk-distance for any

k = 1, 2, . . .. There are known difference between L∞ and

L2. For instance, linear time computation is easy for min-

imum bounding rectangles, while it seems rather compli-

cated for minimum bounding circles [6]. Also, rectangles

are closed under intersection, but the circles not.

From the view of closed pattern mining [1], it will be

an interesting question if fast closed itemset mining tech-

nique, e.g., LCM [13], can be applied to closed flock pat-

terns. Other possiblity is to study the geometric coun-

terpart of the classes of flexible patterns, such as closed

sequence patterns or closed sequential episodes such as
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[2], [15]. Thus, extension of this framework to the flexble

pattern mining will be interesting as in [7].

Massive trajectory data wil be collected on cloud plat-

forms in future. From this view, it is interesting to study

how to efficiently store, search, and mine flock patterns

on trajectory data on such environment.
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