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Abstract: The best known method for optimally computing parameters from noisy data based on geometric con-
straints is maximum likelihood (ML). This paper reinvestigates “hyperaccurate correction” for further improving the
accuracy of ML. In the past, only the case of a single scalar constraint was studied. In this paper, we extend it to
multiple constraints given in the form of vector equations. By detailed error analysis, we illuminate the existence of
a term that has been ignored in the past. Doing simulation experiments of ellipse fitting, fundamental matrix, and
homography computation, we show that the new term does not effectively affect the final solution. However, we show
that our hyperaccurate correction is even superior to hyper-renormalization, the latest method regarded as the best
fitting method, but that the iterations of ML computation do not necessarily converge in the presence of large noise.
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1. Introduction

One of the most fundamental tasks of computer vision is to
compute the 2-D and 3-D shapes of objects based on geometric

constraints, by which we mean properties that can be described
by relatively simple equations such as the objects being lines or
planes, their being parallel or orthogonal, and the camera imag-
ing geometry being perspective projection. We call the inference
based on such geometric constraints geometric estimation. Tech-
niques for optimal geometric estimation in the presence of noise
has been extensively studied since 1980s by many researchers in-
cluding the authors [3], [6].

Currently, it widely is recognized that the highest accuracy is
achieved by methods based on maximum likelihood (ML) and
those based on renormalization [9]. For ML, we minimize the
Mahalanobis distance, a special case of which is the reprojection

error [3]. One of the problem of ML is that it is not a convex

problem [1], for which a global optimum is easily obtained. Kahl
and Hartley [4] showed that if the L2-norm used in ML optimiza-
tion is replaced by the L∞-norm, the problem can be converted to
a quasiconvex problem, for which a global optimum can be ob-
tained by iteratively using linear programming (LP) and second
order conic programming (SCOP) and that the accuracy is com-
parable to ML, although ML is theoretically desirable if it can be
computed. In this paper, we concentrate on problem for which the
ML solution can be obtained. Kanatani [7], [8] showed that the
accuracy of ML is further improved by analyzing the statistical
bias of the solution and subtracting it, which he called hyperac-
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curate correction.
On the other hand, renormalization [5], [6] does not minimize

any cost function; it directly estimates a biasless solution. Re-
cently, Kanatani et al. [10] did higher order error analysis and de-
rived an improved version, called hyper-renormalization. They
showed that it can compute a solution without bias up to second
order noise terms and demonstrated by experiments that it is supe-
rior to ML [10]. According to comparative experiments, it is ob-
served that ML with hyperaccurate correction slightly surpasses
hyper-renormalization. However, the iterations for ML computa-
tion, such as the FNS of Chojnacki et al. [2], do not necessarily
converge in the presence of large noise. Hyper-renormalization,
on the other hand, is very robust to noise and converges af-
ter a few iterations, because it is an iterative improvement of
HyperLS [13], [14], [22], an algebraic method with very high
accuracy. Thus, ML with hyperaccurate correction and hyper-
renormalization both have strength and weakness, as reviewed by
Kanatani [9].

The bias of ML has also been studied in the domain of tra-
ditional statistical estimation, where observations are explicitly
expressed in terms of noise (such expressions are called the sta-

tistical model) and the estimation performance is evaluated by
asymptotic analysis in the limit N→∞ of the number N of obser-
vations. Okatani and Deguchi [19] adopted this approach to com-
puter vision problems by introducing auxiliary variables, reduc-
ing the problem to the form of nonlinear regression, and employ-
ing semiparametric modeling. They also attempted to remove
bias by analyzing the curvature of a hypersurface defined by the
statistical model [20] and using a bias removal scheme based on
projected scores [21]. The main difference of the geometric esti-
mation we consider here from traditional statistical estimation is
that the constraints are treated as implicit functions and estima-
tion performance is evaluated in the perturbation limit σ→ 0 of
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(a) (b) (c)

Fig. 1 (a) Fitting an ellipse to a point sequence. (b) Computing the fundamental matrix from correspond-
ing points between two images. (c) Computing a homography between two images.

the noise level σ [8].
The purpose of this paper is to reexamine the hyperaccurate

correction of ML, for which only the case of a single constraint
was analyzed in the past [7], [8]. Here, we extend it to multi-
ple constraints given as a vector equation. Doing a detailed error
analysis, we point out the existence of a term that has been ig-
nored in the past. We also do numerical experiments to see how
that term affects the final solution.

In Section 2, we give a mathematical formulation of our ge-
ometric estimation. We introduce our noise model in Section 3,
and describe the ML optimization procedure in Section 4. We
do error analysis of ML in the multiple constraint case in Sec-
tion 5 and explicitly evaluate the bias of the resulting solution in
Section 6. Our extended hyperaccurate correction scheme is de-
scribed in Section 7. In Section 8, we do numerical experiments
to compare the accuracy of hyperaccurate correction with existing
methods including hyper-renormalization. We also examine the
effect of the newly introduced term. In Section 9, we conclude.

2. Geometric Estimation

The geometric estimation problem we consider here is defined
as follows. Suppose we observe N noisy observations x1, ..., xN ,
which are n-D vectors. We assume that their noiseless values x̄1,
..., x̄N should satisfy L equations or “constraints”

F(k)(x; θ) = 0, k = 1, ..., L, (1)

where θ is an unknown parameter vector that specifies the
2-D/3-D shapes of the objects we are viewing or their 2-D/3-D
motions. The function F(k)(x; θ) in Eq. (1) has generally a non-
linear form, but in many practical applications it is linear in un-
known parameters or can be reparameterized so that it is linear in
them. Then, Eq. (1) can be written in the form

(ξ(k)(x), θ) = 0, k = 1, ..., L, (2)

where and hereafter we denote the inner product of vectors a and
b by (a, b). In Eq. (2), ξ(k)(x) is some nonlinear mapping of x
from Rm to Rn, where m and n are the dimensions of the data
xα and the parameter θ, respectively: the ith component ξ(k)

i (x)
of ξ(k)(x) are those terms of Eq. (1) that are multiplied by the ith
component θi of θ, and those terms that do not involve θ are re-
garded as multiplied by a constant, which we also regard as one
component of θ (see the examples below). We further assume that
the L vectors ξ(k)(x) need not be linearly independent. We call the
number r of independent ones the rank of the constraint. Since
the vector θ in Eq. (2) has scale indeterminacy, we normalize it to
unit norm: ‖θ‖ = 1.

Example 1 (Ellipse fitting). Given a point sequence (xα, yα), α =

1, ..., N, we wish to fit an ellipse of the form

Ax2 + 2Bxy +Cy2 + 2 f0(Dx + Ey) + f 2
0 F = 0. (3)

(Fig. 1 (a)). If we let

ξ=(x2, 2xy, y2, 2 f0x, 2 f0y, f 2
0 )�,

θ=(A, B,C,D, E, F)�, (4)

the ellipse equation Eq. (3) has the form of Eq. (2) with L = 1.
Here, f0 is a scale constant to stabilize finite length numerical
computation so that the components of the vector ξ have the same
order of magnitude. We choose it to be of an approximate mag-
nitude of the data xα and yα.

Example 2 (Fundamental matrix computation). Correspond-
ing points (x, y) and (x′, y′) in two images of the same scene taken
from different positions satisfy the epipolar equation [3]

(

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x

y

f0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , F
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′

y′

f0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠) = 0, (5)

where F is a matrix of rank 2 called the fundamental matrix, from
which we can compute the camera positions and the 3-D structure
of the scene (Fig. 1 (b)). As in the case of ellipse fitting, f0 is a
scale constant to stabilize finite length computation. If we let

ξ=(xx′, xy′, f0x, yx′, yy′, f0y, f0x′, f0y
′, f 2

0 )�,

θ=(F11, F12, F13, F21, F22, F23, F31, F32, F33)�, (6)

the eipolar equation Eq. (5) has the form of Eq. (2) with L = 1.

Example 3 (Homography computation). Two images of a pla-
nar surface or infinitely far away scene (Fig. 1 (c)) are related by
a homography of the form

x′= f0
h11x + h12y + h13 f0
h31x + h32y + h33 f0

,

y′= f0
h21x + h22y + h23 f0
h31x + h32y + h33 f0

, (7)

where f0 is a scale constant of the order of the data. In matrix
form, Eq. (7) is equivalently rewritten as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′

y′

f0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

y

f0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (8)

where � denotes equality up to a nonzero multiplier. This equa-
tion means that the vectors on both sides are parallel to each other,
so we can alternatively write this as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′

y′

f0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

y

f0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (9)

c© 2013 Information Processing Society of Japan 20



IPSJ Transactions on Computer Vision and Applications Vol.5 19–29 (Apr. 2013)

The three components of this vector equation have the form of
Eq. (2) with L = 3 as follows [11]:

(ξ(1), θ) = 0, (ξ(2), θ) = 0, (ξ(3), θ) = 0. (10)

Here, we define

θ = (h11 h12 h13 h21 h22 h23 h31 h32 h33)�,

ξ(1) = (0, 0, 0,− f0x,− f0y,− f 2
0 , xy

′, yy′, f0y
′)�,

ξ(2) = ( f0x, f0y, f 2
0 , 0, 0, 0,−xx′,−yx′,− f0x′)�,

ξ(3) = (−xy′,−yy′,− f0y
′, xx′, yx′, f0x′, 0, 0, 0)�. (11)

The three components of Eq. (9) have the form of Eq. (2) with L

= 3. Note that ξ(1), ξ(2), and ξ(3) are linearly dependent; only two
of them are independent, so the rank is r = 2.

3. Noise Modeling

We regard each observation xα as perturbed from its true value
x̄α by independent Gaussian noise Δxα of mean 0 and covariance
matrix σ2V0[xα], where σ is an unknown constant, which we
call the noise level, that describes the magnitude of noise, while
V0[xα] is a matrix, which we call the normalized covariance ma-

trix, that specifies the orientation dependence of the noise distri-
bution. We assume that the normalized covariance matrix V0[xα]
is known. The separation of V[xα] into σ2 and V0[xα] is merely
a matter of convenience; there is no fixed rule. This convention
is motivated by the fact that estimation of the absolute magni-
tude of data uncertainty is very difficult in practice, while optimal
estimation can be done only from the knowledge of V0[xα].

If the noise distribution is homogeneous, i.e., the same for all
xα, and isotropic, i.e., the same for all directions, we can let
V0[xα] = I (the identity). It has been observed that for feature
point detection in 2-D images, it is sufficient to assume homo-
geneous and isotopic noise with V0[xα] = I for most applica-
tions [18], while accurate estimation of V0[xα] is crucial for 3-D
data [12] because 3-D data are obtained by 3-D sensors, such as
stereo vision and laser sensing, which have strong orientation de-
pendence with different accuracy in the depth direction and the
directions orthogonal to it.

Let us write ξ(k)(xα) simply as ξ(k)
α . It can be expanded in the

form

ξ(k)
α = ξ̄

(k)
α + Δ1ξ

(k)
α + Δ2ξ

(k)
α + · · ·, (12)

where and hereafter the bar denotes the noiseless value and Δm

denotes mth order terms in the noise level σ. The first order noise
term Δ1ξ

(k)
α is expressed in terms of the original noise term Δxα

in xα and the Jacobian matrices of the mapping ξ(k)(x) in the fol-
lowing form:

Δ1ξ
(k)
α = T(k)

α Δxα, T(k)
α ≡

∂ξ(k)(x)
∂x

∣∣∣∣∣∣
x=x̄α

. (13)

We define the covariance matrix V (kl)[ξα] between ξ(k)
α and ξ(l)

α by

V (kl)[ξα] = E[Δξ(k)
α Δξ

(l)�
α ] = V (kl)

0 [ξα], (14)

where E[ · ] denotes the expectation over data uncertainty. The
following relationship holds:

V (kl)[ξα] = T(k)
α V[xα]T(l)�

α . (15)

Example 4 (Ellipse fitting). The first order noise term Δ1ξα is

Δ1ξα = Tα

⎛⎜⎜⎜⎜⎝ Δxα
Δyα

⎞⎟⎟⎟⎟⎠ ,
Tα = 2

⎛⎜⎜⎜⎜⎝ x̄α ȳα 0 f0 0 0
0 x̄α ȳα 0 f0 0

⎞⎟⎟⎟⎟⎠
�
, (16)

and the second order noise term Δ2ξα is

Δ2ξα = (Δx2
α, 2ΔxαΔyα,Δy

2
α, 0, 0, 0)�. (17)

Example 5 (Fundamental matrix computation). The first order
noise term Δ1ξα is

Δ1ξα = Tα(Δxα,Δyα,Δx′α,Δy
′
α)
�,

Tα =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x̄′α ȳ′α f0 0 0 0 0 0 0
0 0 0 x̄′α ȳ′α f0 0 0 0
x̄α 0 0 ȳα 0 0 1 0 0
0 x̄α 0 0 ȳα 0 0 f0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

, (18)

and the second order noise term Δ2ξα is

Δ2ξα=(ΔxαΔx′α,ΔxαΔy
′
α, 0,ΔyαΔx′α,ΔyαΔy

′
α,

0, 0, 0, 0)�. (19)

Example 6 (Homography computation). The first order noise
term Δ1ξ

(k)
α is

Δ1ξ
(k)
α = T(k)

α (Δxα,Δyα,Δx′α,Δy
′
α)
�,

T(1)
α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 − f0 0 0 ȳ′α 0 0
0 0 0 0 − f0 0 0 ȳ′α 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x̄α ȳα f0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

,

T(2)
α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
f0 0 0 0 0 0 −x̄′α 0 0
0 f0 0 0 0 0 0 −x̄′α 0
0 0 0 0 0 0 −x̄α −ȳα − f0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

,

T(3)
α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−ȳ′α 0 0 x̄′α 0 0 0 0 0

0 −ȳ′α 0 0 x̄′α 0 0 0 0
0 0 0 x̄α ȳα f0 0 0 0
−x̄α −ȳα − f0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

, (20)

and the second order noise term Δ2ξα is

Δ2ξ
(1)
α =(0, 0, 0, 0, 0, 0,ΔxαΔy

′
α,ΔyαΔy

′
α, 0)�,

Δ2ξ
(2)
α =(0, 0, 0, 0, 0, 0,−Δx′αΔxα,−Δx′αΔyα, 0)�,

Δ2ξ
(3)
α =(−Δy′αΔxα,−Δy′αΔyα, 0,Δx′αΔxα,

Δx′αΔyα, 0, 0, 0, 0)�. (21)

The Jacobian matrices T(k)
α contain the true values of the ob-

servations, which are replaced by observed values. It has been
confirmed by many experiments that this replacement does not
affect the final results. Here, the covariance matrices among ξ(k)

α

are defined in terms of the first order derivatives of ξ(k)(xα) in
terms of the Jacobian matrices T(k)

α , but it has also been confirmed
that inclusion of higher order derivatives does not affect the final
results.
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4. Maximum Likelihood

In our setting, maximum likelihood (ML) is to minimize the
Mahalanobis distance

J =
1
N

N∑
α=1

(xα − x̄α,V0[xα]−1(xα − x̄α)), (22)

subject to

(ξ(x̄α), θ) = 0. (23)

If the noise is homogeneous and isotropic, we can let V0[xα] =
I, so the right side of Eq. (22) is (1/N)

∑N
α=1 ‖xα − x̄α‖2, which is

commonly referred to as the reprojection error [3].
Minimizing Eq. (22) subject to Eq. (23) is generally a compli-

cated nonlinear optimization, but the computation is simplified if
the transformed variable ξ(k)

α is regarded as subject to independent
Gaussian noise of mean 0 and covariance matrices V (kl)[ξα] =
σ2V (kl)

0 [ξα], although this is not strictly true. Under this Gaussian
noise approximation, the constraint in Eq. (23) can be eliminated
using Lagrange multipliers [6]. Then, the Mahalanobis distance
in Eq. (22) reduces to

J =
1
N

N∑
α=1

3∑
k,l=1

W (kl)
α ξ

(k)
α ξ

(l)�
α , (24)

where W (kl)
α is the (kl) element of the pseudoinvers of truncated

rank r of of the matrix whose (kl) element is (θ,V (kl)
0 [ξα]θ). We

write this symbolically as follows:

(
W (kl)
α

)
=
(
(θ,V (kl)

0 [ξα]θ)
)−

r
. (25)

By “truncated rank r,” we mean that the eigenvalues except the
r largest ones are replaced by 0 in the spectral decomposition.
Today, Eq. (24) is known as the Sampson error [3] after the pio-
neering ellipse fitting scheme of P. D. Sampson [23]. In the single
constraint case (L = 1), Eq. (24) is easily minimized by the FNS
of Chojnacki et al. [2], which can be straightforwardly extended
to the multiple constraint case (L > 1) [11]. The minimizer of
the Sampson error Eq. (24), or the “Sampson solution” for short,
is not exactly the ML solution that minimizes Eq. (22), but we
can modify Eq. (24) by using the computed Sampson solution,
minimize the resulting modified Sampson error, and iterate this
process. It can be shown that in the end the modified Sampson
error coincides with the Mahalanobis distance Eq. (22), meaning
that we obtain the exact ML solution [15]. It has been observed
that Sampson error modification iterations converge after a few
rounds but the solution does not change except a few of the least
significant digits [11], [16], [17]. Hence, we can practically iden-
tify the Sampson solution with the exact ML solution. We now
do detailed error analysis of the solution that minimizes Eq. (24).

5. Error Analysis

The derivative of Eq. (4) with respect to θ has the following
form [11]:

∇uJ = 2(M − L)θ, (26)

M ≡ 1
N

N∑
α=1

3∑
k,l=1

W (kl)
α ξ

(k)
α ξ

(l)�
α ,

L ≡ 1
N

N∑
α=1

3∑
k,l,m,n=1

W (km)
α W (ln)

α (ξ(m)
α , θ)(ξ

(n)
α , θ)V

(kl)
0 [ξα]. (27)

If Eq. (12) is substituted, the matrix M is expanded in the form

M = M̄ + Δ1 M + Δ2 M + · · · , (28)

where · · · denotes terms of order 3 or higher in σ. The terms
Δ1 M and Δ2 M have the following expressions:

Δ1 M = Δ0
1 M + Δ∗1 M, (29)

Δ2 M = Δ0
2 M + Δ∗2 M + Δ†2 M, (30)

Δ0
1 M ≡ 1

N

N∑
α=1

3∑
k,l=1

W̄ (kl)
α (Δ1ξ

(k)
α ξ̄

(l)�
α +ξ̄

(k)
α Δ1ξ

(l)�
α ), (31)

Δ∗1 M ≡ 1
N

N∑
α=1

3∑
k,l=1

Δ1W (kl)
α ξ̄

(k)
α ξ̄

(l)�
α , (32)

Δ0
2 M ≡ 1

N

N∑
α=1

3∑
k,l=1

W̄ (kl)
α (Δ1ξ

(k)
α Δ1ξ

(l)�
α +Δ2ξ

(k)
α ξ̄

(l)�
α +ξ̄

(k)
α Δ2ξ

(l)�
α ),

(33)

Δ∗2 M ≡ 1
N

N∑
α=1

3∑
k,l=1

Δ1W (kl)
α (Δ1ξ

(k)
α ξ̄

(l)�
α +ξ̄

(k)
α Δ1ξ

(l)�
α ), (34)

Δ
†
2 M ≡ 1

N

N∑
α=1

3∑
k,l=1

Δ2W (kl)
α ξ̄

(k)
α ξ̄

(l)�
α . (35)

Here, Δ1W (kl)
α and Δ2W (kl)

α are written as follows (see Appendix
A.1):

Δ1W (kl)
α = −2

3∑
m,n=1

W̄ (km)
α W̄ (ln)

α (Δ1θ,V
(mn)
0 [ξα]θ̄),

Δ2W (kl)
α = −

3∑
m,n=1

W̄ (km)
α W̄ (ln)

α ((Δ1θ,V
(mn)
0 [ξα]Δ1θ),

+ 2(Δ2θ,V
(mn)
0 [ξα]θ̄)). (36)

For the matrix L in Eq. (27), we obtain from (ξ̄(k)
α , θ̄) = 0

L = L̄ + Δ1L + Δ2L + · · · , L̄ = Δ1L = O, (37)

Δ2L =
1
N

N∑
α=1

3∑
k,l,m,n=1

W̄ (km)
α W̄ (ln)

α

(
(ξ̄(m)
α ,Δ1θ)(ξ̄

(n)
α ,Δ1θ)

+(ξ̄(m)
α ,Δ1θ)(Δ1ξ

(n)
α , θ̄) + (Δ1ξ

(m)
α , θ̄)(ξ̄

(n)
α ,Δ1θ)

+(Δ1ξ
(m)
α , θ̄)(Δ1ξ

(n)
α , θ̄)

)
V (kl)

0 [ξα]. (38)

Substituting this into Mθ = Lθ, which is obtained by letting
Eq. (26) be 0, we have

(M̄ + Δ1 M + Δ2 M + · · · )(θ̄ + Δ1θ + Δ2θ + · · · )
= Δ2L(θ̄ + Δ1θ + Δ2θ + · · · ). (39)

Equating terms of the same order on both sides, we obtain

M̄Δ1θ + Δ1 Mθ̄ = 0, (40)
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Fig. 2 The true value θ̄, the computed value θ, and its orthogonal compo-
nent Δ⊥θ of θ̄.

M̄Δ2θ + Δ1 MΔ1θ + Δ2 Mθ̄ = Δ2Lθ̄. (41)

Multiplying Eq. (40) by the pseudoinverse M̄− on both sides and
noting that M̄− M̄ = Pθ̄ (the projection matrix along θ̄) and that
Δ1θ is orthogonal to θ̄, we can write the first order error term Δ1θ

as follows:

Δ1θ = −M̄−
Δ1 Mθ̄ = −M̄−

Δ0
1 Mθ̄. (42)

Here, we have noted that (ξ̄α, θ̄) = 0 implies Δ∗1 Mθ̄ = 0. Multi-
plying Eq. (41) by M̄− on both sides, we obtain

Δ⊥2 θ = −M̄−
Δ1 MΔ1θ − M̄−

Δ2 Mθ̄ + M̄−
Δ2Lθ̄, (43)

where we defined Δ⊥2 θ = Pθ̄Δ2θ to be the error component of Δ2θ

orthogonal to θ̄ (Fig. 2).

6. Bias Analysis

Since the expectation of odd-order error terms is zero, we have
E[Δ1θ] = 0. This means that the first order bias is 0, so we focus
on the second order bias E[Δ�2 θ]. From Eq. (43), we obtain

E[Δ⊥2 θ] = −E[M̄−
Δ1 MΔ1θ] − E[M̄−

Δ2 Mθ̄] + E[M̄−
Δ2Lθ̄].

(44)

We now evaluated each term separately. The basic strategy is
to eliminate the noise terms Δ1ξ

(k)
α in the expectation expression,

using the identity

E[Δ1ξ
(k)
α Δ1ξ

(l)�
β ] = σ2δαβV

(kl)
0 [ξα], (45)

obtained from our assumption of independent noise, where δαβ is
the Kronecker delta, taking 1 for α = β and 0 otherwise. We also
eliminate Δ2ξ

(k)
α in the expectation expression by defining a new

quantity e(k)
α by

E[Δ2ξ
(k)
α ] = σ2e(k)

α . (46)

6.1 The First Term
The first term of Eq. (44) is written as

−E[M̄−
Δ1 MΔ1θ] = E[M̄−

Δ0
1 MM̄−

Δ0
1 Mθ̄]

+ E[M̄−
Δ∗1 MM̄−

Δ0
1 Mθ̄]. (47)

The first term on the left side is written as follows:

E[M̄−
Δ0

1 MM̄−
Δ0

1 Mθ̄]

= E

⎡⎢⎢⎢⎢⎢⎢⎣ 1
N2

M̄−
N∑
α,β=1

3∑
k,l,m,n=1

W̄ (kl)
α W̄ (mn)

β (Δ1ξ
(k)
α ξ̄

(l)�
α

+ ξ̄
(k)
α Δ1ξ

(l)�
α )M̄−(Δ1ξ

(m)
β , θ̄)ξ̄

(n)
β

⎤⎥⎥⎥⎥⎥⎥⎦

=
σ2

N2
M̄−

N∑
α=1

3∑
k,l,m,n=1

W̄ (kl)
α W̄ (mn)

α (ξ̄(l)
α , M̄

−
ξ̄

(n)
α )V (km)

0 [ξα]θ̄

+
σ2

N2
M̄−

N∑
α=1

3∑
k,l,m,n=1

W̄ (kl)
α W̄ (mn)

α (θ̄,V (ml)
0 [ξα]M̄−

ξ̄
(n)
α )ξ̄(k)

α .

(48)

From Eq. (34) and the second of Eq. (36), we obtain

Δ∗1 M =
2
N

N∑
α=1

3∑
k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (M̄−
Δ0

1 Mθ̄,

V (mn)
0 [ξα]θ̄)ξ̄

(k)
α ξ̄

(l)�
α . (49)

Hence the second term on the right side of Eq. (47) is

E[M̄−
Δ∗1 MM̄−

Δ0
1 Mθ̄]

= E

⎡⎢⎢⎢⎢⎢⎢⎣ 2
N

M̄−
N∑
α=1

3∑
k,l=1

W̄ (km)
α W̄ (ln)

α (M̄−
Δ0

1 Mθ̄,

V (mn)
0 [ξα]θ̄)(ξ̄

(l)
α , M̄

−
Δ0

1 Mθ̄)ξ̄(k)
α

⎤⎥⎥⎥⎥⎥⎥⎦
=

2
N

M̄−
N∑
α=1

3∑
k,l=1

W̄ (km)
α W̄ (ln)

α (ξ̄(l)
α ,

E[Δ1θΔ1θ
�]V (mn)

0 [ξα]θ̄)ξ̄
(k)
α

=
2σ2

N2
M̄−

N∑
α=1

3∑
k,l=1

W̄ (km)
α W̄ (ln)

α (ξ̄(l)
α , M̄

−
V (mn)

0 [ξα]θ̄)ξ̄
(k)
α , (50)

where we have used the fact that E[Δ1θΔ1θ
�] has the expression

(see Appendix A.2)

E[Δ1θΔ1θ
�] =

σ2

N
M̄−
, (51)

which is the leading term of the covariance matrix of the com-
puted θ. Equation (51) it coincides with the theoretical accuracy
limit called the KCR (Kanatani-Cramer-Rao) lower bound [6],
[8], [14]. Thus, Eq. (47) is written as follows:

E[M̄−
Δ1 MΔ1θ]

=
σ2

N2
M̄−

N∑
α=1

3∑
k,l,m,n=1

W̄ (kl)
α W̄ (mn)

α (ξ̄(l)
α , M̄

−
ξ̄

(n)
α )

V (km)
0 [ξα]θ̄ +

3σ2

N2
M̄−

N∑
α=1

3∑
k,l=1

W̄ (km)
α W̄ (ln)

α (ξ̄(l)
α ,

M̄−
V (mn)

0 [ξα]θ̄)ξ̄
(k)
α . (52)

6.2 The Second Term
The second term of Eq. (44) is written as follows:

−E[M̄−
Δ2 Mθ̄]=−E[M̄−

Δ0
2 Mθ̄] − E[M̄−

Δ∗2 Mθ̄]. (53)

The first term on the right side is written as

−E[M̄−
Δ0

2 Mθ̄] = −M̄− 1
N

N∑
α=1

3∑
k,l=1

W̄ (kl)
α

(E[Δ1ξ
(k)
α Δ1ξ

(l)�
α ] + ξ̄(k)

α E[Δ2ξ
(l)�
α ])θ̄

= −σ
2

N
M̄−

N∑
α=1

3∑
k,l=1

W̄ (kl)
α (V (kl)

0 [ξα]θ̄ + (e(k)
α , θ̄)ξ̄

(l)
α ), (54)
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where Eq. (46) is used. The second term on the right side of
Eq. (53) is written as

−E[M̄−
Δ∗2 Mθ̄]

= −E

⎡⎢⎢⎢⎢⎢⎢⎣M̄− 1
N

N∑
α=1

3∑
k,l=1

Δ1W (kl)
α (Δ1ξ

(l)
α , θ̄)ξ̄

(k)
α

⎤⎥⎥⎥⎥⎥⎥⎦
= −2M̄− 1

N

N∑
α=1

3∑
k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (θ̄,

E[Δ1ξ
(l)
α (Δ0

1 Mθ̄)�]M̄−
V (mn)

0 [ξα]θ̄)ξ̄
(k)
α . (55)

The expression E[Δ1ξ
(l)
α (Δ0

1 Mθ̄)�] in the above equation is eval-
uated as follows:

E[Δ1ξ
(l)
α (Δ0

1 Mθ̄)�] = E

⎡⎢⎢⎢⎢⎢⎢⎣Δ1ξ
(l)
α

( 1
N

N∑
β=1

3∑
p,q=1

W̄ (pq)
β

(Δ1ξ
(p)
β ξ̄

(q)�
β + ξ̄

(p)
β Δ1ξ

(q)�
β )θ̄

)�⎤⎥⎥⎥⎥⎥⎥⎦
=

1
N

N∑
β=1

3∑
p,q=1

W̄ (pq)
β E[Δ1ξ

(l)
α Δ1ξ

(q)�
β ]θ̄ξ̄(p)�

β

=
σ2

N

3∑
p,q=1

W̄ (pq)
α V (lq)

0 [ξα]θ̄ξ̄
(p)�
α . (56)

Hence, Eq. (55) has the following form:

−E[M̄−
Δ∗2 Mθ̄]

= −2σ2

N2
M̄−

N∑
α=1

3∑
k,l,m,n,p,q=1

W̄ (km)
α W̄ (ln)

α W̄ (pq)
α (θ̄,

V (lq)
0 [ξα]θ̄)(ξ̄

(p)
α , M̄

−
V (mn)

0 [ξα]θ̄)ξ̄
(k)
α

= −2σ2

N2
M̄−

N∑
α=1

3∑
k,l,m,n=1

W̄ (kl)
α W̄ (mn)

α (ξ̄(k)
α ,

M̄−
V (lm)

0 [ξα]θ̄)ξ̄
(n)
α . (57)

In the above derivation, we have used the identity

3∑
m,n=1

W̄ (km)
α (θ̄,V (mn)

0 [ξα]θ̄)W̄
(nl)
α = W̄ (kl)

α , (58)

which is a consequence of the identity W̄αW̄
−
αW̄α = W̄α, where

W̄α is the matrix whose (kl) element is W̄ (kl)
α . Note that the (kl)

element of the pseudoinverse of the matrix W̄−
α is (θ̄,V (kl)

0 [ξα]θ̄)
from the definition of W̄ (kl)

α in Eq. (25). Thus, Eq. (53) can be
written as follows:

−E[M̄−
Δ2 Mθ̄]

= −σ
2

N
M̄−

N∑
α=1

3∑
k,l=1

W̄ (kl)
α (V (kl)

0 [ξα]θ̄ + (e(k)
α , θ̄)ξ̄

(l)
α )

− 2σ2

N2
M̄−

N∑
α=1

3∑
k,l,m,n=1

W̄ (kl)
α W̄ (mn)

α (ξ̄(k)
α ,

M̄−
V (lm)

0 [ξα]θ̄)ξ̄
(n)
α . (59)

6.3 The Third Term
The third term of Eq. (44) is rewritten as

E[M̄−
Δ2Lθ̄]

= E

⎡⎢⎢⎢⎢⎢⎢⎣ 1
N

M̄−
N∑
α=1

3∑
k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (ξ̄(m)
α ,Δ1θ)(ξ̄

(n)
α ,

Δ1θ)V
(kl)
0 [ξα]θ̄

⎤⎥⎥⎥⎥⎥⎥⎦
+ E

⎡⎢⎢⎢⎢⎢⎢⎣ 1
N

M̄−
N∑
α=1

3∑
k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (ξ̄(m)
α ,Δ1θ)

(Δ1ξ
(n)
α , θ̄)V

(kl)
0 [ξα]θ̄

⎤⎥⎥⎥⎥⎥⎥⎦
+ E

⎡⎢⎢⎢⎢⎢⎢⎣ 1
N

M̄−
N∑
α=1

3∑
k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (Δ1ξ
(m)
α , θ̄)

(ξ̄(n)
α ,Δ1θ)V

(kl)
0 [ξα]θ̄

⎤⎥⎥⎥⎥⎥⎥⎦
+ E

⎡⎢⎢⎢⎢⎢⎢⎣ 1
N

M̄−
N∑
α=1

3∑
k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (Δ1ξ
(m)
α , θ̄)

(Δ1ξ
(n)
α , θ̄)V

(kl)
0 [ξα]θ̄

⎤⎥⎥⎥⎥⎥⎥⎦
σ2

N2
M̄−

N∑
α=1

3∑
k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (ξ̄(m)
α , M̄

−
ξ̄

(n)
α )

V (kl)
0 [ξα]θ̄

+
1
N

M̄−
N∑
α=1

3∑
k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (ξ̄(m)
α ,

E[Δ1θΔ1ξ
(n)�
α ]θ̄)V (kl)

0 [ξα]θ̄

+
1
N

M̄−
N∑
α=1

3∑
k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (θ̄,

E[Δ1ξ
(m)
α Δ1θ

�]ξ̄(n)
α )V (kl)

0 [ξα]θ̄

+
σ2

N
M̄−

N∑
α=1

3∑
k,l=1

W̄ (kl)V (kl)
0 [ξα]θ̄, (60)

where we have used Eqs. (51) and (58). The expression
E[Δ1θΔ1ξ

(n)�
α ] in the above equation can be evaluated as follows:

E[Δ1θΔ1ξ
(n)�
α ] = −E[M̄−

Δ0
1 Mθ̄Δ1ξ

(n)�
α ]

= −σ
2

N
M̄−

3∑
p,q=1

W̄ (pq)
α ξ̄

(p)
α θ̄

�
V (qn)

0 [ξα]. (61)

Hence, Eq. (60) has the following form:

E[M̄−
Δ2Lθ̄]

= −σ
2

N2
M̄−

N∑
α=1

3∑
k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (ξ̄(m)
α , M̄

−
ξ̄

(n)
α )V (kl)

0 [ξα]θ̄

+
σ2

N
M̄−

N∑
α=1

3∑
k,l=1

W̄ (kl)V (kl)
0 [ξα]θ̄. (62)

6.4 Second Order Bias
From the above results, we conclude that Eq. (44) has the fol-

lowing form:
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E[Δ⊥2 θ] = −
σ2

N
M̄−

N∑
α=1

3∑
k,l=1

W̄ (kl)
α (e(k)

α , θ̄)ξ̄
(l)
α

+
σ2

N2
M̄−

N∑
α=1

3∑
k,l=1

W̄ (km)
α W̄ (ln)

α (ξ̄(l)
α, M̄

−
V (mn)

0 [ξα]θ̄)ξ̄
(k)
α . (63)

7. Hyperaccurate Correction

In order to correct the solution θ by Eq. (63), we need to esti-
mate the unknown σ2. We also need to approximate the noiseless
values used in Eq. (63) by observed values. The resulting proce-
dure is as follows:
( 1 ) Using the ML solution θ and the matrix M computed from

it, estimate σ2 by

σ̂2 =
(θ,Mθ)

r − (n − 1)/N
, (64)

where n is the dimension of θ.
( 2 ) Compute the correction term by

Δcθ = − σ̂
2

N
M−

n−1

N∑
α=1

3∑
k,l=1

W (kl)
α (e(k)

α , θ)ξ
(l)
α

+
σ̂2

N2
M−

n−1

N∑
α=1

3∑
k,l=1

W (km)
α W (ln)

α (ξ(l)
α ,

M−
n−1V (mn)

0 [ξα]θ)ξ
(k)
α , (65)

where M−
n−1 is the pseudoinverse of M with truncated rank

n − 1.
( 3 ) Correct the ML solution θ to

θ ← N[θ − Δcθ], (66)

where N[ · ] designates normalization to unit norm (N[a] ≡
a/‖a‖).

The estimation formula of Eq. (64) is obtained by noting that if
the minimum value of Eq. (22) is Ĵ, then NĴ/σ2 is subject to a
χ2 distribution with Nr − (n − 1) degrees of freedom [6] and that
the expectation of a χ2 variable is equal to its degrees of freedom.
Replacing the true values by their observations introduces errors
of O(σ), but since Eq. (65) is O(σ2) and the expectation of odd
order noise terms is zero, the resulting error of Eq. (65) is O(σ4).
Hence, the bias of the corrected θ is still 0 except O(σ4).

Note that Eq. (65) is an analytical expression, so it can be im-
mediately evaluated without any iterations. Of course, the trun-
cated pseudoinverse M−

n−1 need to be evaluated, but this is no
significant cost (recall that n = 6 for ellipse fitting and n = 9 for
fundamental matrix and homography computation). Here, we are
assuming that the ML solution θ is already computed by some
means. For this, any available method can be used, but if the FNS
of Chojnacki et al. [2] or its extension [11] is used, all the quanti-
ties that appear in Eq. (65), i.e., ξ(k)

α , V (kl)
0 [ξα], M, and W (kl)

α , are
already evaluated in the course of the FNS computation. Hence,
there is practically no additional computational cost for evaluat-
ing Eq. (65).

From Eq. (17), we see that the vector e(k) in Eq. (65) is

e = (1, 0, 1, 0, 0, 0)� (67)

for ellipse fitting. However, we see from Eqs. (19) and (21) that

e(k) = 0 for the fundamental matrix and homography computa-
tion. In general, e(k) is 0 for typical “multiview” constraints for
computer vision, because noise in different images is assumed to
be uncorrelated.

In the past study [7], [8], the terms that involve e(k)
α are ignored.

We now show by simulation that omission of e(k)
α does not effec-

tively affect the results.

8. Experiments

8.1 Evaluation of Accuracy
Since the computed θ and its true value θ̄ are both unit vectors,

we measure the discrepancy Δθ between them by the orthogonal
component to θ̄ (Fig. 2),

Δ⊥θ = Pθ̄θ, Pθ̄ ≡ I − θ̄θ̄�, (68)

where Pθ̄ is the projection matrix along θ̄. We generate M in-
dependent noise instances and evaluate the bias B and the RMS
(root-mean-square) error D defined by

B=
∥∥∥∥ 1

M

M∑
a=1

Δ⊥θ(a)
∥∥∥∥, (69)

D=

√√√
1
M

M∑
a=1

‖Δ⊥θ(a)‖2, (70)

where θ(a) is the solution in the ath trial. The KCR lower bound
(see Eq. (29)) on D is given by

D ≥ σ√
N

√
trM̄−

, (71)

where tr denotes the matrix trace. For comparison, we tested the
following eight methods:
( 1 ) Least squares (LS) [8].
( 2 ) Iterative reweight [8].
( 3 ) The Taubin method [24] and its extension to multiple con-

straints (we omit the details).
( 4 ) Renormalization [5], [6].
( 5 ) HyperLS [13], [14], [22].
( 6 ) Hyper-renormalization [10] and its extension to multiple

constraints (we omit the details).
( 7 ) ML [15].
( 8 ) ML with hyperaccurate correction.

8.2 Ellipse Fitting
We define 30 equidistant points on the ellipse shown in Fig. 3.

The major and minor axis are set to 100 and 50 pixels, respec-
tively. We add independent Gaussian noise of mean 0 and stan-
dard deviation σ (pixels) to the x and y coordinates of each point
and fit an ellipse.

Figure 4 (a), (b) plot the bias B and the RMS error D, respec-
tively, defined in Eqs. (69) and (70) over 10,000 independent trials

Fig. 3 Thirty points on an ellipse.
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(a) (b)

Fig. 4 The bias (a) and the RMS error (b) of the fitted ellipse for the stan-
dard deviation σ of the noise added to the data in Fig. 3 over 10,000
independent trials. 1) LS, 2) iterative reweight, 3) Taubin, 4) renor-
malization, 5) HyperLS, 6) hyper-renormalization, 7) ML, 8) ML
with hyperaccurate correction. The dotted line in (b) indicates the
KCR lower bound. The interrupted plots indicate that iterations do
not always converge beyond that noise level.

Fig. 5 Simulated images of a curved grid surface viewed from two direc-
tions.

for each σ. The dotted line in Fig. 4 (b) is the KCR lower bound
of Eq. (71). We can see that LS and iterative reweight have very
large bias and RMS error, while hyper-renormalization and ML
with hyperaccurate correction both have very small bias and small
RMS error. We can also see that although the difference is very
small, the bias and the RMS error of ML with hypercorrection are
even smaller than those of hyper-renormalization. However, as
the interrupted plots in Fig. 4 show, the iterations of ML compu-
tation (we used the FNS of Chojnacki et al. [2]) do not converge
in the presence of large noise. We also compared our solution
with and without using the e(k) term in Eq. (65) and found that the
plots in Fig. 4 are unchanged.

8.3 Fundamental Matrix Computation
Figure 5 shows simulated images of a curved grid surface

viewed from two directions. The image size is 600 × 600 pix-
els, and the focal length is 600 pixels. We add Gaussian noise
of mean 0 and standard deviation σ (pixels) to the x and y co-
ordinates of each grid point independently and compute the fun-
damental matrix F. The fundamental matrix F has rank 2, so it
is constrained to be det F = 0 [3]. Basically, the following three
approaches exist for imposing this rank constraint [17]:
( 1 ) A posteriori correction: The matrix F is optimally computed

without considering the rank constraint and then optimally
corrected so that it is satisfied.

( 2 ) Internal access: The matrix F is parameterized so that the
rank constraint is identically satisfied and then optimized
within the resulting smaller parameter space.

( 3 ) External access: Iterations are done in the space of uncon-
strained F in such a way the rank constraint is automatically
satisfied at the time of convergence.

Here, we adopt the a posteriori correction approach and compare
the accuracy of various methods without considering the rank
constraint.

(a) (b)

Fig. 6 The bias (a) and the RMS error (b) of the computed fundamental
matrix for the standard deviation σ of the noise added to the data in
Fig. 5 over 10,000 independent trials. 1) LS, 2) iterative reweight, 3)
Taubin, 4) renormalization, 5) HyperLS, 6) hyper-renormalization,
7) ML, 8) ML with hyperaccurate correction. The dotted line in (b)
indicates the KCR lower bound.

Fig. 7 Simulated images of a planar grid surface viewed from two direc-
tions.

(a) (b)

Fig. 8 The bias (a) and the RMS error (b) of the computed homography for
the standard deviation σ of the noise added to the data in Fig. 7 over
10,000 independent trials. 1) LS, 2) iterative reweight, 3) Taubin, 4)
renormalization, 5) HyperLS, 6) hyper-renormalization, 7) ML, 8)
ML with hyperaccurate correction. The dotted line in (b) indicates
the KCR lower bound.

Figure 6 (a), (b) plot the bias B and the RMS error D, respec-
tively, defined in Eqs. (69) and (70) over 10,000 independent trials
for each σ. The dotted line in Fig. 6 (b) is the KCR lower bound
of Eq. (71). We can see that LS and iterative reweight have very
large bias and RMS error and that other hyper-renormalization
and ML with hyperaccurate correction have very small bias.
However, the RMS error is almost the same for all methods other
than LS and iterative reweight. Yet, a close examination shows
that ML with hypercorrection exhibits the highest accuracy.

8.4 Homography Computation
Figure 7 shows simulated images of a planar grid surface

viewed from two directions. The image size is 800 × 800 pixels,
and the focal length is 600 pixels. We add Gaussian noise of mean
0 and standard deviation σ (pixels) to the x and y coordinates of
each grid point independently and compute the homography be-
tween the two images.

Figure 8 (a), (b) plot the bias B and the RMS error D, respec-
tively, defined in Eqs. (69) and (70) over 10,000 independent trials
for each σ. The dotted line in Fig. 8 (b) is the KCR lower bound
of Eq. (71). As in the case of ellipse fitting and fundamental ma-
trix computation, LS and iterative reweight have very large bias,
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resulting in large RMS error. However, the bias and RMS error of
all other methods are almost the same, and the KCR lower bound
is almost achieved. Yet, a close examination shows that ML with
hypercorrection exhibits the highest accuracy.

9. Concluding Remarks

We reexamined the scheme of hyperaccurate correction for im-
proving the accuracy of ML of geometric estimation based on ge-
ometric constraints. So far, this was done only in the case of a
single scalar constraint. In this paper, we extended it to the case
of multiple constraints given as a vector equation and pointed out
the existence of a new correction term which was ignored in the
past.

The correction is done by evaluating a single analytical expres-
sion without iterations with almost no additional computational
cost. Moreover, if the FNS of Chojnacki et al. [2] or its exten-
sion [11] is used for computing the ML solution, all the quantities
necessary for the correction are already evaluated in the course of
the FNS computation, and hence practically no additional cost is
required.

We compared our hyperaccurate correction with the hyper-
renormalization of Kanatani et al. [10], the latest method regarded
as the best fitting method, by do numerical simulation of ellipse
fitting and fundamental matrix and homography computation. We
observed the following:
( 1 ) Inclusion of the new correction term does not effectively af-

fect the final solution.
( 2 ) The combination of ML and hyperaccurate correction can

achieve the highest accuracy among all existing methods.
( 3 ) For hyperaccurate correction, we first need to compute the

ML solution, but the iterations for it do not necessarily con-
verge in the presence of large noise.

We conclude that ML with hyperaccurate correction and hyper-
renormalization [10], which achieves the next highest accuracy,
are currently the best methods of all, each having its own advan-
tage and disadvantage.
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Appendix

A.1 Derivation of Eq. (36)

Let Wα be the matrix whose (kl) element is W (kl)
α (kl), and Vα

be the matrix whose (kl) element is (θ̄,V (kl)
0 [ξα]θ̄). By the defi-

nition of W (kl)
α (kl), we have Wα = (Vα)−r and hence the identity

VαWαVα = Vα. Its expansion is

(V̄α + Δ1Vα + Δ2Vα + · · · )(W̄α + Δ1Wα + Δ2Wα

+ · · · )(V̄α + Δ1Vα + Δ2Vα + · · · )
=(V̄α + Δ1Vα + Δ2Vα + · · · ). (A.1)

We derive Eq. (36) by equating the terms of the same order on
both sides and using the identities W̄αV̄αW̄α = W̄α and V̄αW̄αV̄α
= V̄α. We also note that V̄αW̄α = W̄αV̄α is the projection matrix
onto the common domain of V̄α and W̄α and that the errors Δ1Vα
and Δ1Wα arise within that domain. Equating the first order error
terms, we obtain

Δ1VαW̄αV̄α + V̄αΔ1WαV̄α + V̄αW̄αΔ1Vα

=Δ1Vα. (A.2)
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Multiplying both sides by W̄α from left and right, we obtain

W̄αΔ1VαW̄αV̄αW̄α + W̄αV̄αΔ1WαV̄αW̄α

+W̄αV̄αW̄αΔ1VαW̄α = W̄αΔ1VαW̄α. (A.3)

Hence, we have

W̄αΔ1VαW̄α + Δ1Wα + W̄αΔ1VαW̄α

= W̄αΔ1VαW̄α, (A.4)

from which Δ1Wα is expressed in the form

Δ1Wα = −W̄αΔ1VαW̄α. (A.5)

Its (kl) element is

Δ1W (kl)
α = −

L∑
m,n=1

W̄ (km)
α W̄ln

α Δ1V (mn)
α

= −2
L∑

m,n=1

W̄ (km)
α W̄ (ln)

α (Δ1θ,V
(mn)
0 [ξα]θ̄). (A.6)

Thus, we obtain the first of Eq. (36). Equating the second order
error terms on both sides of Eq. (A.1), we obtain

Δ2VαW̄αV̄α + V̄αΔ2WαV̄α + V̄αW̄αΔ2Vα

+V̄αΔ1WαΔ1Vα + Δ1VαW̄αΔ1Vα

+Δ1VαΔ1WαV̄α = Δ2Vα. (A.7)

Multiplying both sides by W̄α from left and right, we obtain

W̄αΔ2VαW̄αV̄αW̄α + W̄αV̄αΔ2WαV̄αW̄α

+W̄αV̄αW̄αΔ2VαW̄α + W̄αV̄αΔ1WαΔ1VαW̄α

+W̄αΔ1VαW̄αΔ1VαW̄α

+W̄αΔ1VαΔ1WαV̄αW̄α = W̄αΔ2VαW̄α, (A.8)

which is rewritten as

W̄αΔ2VαW̄α + Δ2Wα + W̄αΔ2VαW̄α

+Δ1Wα(V̄αW̄α)Δ1VαW̄α

+W̄αΔ1VαW̄α(V̄αW̄α)Δ1VαW̄α

+W̄αΔ1Vα(W̄αV̄α)Δ1Wα=W̄αΔ2VαW̄α. (A.9)

Substituting Eq. (A.5) into this, we obtain

W̄αΔ2VαW̄α + Δ2Wα + W̄αΔ2VαW̄α

−Δ1WαV̄αΔ1Wα + Δ1WαV̄αΔ1Wα

−Δ1WαV̄αΔ1Wα = W̄αΔ2VαW̄α, (A.10)

from which Δ2Wα is expressed in the form

Δ2Wα = Δ1WαV̄αΔ1Wα − W̄αΔ2VαW̄α. (A.11)

Its (kl) element is

Δ2W (kl)
α =

L∑
m,n=1

Δ1W (km)
α V̄ (mn)

α Δ1W (nl)
α

−
L∑

m,n=1

W̄ (km)
α Δ2V (mn)

α W̄ (nl)
α

=

L∑
m,n=1

Δ1W (km)
α Δ1W (ln)

α (θ̄,V (mn)
0 [ξα]θ̄)

−
L∑

m,n=1

W̄ (km)
α W̄ (ln)

α

(
(Δ1θ,V

(mn)
0 [ξα]Δ1θ)

+2(Δ2θ,V
(mn)
0 [ξα]θ̄)

)
. (A.12)

Thus, we obtain the second of Eq. (36).

A.2 Derivation of Eq. (51)

Substituting Eqs. (31) and into Eq. (42), and noting that ξ(k)�
α θ

= 0, we can write Δ1θ as follows:

Δ1θ = −M̄−
Δ1 Mθ̄

=−M̄−( 1
N

N∑
α=1

L∑
k,l=1

W̄ (kl)
α (Δ1ξ

(l)
α , θ̄)ξ̄

(k)
α

)
. (A.13)

We evaluate E[Δ1θΔ1θ
�] by eliminating the noise terms ξ(k)

α , us-
ing the identities of Eqs. (45) and (58).

E[Δ1θΔ1θ
�]

= E

⎡⎢⎢⎢⎢⎢⎢⎣M̄−( 1
N

N∑
α=1

L∑
k,l=1

W̄ (kl)
α (Δ1ξ

(l)
α , θ̄)ξ̄

(k)
α

)

1
N

N∑
β=1

L∑
m,n=1

W̄ (mn)
β (Δ1ξ

(n)
β , θ̄)ξ̄

(m)�
β

)
M̄−
⎤⎥⎥⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎢⎢⎣M̄−( 1
N2

N∑
α,β=1

L∑
k,l,m,n=1

W̄ (kl)
α W̄ (mn)

β

(θ̄,Δ1ξ
(l)
α )(Δ1ξ

(n)
β , θ̄)ξ̄

(k)
α ξ̄

(m)�
β

)
M̄−
⎤⎥⎥⎥⎥⎥⎥⎦

= M̄−( 1
N2

N∑
α,β=1

L∑
k,l,m,n=1

W̄ (kl)
α W̄ (mn)

β

(θ̄, E[Δ1ξ
(l)
α Δ1ξ

�(n)
β ]θ̄)ξ̄(k)

α ξ̄
(m)�
β

)
M̄−

= M̄−( 1
N2

N∑
α,β=1

L∑
k,l,m,n=1

W̄ (kl)
α W̄ (mn)

β

(θ̄, σ2δαβV
(ln)
0 [ξα]θ̄)ξ̄

(k)
α ξ̄

(m)�
β

)
M̄−

= M̄−(σ2

N2

N∑
α=1

L∑
k,m=1

( L∑
l,n=1

W̄ (kl)
α (θ̄,V (ln)

0 [ξα]θ̄)W̄
(mn)
α

)
ξ̄

(k)
α ξ̄

(m)�
α

)
M̄−

=
σ2

N
M̄−( 1

N

N∑
α=1

L∑
k,m=1

W̄ (km)
α ξ̄

(k)
α ξ̄

(m)�
α

)
M̄−

=
σ2

N
M̄− M̄M̄−

=
σ2

N
M̄−
. (A.14)
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