
IPSJ Transactions on Advanced Computing Systems Vol.6 No.2 1–10 (Apr. 2013)

Regular Paper

Using Fault Injection to Analyze the Scope of Error
Propagation in Linux

Takeshi Yoshimura1,a) Hiroshi Yamada2,3 Kenji Kono1,3

Received: October 19, 2012, Accepted: January 29, 2013

Abstract: Operating systems (OSes) are crucial for achieving high availability of computer systems. Even if applica-
tions running on an operating system are highly available, a bug inside the kernel may result in a failure of the entire
software stack. The objective of this study is to gain some insight into the development of the Linux kernel that is more
resilient against software faults. In particular, this paper investigates the scope of error propagation. The propagation
scope is process-local if the erroneous value is not propagated outside the process context that activated it. The scope
is kernel-global if the erroneous value is propagated outside the process context that activated it. The investigation of
the scope of error propagation gives us some insight into 1) defensive coding style, 2) reboot-less rejuvenation, and 3)
general recovery mechanisms of the Linux kernel. For example, if most errors are process-local, we can rejuvenate the
kernel without reboots because the kernel can be recovered simply by killing faulty processes. To investigate the scope
of error propagation, we conduct an experimental campaign of fault injection on Linux 2.6.18, using a kernel-level fault
injector widely used in the OS community. Our findings are (1) our target kernel (Linux 2.6.18) is coded defensively.
This defensive coding style contributes to lower rates of error manifestation and kernel-global errors, (2) the scope of
error propagation is mostly process-local in Linux, and (3) global propagation occurs with low probability. Even if an
error corrupts a global data structure, other processes merely access to them.

Keywords: system dependability, software faults, error propagation, fault injection, rejuvenation

1. Introduction

Operating systems (OSes) are crucial for achieving high avail-
ability of computer systems. Kernel-level failures are known to
occur less frequently compared with application-level failures,
but they have a considerable impact on the overall availability
of software systems. Even if applications running on an OS are
highly available, bugs inside the kernel may result in a failure of
the entire software stack; no application can continue to run on
the crashed kernel.

Modern OSes are far from bug-free. Rich functionality of
the OSes makes it harder to eliminate all the bugs before ship-
ping. Although the advances in debugging tools, software testing
methodologies, static analysis, and formal methods are tremen-
dous, there are many software faults in production-quality OSes.
According to Palix et al. [1], the rate of introduction of bugs con-
tinues to rise even in Linux 2.6.

The objective of this study is to gain some insight into design
of the Linux kernel that is resilient against software faults. To this
end, it is critically important to understand Linux kernel behav-
iors under software faults. We introduce the concept of the scope

of error propagation. The propagation scope is process-local if
the erroneous value is not propagated outside the process context
that activated it. The scope is kernel-global if the erroneous value

1 Keio University, Yokohama, Kanagawa 223–8522, Japan
2 Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183–

0057, Japan
3 JST CREST, Chiyoda, Tokyo 102–0076, Japan
a) yos@sslab.ics.keio.ac.jp

is propagated outside the process context that activated it. To the
best of our knowledge, no existing work investigated the scope of
error propagation.

This distinction between process-local and kernel-global errors
is significant. If most errors are process-local, the kernel can re-
cover from most errors simply by killing and revoking the re-
sources of the faulty process. This implies that the Linux ker-
nel can be partially rejuvenated without rebooting the entire OS
because the kernel does not need to verify every kernel state.
Note that this error recovery still requires further investigation.
For example, killing a faulty process as error recovery can cause
deadlocks. However, hundreds of experiments in our prior work
show that the Linux can run reliably after killing a faulty pro-
cess when the error is process-local [2]. If most errors are kernel-
global, the recovery becomes hopeless because corrupted global
data structures must be recovered to continue processing. In this
case, a mechanism isolating propagated errors should be devel-
oped rather than recovery mechanisms.

To investigate the scope of error propagation, a series of fault
injection experiments is conducted. The fault injector used
in our experiments is the existing one [3] that is widely used
to evaluate the OS dependability in the OS research commu-
nity [4], [5], [6], [7], [8]. It focuses on the emulation of low- and
high-level software faults, including ones specific to OS kernels.

The distinguished feature of our study is threefold. First, we
investigate the “scope” of error propagation; an error caused
by a software fault propagates outside or confines within the
context of the faulty process. Second, we focus on low- and

c© 2013 Information Processing Society of Japan 1



IPSJ Transactions on Advanced Computing Systems Vol.6 No.2 1–10 (Apr. 2013)

high-level software faults, while the primary target of previous
work [9], [10], [11] is low-level hardware faults such as flipping
bits in memory. Flipping bits in memory can indirectly emulate
low-level programming faults, however, high-level programming
faults such as argument faults are neither emulated directly nor
considered enough. Third, we show the detailed analysis of faults
that are activated but do not manifest themselves.

This work investigates only corrupted data structures as errors
although there are various kinds of other errors. For example,
real bugs inside the Linux kernel can cause deadlocks and mem-
ory leaks. This work focuses only on whether the erroneous value
propagation is confined in the faulty context of a process or not.
Our contributions are 1) to introduce the concept of the error
propagation scope, 2) to show an experimental result of the prop-
agation scope by using fault injection technique, and 3) to show
some insight obtained through the fault injection experiment.

In our fault injection experiments, 864 faults are injected into
Linux 2.6.18 and 20% of the injected faults are activated. Error
propagation is investigated by using a built-in kernel debugger.
The major findings include:
• Our target kernel (Linux 2.6.18) is coded in a defensive way.

It frequently checks the integrity of function arguments, re-
turn values, and other important variables. This style of de-
fensive coding contributes to lower rates of error manifes-
tation (36% of the fault activation) and kernel-global errors
(16% of the failures).

• The scope of error propagation is mostly process-local in
Linux (84% of the failures). This implies that the Linux can
be rejuvenated without reboots with high probability. Since
an error is not propagated to other process contexts, the ker-
nel can be recovered to a consistent state simply by revoking
the context of a faulty process.

• Global propagation of errors occurs with low probability. In-
terestingly, even if a global data structure is corrupted, the
corrupted data cannot be accessed from the other processes
in our experiment. This is because the faulty process crashes
with a lock acquired inside a critical section.

We use some terms throughout this paper, derived from def-
inition by Patterson [12] and other dependable computing re-
searches. The readers familiar with the terms can skip this para-
graph. We distinguish between a fault, an error and a failure. A
fault is a defect in a component. This work focuses on defects
which derive from programming mistakes (i.e., bugs) in the C
language code of the Linux kernel. “Inject a fault” means intro-
ducing a defect intentionally in a component. “Activate a fault”
means that a fault becomes effective; a faulty region in a com-
ponent is executed. An error is a state which is changed by a
defect. An error is caused by a fault activation. An error often
propagates from one component to another, thereby creating new
errors. “Manifest a fault or an error” means that a defect affects a
delivered service by triggering a failure, which is deviant behav-
ior (e.g., a kernel crash).

The rest of this paper is organized as follows. Section 2 de-
scribes related work. Section 3 explains the software fault injector
we used. Section 4 describes our methodology of the experimen-
tal campaign of fault injection. Section 5 reports our experimental

results. Section 6 discusses the directions towards more resilient
structure of the Linux kernel. Section 7 concludes this paper.

2. Related Work

Understanding the kernel behavior under fault manifestation
can be an aid for kernel developers to improve the kernel depend-
ability or develop the mechanisms for kernel recoveries. OS ker-
nel behavior under fault manifestation has been widely examined.

Software-implemented fault injection (SWIFI) has been con-
ducted with emphasis placed on the different aspects of fault
manifestation to better understand the kernel behavior under fault
manifestation. This work focuses on the “scope” of error propa-
gation (i.e., process-local or kernel-global), while previous work
focuses on other aspects of error propagation than the scope of
error propagation. This work is extended from our previous
work [2], [13] and reports more detailed results.

Gu et al. [9] use SWIFI to characterize Linux behaviors under
error manifestation. Their analysis shows that crash latencies are
within 10 cycles in most cases and also shows how an error prop-
agates between OS subsystems. Our concern in this paper is that
an error propagates beyond the boundary of the process context.
Pham et al. [14] use SWIFI for their framework that automates
to validate the robustness of virtualized environments based on
KVM or Xen hypervisors.

Chen et al. [11] and another paper from Gu et al. [10] inves-
tigate behavioral difference caused by different combinations of
CPU architectures and OSes (five combinations of CPU and OSes
are investigated in total). These studies indicate a good insight
into the design principles of CPU architectures and OSes that are
resilient to faults. However, these studies do not address the scope
of error propagation. The fault models considered in these studies
are device-level transient faults, while the fault model used in our
study is low- and high-level programming errors.

The techniques used in SWIFI are evolving. G-SWFIT pre-
cisely emulates general software faults by mutating binary ex-
ecutable code [15]. According to the analysis by Cotroneo et
al. [16], G-SWFIT improves the fault injection accuracy. Unfor-
tunately, G-SWFIT does not emulate faults that are specific to
Linux kernels. So, we use another fault injector that is widely
used in the OS community.

Aside from fault injection studies, software bugs in the
production-quality OSes such as Linux are extensively exam-
ined. Chou et al. [17] apply a static analyzer to Linux versions
1.0 through Linux 2.4.1 to study the trend of software bugs in the
Linux kernels. Palix et al. [1] are the most recent follow-up that
investigates Linux versions 2.6.0 to 2.6.33. The primary goal of
these studies is to identify the distribution and lifetime of certain
kinds of faults in the Linux kernels.

To mitigate the impact of kernel failures, numerous mecha-
nisms for kernel recovery have been proposed. Swift et al. [4], [5]
propose a kernel mechanism of managing and recovering from
device driver failures. Otherworld [6] restarts the kernel without
discarding applications memory states when the kernel crashes.
Phase-based Reboot [7] shortens downtime involved in reboot-
based recovery.

c© 2013 Information Processing Society of Japan 2



IPSJ Transactions on Advanced Computing Systems Vol.6 No.2 1–10 (Apr. 2013)

3. Fault Injector

We investigate the scope of error propagation in a commodity
OS kernel (i.e., Linux) under software fault manifestation. To this
end, an experimental campaign of fault injection is conducted in
Linux to examine how it reacts to the injected faults. The injector
that is originally obtained from the Nooks web site is ported to
the x86 Linux 2.6.18 kernel. This section briefly describes the
injector and the fault types it injects.

3.1 Overview
The injector [3] emulates low- and high-level programming

bugs specific to OS kernels. It changes individual instructions in
the kernel text segment. These faults are intended to approximate
the assembly-level manifestation of real C-level programming er-
rors. For example, the injector emulates missing initialization by
deleting instructions that are responsible for variable initializa-
tion. The details of the faults are described in Section 3.2.

The injector is widely used to evaluate and validate recovery
mechanisms in the OS research community. For example, it was
used to evaluate the fault tolerance of the file system cache [3],
recovery mechanisms for device drivers [4], [5], a kernel mecha-
nism for applications to survive OS crashes [6], and a quick mech-
anism for reboot-based recovery [7].

The injector runs in the kernel and provides a system call in-
terface to specify the parameters of fault injection. It rewrites the
binary code of the running kernel to inject each type of fault. The
injector disassembles the binary of a randomly selected function
in the kernel text segment. Since the faults injected by our injec-
tor are context-dependent, it analyzes the disassembled code and
searches for proper locations to which each type of fault can be
injected.

3.2 Injected Faults
The injector emulates 10 types of faults. These faults range

from low-level hardware faults to high-level software faults.
Since our primary concern is in programming errors, we omit-
ted 3 types of faults that emulate hardware faults. So, 7 types of
faults are injected in our experiments. For ease of understanding,
Table 1 lists some examples of injected faults at the C-language
level, although the injection is done at the binary level.
• INIT FAULT: INIT fault creates a situation where the ini-

tialization of variables is missed. To create such a situation,
the injector deletes instructions responsible for initializing
a variable by copying a constant value. More concretely, it
deletes an instruction that assigns an immediate value to the

Table 1 C-Language Level View of the Injected Software Faults. This table
shows examples of the injected faults at the C-language level.

Fault Before After
INIT int x = 0; int x;

DST&SRC x += 1; x += 2;

PTR ptr = list->prev; ptr = list->next;

BRANCH if (x != 0) return; return;

INVERSE if (x == 0) if (x != 0)

INTERFACE func(1, 2, 3); func(1, 214, 3);

IRQ local_irq_restore(); deleted.

address lower than the stack pointer.
• DST&SRC FAULT: This fault corrupts assignment state-

ments. It creates a situation where the assignment is incor-
rect due to a programming error. To do this, the injector cor-
rupts the value of the source or the destination by flipping
the bits of the value.

• PTR FAULT: This fault emulates pointer corruption by cor-
rupting the addressing bytes of instructions. The injector
either flips a bit within the addressing-form specifier byte
(ModR/M) or the scale, index or base (SIB) byte following
the instruction opcode.

• BRANCH FAULT: This fault emulates an incorrect control
flow by deleting a jump instruction involved in the condi-
tional statement. By doing this, the injector emulates branch
errors and error handling faults.

• INVERSE FAULT: The injector also reverses the predicates
of conditional statements to inject incorrect control flows.
For example, this fault changes “je” into “jne” to reverse
the predicate.

• INTERFACE FAULT: This fault corrupts one of the argu-
ments passed to a procedure. To create this situation, the in-
jector deletes an instruction that copies a value at an address
below the base pointer to registers or memory. For example,
the injector can change the call foo(a, b) to foo(X, b),
where X is a corrupted value, by deleting the instruction that
copies a to a register or memory.

• IRQ FAULT: When an IRQ fault is injected, the injec-
tor creates a situation where a kernel developer forgets
to enable interrupts after disabling them. The injector
removes local irq restore() calls. When a call to
local irq restore() is removed, the interrupt mask is
not restored and thus the disabled interrupts continue to be
disabled.

4. Methodology

To investigate the scope of error propagation, we track the
Linux kernel behavior when an injected fault is activated. The
kernel version of Linux we use is 2.6.18.8. 864 faults are injected
one-by-one in our experiments. The number of fault injection for
each fault type is described in the figures of the next section. To
track how the Linux kernel reacts to the injected faults, we take
the following steps manually:

(1) Injecting a fault: We request the injector to inject a fault.
In our experiments, only the text segment is modified to inject
faults as our target is programming errors. The injected erroneous
instructions may corrupt data in heap or stack. To trace the kernel
execution after the fault is activated, we set a breakpoint at the
instruction to which a fault is injected. When the breakpoint is
hit, the control is transferred to KDB, a built-in kernel debugger
for Linux. We do not inject faults into the KDB code.

(2) Running a workload: The workload that we use to acti-
vate injected faults is to restart all the daemons. Since the dae-
mons extensively issue system calls, the kernel code runs very
frequently while the daemons are restarted.

(3) Tracing error propagation: After the fault is activated, the
CPU is set into the single-step execution mode to take a trace of

c© 2013 Information Processing Society of Japan 3



IPSJ Transactions on Advanced Computing Systems Vol.6 No.2 1–10 (Apr. 2013)

every instruction. Using the execution trace, the scope of error
propagation is analyzed in the same way as taint analysis. If the
injected fault produces an erroneous value, the value is marked
as an “error.” When the value marked as an “error” is used to
calculate another value, the calculated value is also marked as an
“error.” If the value marked as an “error” is used in the predic-
tion of conditional branches, all the values updated in the taken
clause are marked as an “error.” If no value marked as an “error”
is written to a heap, the error is concluded to be process-local.
Otherwise, the error is concluded to be kernel-global. The kernel
execution is tracked until kernel failures (e.g., kernel panic). If all
the daemons are restarted successfully, the error is classified into
“not manifested.”

The previous study using fault-injection shows crash latencies
are within 10 cycles in most cases [9]. However, this ignores, for
instance, aging-related failures. The workload used in this ex-
periment runs only within less than one minute. To cover these
failures, we also show the brief discussions of not-manifested er-
rors in Section 5.4.

Note that error propagation is investigated at the assembly code
level in our experiments, although this section describes the anal-
ysis of error propagation at the source code level for readability.
Error propagation can be analyzed more precisely if it is analyzed
at the assembly level. For example, compilers generate optimized
code that shares common expressions. Supposed that there are
two expressions: x = a + b and y = (a + b) * c. If a fault is
injected into the former a + b, it propagates to the latter.

5. Experiments

5.1 Experimental Setup
Our experimental campaign of fault injection is carried out on

VMWare Workstation 7.1.2 running on Windows 7. We run Fe-
dora 8 (Linux 2.6.18.8) in a guest virtual machine that consists
of 1 CPU, 1 GB of memory and 20 GB hard disk drive. The host
CPU is 2.53 GB Core2 Extreme CPU. The kernel configuration
is default. Note that the failures encountered in these experiments
are triggered by injected faults, not bugs in the Linux kernel, al-
though real bugs inside the kernel can trigger failures during our
experiments.

5.2 Overall Results
Figure 1 shows the overall results of our fault injection ex-

periments. In total, 864 faults are injected and 20% of them are
activated. Figure 1 (c) shows the ratio of fault injection sites in
terms of the directory name in the kernel source code. Figure 1 (d)
shows the ratio of fault activation sites in terms of the directory
name. Our fault injector selects injected location randomly from
the kernel text segment, so the ratio depends on the size of each
subsystem that is built in the kernel. INIT, INTERFACE and IRQ
faults cover relatively small number of directories because their
target instructions (initializing with the base register and restor-
ing the flags) are limited compared to other faults. These figures
show our fault injection campaign covers all the common kernel
subsystems. This result implies that injecting more errors will
show the same categorization trend of errors.

Figure 1 (b) shows the failures which are observed after the

fault activations. Segmentation failures (“SEG F” in Fig. 1 (b))
are caused in 20% of the fault activations. They occur when the
kernel attempts to access illegal pages. Intentional kernel crashes
caused by BUG ON are observed in 6% (“BUG ON” in Fig. 1 (b)).
BUG ON denotes a situation where Linux BUG ON macro, similar
to C assert, detects an erroneous state in the kernel. The other
failures are panic, hangs and fail silence violations (“FSV” in
Fig. 1 (b)). 64% of the activated faults do not manifest them-
selves.

Figure 2 (a) summarizes the result of the scope analysis. 84%
of the manifested errors are process-local, while 16% of them are
kernel-global. BRANCH and IRQ faults are not propagated out-
side a faulty context, while INTERFACE faults are the highest
rate of kernel-global errors. IRQ faults and their error propaga-
tion are described in Section 5.3.1 (b). INTERFACE faults tend
to corrupt the linked lists for kernel descriptors. The typical case
is shown in Section 5.3.2. The manifested BRANCH faults tend
to be injected to a branch instruction for a NULL check. Checked
pointers are usually used in the clauses. So, a crash tends to occur
soon after the fault activation. The short crash latency leads to the
errors which are confined within a faulty context.

Figure 2 (b) summarizes observed failures in terms of their er-
ror propagation scope. These segmentation failures occur in both
propagation scopes with the highest probability out of all the ob-
served failures (56% of all the manifested errors). All of the fail
silence violations and BUG ON are caused only by process-local
errors. This result implies that BUG ON effectively prevents global
propagation in the kernel as described in Section 5.3.1.

This experimental environment uses ext3 file system, which is
the default configuration of Fedora 8. Real bugs inside the kernel
might destroy the file system structure. However, any experimen-
tal results do not show such cases.

5.3 Scope Analysis
This section shows the detailed analysis of kernel traces. Error

propagation are thoroughly examined in terms of their scope.
5.3.1 Process-local Errors

Table 2 shows typical examples of each failure type caused by
process-local errors. The table lists an injected fault type, a mem-
ory address where the fault is injected, the location at the source
code level, and the instructions and C-code before/after the fault
injection.

(a) Segmentation Failure: As shown in Fig. 2 (b), 56% of the
process-local errors lead to segmentation failures. Table 2 (a)
shows the detail of a typical case that leads to a segmentation
failure. In this case, a null pointer is passed to a function that
expects the passed pointer not to be null. This fault is injected by
INVERSE FAULT. More concretely, the code

if (sd->s_iattr) {
set_inode_attr(inode, sd->s_iattr);

...

is modified to

if (!sd->s_iattr) { // FAULT injected here
set_inode_attr(inode, sd->s_iattr);

...

In the original code, set inode attr is called only when

c© 2013 Information Processing Society of Japan 4



IPSJ Transactions on Advanced Computing Systems Vol.6 No.2 1–10 (Apr. 2013)

(a) Activated/Not Activated Faults
This figure shows the relative frequency with which injected faults are acti-
vated or not. The number at the end of each bar represents the total number
of injected faults.

(b) Observed Failures
This figure shows the relative frequency of not-manifested errors and the
failure categories of manifested errors. The number at the end of each bar
represents the total number of activated faults.

(c) Fault Injection Sites
This figure shows the relative frequency on which directory in the kernel
source code faults are injected. The number at the end of each bar repre-
sents the total number of injected faults.

(d) Fault Activation Sites
This figure shows the relative frequency on which directory in the kernel
source code faults are activated. The number at the end of each bar repre-
sents the total number of activated faults.

Fig. 1 Overall Fault Injection Results.

sd->s_iattr is not NULL. However, set inode attr is
called when sd->s_iattr is NULL in the modified code. As a
result, parameter iattr in set inode attr becomes NULL as
shown below. The dereference of iattr causes a segmentation
fault.

void set_inode_attr(inode, iattr)
{

// Failure

inode->i_mode = iattr->ia_mode; // iattr is NULL

In this case, a null pointer is passed across function calls but no
global data structures are updated with the incorrect null pointer.
Thus, the scope of error propagation is process-local.

(b) BUG ON: As shown in Fig. 2 (b), 19% of the process-
local errors lead to BUG ON. An example of this failure is caused
by IRQ FAULT, which removes the call to local irq restore
to forget to enable disabled interrupts. After this fault is acti-

vated, the kernel continues to run with the interrupts disabled.
Meanwhile, lookup bh lru(bdev, block, size) is invoked.
This function eventually calls check irqs on, which executes
BUG ON(irq disabled()). Since the interrupts are disable here
(if the fault is not injected, the interrupts are enable here), BUG ON
macro successfully detects this incorrect status of interrupts.

This experimental result suggests that BUG ON macro is effec-
tive to prevent global error propagation. If BUG ON is not used
to check the status of interrupts, blocking functions are called
with the interrupts disabled and thus, the deadlock or other seri-
ous situations would be caused. In the current versions of Linux,
BUG ON macro is inserted manually according to the developers’
experiences and intuitions. We expect that more systematic meth-
ods are required in order to help the developers insert BUG ON
macros correctly.

c© 2013 Information Processing Society of Japan 5



IPSJ Transactions on Advanced Computing Systems Vol.6 No.2 1–10 (Apr. 2013)

(a) Error Propagation Scope
This figure shows the relative frequency of process-local or kernel-
global errors. The number at the end of each bar represents the total
number of investigated errors.

(b) Failure Type by Scope
This figure shows the relative frequency with which the kernel causes
different failure categories after fault activations. The number at the end
of each bar represents the total number of investigated errors.

Fig. 2 Overall Result of Scope Analysis.

(c) Panic: As shown in Fig. 2 (b), 6% of the process-local er-
rors cause kernel panic. Table 2 (c) shows a typical example of
panic. In this case, a fault is injected into an interrupt handler.
More concretely, an argument to function neigh update is cor-
rupted and thus the address of neigh->dev, which is calculated
from the corrupted argument, becomes an incorrect value. As
a result, the first access to neigh->dev causes a segmentation
failure. Since this code is executed in an interrupt handler, the
kernel invokes panic instead of causing a segmentation failure.
Interrupt contexts temporarily use a kernel stack of the current
process’s kernel context in the Linux kernel. We do not observe
any structural differences between interrupt and processes’ con-
texts when we analyze the error propagation scope. Therefore, we
regard the context as a process’s context and the error confined in
it is process-local.

(d) Fail silence violation: There are 15% of the process-local
errors that lead to fail silence violation as shown in Fig. 2 (b). In
our experiments, Fail silence violations often derive from kernel
error detections. Despite their correctness, the kernel starts to
handle the detected errors by the usual error processing manner.
Besides, such error processing tends to simply abandon the cur-
rent processing and return a corresponding erroneous value (e.g.,
EINVAL), therefore, global data structures are merely updated be-
fore fail silence violations occur. In our experiments, we do not
observe any kernel-global errors that lead to fail silence viola-
tions.

The following is a typical example of fail silence violation.
In this example, the injected fault generates a situation in which
there is no unused network sockets. So, the Linux kernel consid-
ers no network sockets can be created. The following is simplified
code for explanation. The original code

int sock_alloc_fd(...) {
int fd;
fd = get_unused_fd(); // Fault injected here

...

return fd;
}

is modified to

int sock_alloc_fd(...) {
int fd;
get_unused_fd(); // "fd =" is removed

...

return fd;
}

In the modified code, fd is not initialized. In our exper-
iment, uninitialized fd happens to be negative. As a result,
sock alloc fd returns a negative value to its caller. The caller
is:

// sock_alloc_fd is called here

// retval becomes negative

retval = sock_alloc_fd(sock);

// Linux considers no socket

// can be allocated

if (retval < 0)
goto out_release;

...

out_release:

// socket is released and

// a negative value is returned

sock_release(sock);

return retval;

In the above code, the Linux kernel considers there is no room
to create a new socket because sock alloc fd returns a nega-
tive value. As a result, a process cannot create a new socket even
though there is enough room to create new sockets.

(e) Hang: As shown in Fig. 2 (b), there are 5% cases in
which the Linux kernel hangs up. The typical example is
shown in Table 2 (e). In this example, IRQ FAULT is injected
into do softirq which schedules pending software interrupts.
When do softirq returns, the kernel hangs immediately with-
out dumping the stack trace. So, we cannot trace the kernel be-
havior using KDB. Since we can not determine from the source
code which function is executed after do softirq returns, fur-
ther information cannot be obtained in this case.
5.3.2 Kernel-global Errors

16% of the errors are kernel-global as shown in Fig. 2 (a), while
all the other errors are process-local. Some of the process-local

c© 2013 Information Processing Society of Japan 6



IPSJ Transactions on Advanced Computing Systems Vol.6 No.2 1–10 (Apr. 2013)

Table 2 Faults causing process-local errors.

(a) Segmentation Failure

Fault INVERSE FAULT
Memory Address sysfs_new_inode+0x5c

Code Location fs/sysfs/inode.c, line:134

Original Instruction je sysfs_new_inode+0x97

Modified Instruction jne sysfs_new_inode+0x97

Original Code if (sd->s_iattr) {

Modified Code if (!sd->s_iattr) {

(b) BUG ON

Fault IRQ FAULT
Memory Address kfree+0x5f

Code Location mm/slab.c line: 3463

Original Instruction push %esi popf

Modified nstruction nop nop

Original Code local_irq_restore(flags);

Modified Code deleted

(c) Panic

Fault INTERFACE FAULT
Memory Address neigh_update+0x1ed

Code Location
net/core/neighbour.c

line:894-895

Original Instruction mov 0xc(%ebp), %eax

Modified Instruction nop nop nop

Original Code
void (*update)(...) =

neigh->dev->

header_cache_update;

Modified Code
void (*update)(...) =

(struct netdevice *)(0x6)->

header_cache_update;

(d) Fail silence violation

Fault SRC&DST FAULT
Memory Address sock_alloc_fd+0xb

Code Location net/socket.c, line:380

Original Instruction mov %eax, %ebx

Modified Instruction mov %esp, %ebx

Original Code fd = get_unused_fd();

Modified Code get_unused_fd();

(e) Hang

Fault IRQ FAULT
Memory Address do_softirq+0x48

Code Location kernel/softirq.c, line:215

Original Instruction push %esi popf

Modified Instruction nop nop

Original Code local_irq_restore(flags);

Modified Code deleted

errors propagate across multiple function calls but the propaga-
tions are limited to function arguments, return values, and local
variables. This is probably because global data structures, shared
among multiple processes, are used to store stable, consistent
states rather than transient, temporary states. Experienced pro-
grammers like Linux developers write defensive code that checks
data integrity and/or confirms the assumptions on function argu-
ments. A data is checked again and again before it is written to
global data structures.

Table 3 shows the detail of a representative kernel-global error.
In this case, a fault is injected into a function that manages red-
black trees, a type of self-balancing binary search tree, used for
storing sortable key-value pairs. More specifically, INTERFACE
FAULT is injected into the call to rb erase color. Function
rb erase color takes three arguments: node, parent, and
root whose types are all struct rb node*. By the INTER-

Table 3 A Kernel-global error.

Fault INTERFACE FAULT
Memory Address rb_erase+0x1e9

Function lib/rbtree.c, line:178

Original Instruction mov 0x0(%ebp),%ebx

Modified Instruction nop nop nop

Original Code node = root->rb_node;

Modified Code node = parent->rb_right;

Table 4 Summary of Not-Manifested Errors. This table shows the number
of errors for each reason that activated errors do not manifest them-
selves. We conclude that an error does not manifest itself when one
of these situation is observed during the tracing of error propaga-
tion. The untraceable cases are discussed in detail.

Reason # of errors
Corrected 8
Not affecting 10
Error processing omitted 18
Incorrect warning 4
Almost correct operation 15
Aging 6
Lucky 40
Untraceable 11
Total 112

FACE FAULT, argument node that should be root->rb node is
modified to parent->rb right. As you can imagine from the
arguments, rb erase color manipulates tree structures in the
heap. The incorrect argument leads to the corruption of the global
tree structures. When the kernel traverses a broken red-black tree,
it crashes due to segmentation fault. Since global data structures
are corrupted by injected faults, the scope of this error is kernel-
global.

There is one important thing to be noted. The fault shown in
Table 3 corrupts global data structures. However, the erroneous
values are never propagated to other processes than the faulty one.
Other processes can continue to run reliably because the error
can be isolated. This is because the faulty process can hold a
lock (more precisely, semaphore) for exclusive access to global
data structures. If a faulty context does not release the lock,
other processes cannot access the broken data structures; the cor-
rupted data is never propagated to other processes. This example
shows a deadlock leads to fail-stopping behavior although dead-
lock should be avoided. We found that deadlock prevents contexts
from reading erroneous values, which may cause some incorrect
kernel behavior like file system corruption. However, further re-
search effort is required to apply this property of synchronization
primitives to error recovery in practice.

5.4 Not-Manifested Errors
To understand Linux behaviors under software faults, it is crit-

ically important to analyze the reason why activated faults do not
manifest themselves. As pointed out in many literatures, acti-
vated faults do not always manifest themselves. In our campaign
of fault injection, These “not-manifested” errors are observed in
64% of the fault activations. If an error is corrected during the
execution, the analysis aids in proposing defensive coding styles
effective for kernels.

In our experiments, we trace error propagation with the kernel
debugger until the kernel detects an error or we are sure of the
error not manifesting itself. Table 4 shows the summary of the

c© 2013 Information Processing Society of Japan 7



IPSJ Transactions on Advanced Computing Systems Vol.6 No.2 1–10 (Apr. 2013)

Table 5 Examples of Not-Manifested Errors.

(a) Corrected

Fault INIT FAULT
Memory Address sched_setscheduler+0x44

Code Location kernel/shed.c, line:4087

Original Instruction movl $0xffffffff,0xffffffec(%ebp)

Modified Instruction nop nop ... nop

Original Code int oldpolicy = -1;

Modified Code int oldpolicy;

(b) Not affecting

Fault INIT FAULT
Memory Address rebalance_tick+0xda

Code Location kernel/sched.c line: 2530

Original Instruction movl $0x0, 0xfffffff0(%ebp)

Modified nstruction nop nop ... nop

Original Code int all_pinned = 0;

Modified Code int all_pinned;

(c) Error processing omitted

Fault BRANCH FAULT
Memory Address follow_page+0xd8

Code Location mm/memory.c, line:935

Original Instruction je follow_page+0x1aa

Modified Instruction nop nop ... nop

Original Code if (!ptep) goto out;

Modified Code deleted

(d) Incorrect warning

Fault BRANCH FAULT
Memory Address net_tx_action+0x37

Code Location kernel/sched.c, line:2845

Original Instruction je net_tx_action+0x55

Modified Instruction nop nop

Original Code if (unlikely(!(x))) {

Modified Code deleted

(e) Almost correction operation

Fault INIT FAULT
Memory Address schedule+0xd2

Code Location kernel/sched.c, line:3341

Original Instruction movl 0x3b9aca99,0xffffffc4(%ebp)

Modified Instruction nop nop ... nop

Original Code run_time = NS_MAX_SLEEP_AVG;

Modified Code deleted

(f) Aging

Fault INVERSE FAULT
Memory Address mousedev_release+0x37

Code Location drivers/input/mousedev.c, line:391

Original Instruction jne mousedev_release+0x9a

Modified Instruction je mousedev_release+0x9a

Original Code if(!--list->mousedev->open){

Modified Code if(--list->mousedev->open){

(g) Lucky

Fault PTR FAULT
Memory Address tty_register_driver+0x6

Code Location drivers/char/tty_io.c, line:3733

Original Instruction mov 0x6c(%esi),%eax

Modified Instruction mov 0x6d(%esi),%eax

Original Code if(!driver->major){

Modified Code if(!*(&driver->major+0x1)){

(h) Untraceable

Fault INTERFACE FAULT
Memory Address rtnetlink_fill_ifinfo+0x2ec

Code Location net/core/rtnetlink.c, line:273

Original Instruction mov 0x68(%ebp), %eax

Modified Instruction nop nop nop

Original Code u32 mtu = dev->mtu;

Modified Code u32 mtu = dev->broadcast;

errors not manifested in our experiments. In this table, these er-
rors are classified into 8 cases, based on the reason why they do
not manifest themselves.

Corrected: “Corrected” indicates a situation in which an er-
roneous state is corrected by the Linux kernel. A typical example
of this error is as follows. As shown in Table 5, a fault is injected
to remove the initialization of oldpolicy. In the original code,
oldpolicy is initialized to -1. This error is corrected as follows.

int oldpolicy; // should be initialized to -1
...

if (unlikely(oldpolicy != -1 ....)) {
policy = oldpolicy = -1; // error corrected

Not affecting: “Not affecting” indicates a situation where an
erroneous state is not used by the kernel. For example, a local
variable is corrupted but not used at all until the end of the func-
tion after the injection, as described in Table 5 (b). In this ex-
ample, local variable all pinned, which is not initialized, is not
used in our experiments until the function returns.

Error processing omitted: “Error processing omitted” indi-
cates a situation where the code for error processing is omitted.
This error does not manifest itself during the experiments unless
the omitted error processing becomes necessary. The detail of a
typical example of this case is shown in Table 5 (c).

Incorrect warning: “Incorrect warning” indicates a situation
where warning messages are displayed even though those mes-
sages should not be displayed. This is caused by the omission
of conditional jumps that judge if warning messages should be

displayed. The detail is shown in Table 5 (d).
Almost correct operation: “Almost correction operation” in-

dicates a situation where the kernel behavior is slightly changed
from the expected one but the kernel continues to run as normal.
Most of these errors are related to scheduling parameters that af-
fect the scheduling behavior of the kernel. In the example shown
in Table 5 (e), the code for initializing local variable run time is
removed by fault injection. Since run time is used to calculate
the sleeping time of processes, it changes the scheduling behav-
ior if set improperly. As shown below, even if run time becomes
erroneously large, the kernel code corrects the value. As a result,
the kernel continues to run almost normally.

...

// Following statement removed

run_time = NS_MAX_SLEEP_AVE;

...

// prev->sleep_avg becomes incorrect here

prev->sleep_avg -= run_time;

// prev->sleep_avg corrected if necessary

if ((long)prev->sleep_avg <= 0)
prev->sleep_avg = 0;

Aging: “Aging” indicates a situation where resource leakage
occurs. Software aging is a serious problem but the aging er-
rors seem not to manifest themselves during the short duration
of fault injection experiments. An example of aging is shown
in Table 5 (f). Before the fault injection, a reference counter is
checked and the resource for a mouse device is released in this
clause. Although this environment does not use mouse devices,

c© 2013 Information Processing Society of Japan 8



IPSJ Transactions on Advanced Computing Systems Vol.6 No.2 1–10 (Apr. 2013)

the unreleased memory might pressure the kernel memory.
Lucky: “Lucky” indicates a situation where an error is acti-

vated but happens to cause nothing wrong. For example, INIT
FAULT removes code for initializing a local variable to zero,
whose value happens to be zero. Another example (shown in Ta-
ble 5 (g)) is from tty register driver, which is used to reg-
ister a new major device. A PTR FAULT is injected into this
function. In this case, the major device number of the new device
becomes an unexpected number but the operation itself continues
normally.

Untraceable: There are 11 cases in which we cannot trace er-
ror propagation completely. The faults are injected into the code
for the socket management, and corrupt packet headers to be sent
out to network. This example is shown in Table 5 (h). The ac-
tual operations of sending out the packets are performed asyn-
chronously. So, we cannot trace the sending-out operations with
the kernel debugger. We carefully observe the network behav-
ior of the target machine but notice nothing in particular. This
is probably because the packets with incorrect headers are de-
stroyed somewhere deeper in network drivers. As a result, this
type of errors does not manifest themselves.

6. Discussion

Our findings through the experiments are threefold. First, the
Linux kernel is coded in a defensive way. This means that the
Linux kernel frequently checks the integrity of function argu-
ments, return values, and other important variables. This defen-
sive coding style would have been introduced to ease debugging
and diagnosis of failures. A typical example of the defensive
coding in Linux is the use of BUG ON macro, which checks the
integrity of the kernel internal states. The use of BUG ON aids in
early error detections to prevent error propagation over the entire
kernel. One interesting direction towards more resilient Linux
is to develop a systematic method that determines the locations
where BUG ON macros are inserted and conditions given to those
macros. Current static analysis tools are expected to give invalu-
able hints on the locations and conditions of BUG ON macros. We
show the Linux kernel that is used in this work is coded in a defen-
sive way in terms of checking errors frequently. However, com-
paring the various analyses with different Linux kernel versions
or systems software will show us other defensive ways of coding
which is not discussed in this work.

Second, the scope of error propagation is mostly process-local
in Linux. As you can see from our experimental results, most of
the activated faults are process-local and do not propagate out-
side the contexts of faulty processes. This implies that the Linux
can be rejuvenated without reboots with high probability. If an
error does not propagate outside the context of the faulty pro-
cess, the kernel states (including global data structures and other
processes’ contexts) are consistent. Thus, we can recover a con-
sistent kernel state simply by revoking the context of the faulty
process.

From our experiments, we have learned that our definition of
“process-local” and “kernel-global” is somewhat ambiguous and
there is room for further discussion. For example, some errors
that cause software aging can be viewed as kernel-global because

a resource leakage of a process affects all the other processes in
the system. On the other hand, those errors can be viewed as
process-local because no global data structures are corrupted; all
processes are viewing consistent image of global data structures.

Finally, the global propagation of errors occurs in lower rates
(16% of the failures). This is probably due to the nature of the de-
fensive programming style in the Linux kernel. Data integrity is
checked again and again before the data is written to global data
structures.

One interesting finding in our investigation is that even if a
global data structure is corrupted, the corrupted data cannot be
accessed from the processes other than the faulty process. This is
because global data structures are usually protected with an ex-
clusive lock to avoid concurrent access to them. When a faulty
process corrupts a global data structure, it often causes a segmen-
tation fault before it exits the critical section. As a result, no other
processes can access to the corrupted data structures.

This finding suggests that a new style of defensive program-
ming. If a faulty process is revoked with a lock acquired, other
processes cannot proceed because they cannot acquire the lock.
To avoid this, when a faulty process with some locks acquired is
revoked, the kernel should release the locks. Note that this design
of the kernel increases the possibility that an error is propagated
outside the faulty process context through corrupted global data
structures. To prevent other processes from accessing corrupted
data structures, when a process enters a critical section previously
locked by a faulty process, it should check the integrity of the
global data structures. If the integrity is confirmed, the process
can proceed to access the data structures. Otherwise, the pro-
cess tries to cure the corrupted data structures. If it succeeds, the
process can proceed normally. If it fails, the process gives up
accessing the data and calls panic to crash the kernel.

7. Conclusion

This paper investigates the Linux behavior under software
faults. Our objective of this study is to gain some insight into 1)
defensive coding style, 2) reboot-less rejuvenation, and 3) gen-
eral recovery mechanisms of the Linux kernel. In particular, this
paper focuses on the analysis on the scope of error propagation.
If an error propagates inside the context of the faulty process, it is
called process-local. If an error propagates outside the context of
the faulty process, it is called kernel-global. To this end, we con-
duct an experimental campaign of fault injection on Linux. Since
our focus is on software faults (in other words, software bugs), we
use an existing software fault injector especially designed for in-
jecting kernel-level software faults. It injects low- and high-level
software faults. It is widely used in the OS research community.
The major findings include:
• The Linux kernel is coded in a defensive way. It frequently

checks the integrity of function arguments, return values,
and other important variables. This style of coding con-
tributes the resilience to activated faults. In particular, it
contributes to lower rates of error manifestation (36% of the
fault activation) and global propagation (16% of the fail-
ures). In our experiments, activated errors are often cor-
rected or mitigated to avoid serious failures. This is because

c© 2013 Information Processing Society of Japan 9



IPSJ Transactions on Advanced Computing Systems Vol.6 No.2 1–10 (Apr. 2013)

the Linux kernel checks data integrity again and again before
updating global data structures.

• The scope of error propagation is mostly process-local in
Linux. This implies that Linux can be rejuvenated without
reboots with high probability. If an error does not propagate
outside the context of a faulty process, time-consuming re-
boots can be avoided by revoking a faulty context because
the kernel does not need to verify every kernel state. This
result suggests that the kernel can recover from some fail-
ures by revoking a faulty context and undoing its resource
acquisitions, for instance.

• Global propagation of errors occurs with low probability. In-
terestingly, even if a global data structure is corrupted, the
corrupted data cannot be accessed from the other processes
if the faulty process is killed within a critical section.

We believe our results of experimental fault injection suggest
many directions of further research. As discussed in Section 6,
we can take various approaches to improve the dependability of
the Linux kernel. First, we expect that a tool for effectively insert-
ing BUG ONmacros are required. Second, the Linux kernel can be
rejuvenated without reboots with high probability. A mechanism
that distinguishes a situation that can be recovered without re-
boots needs to be developed. Finally, the kernel can be recovered
from kernel-global errors if we develop a sophisticated mecha-
nism of handling errors in critical sections.

References

[1] Palix, N., Thomas, G., Saha, S., Calvés, C., Lawall, J. and Muller, G.:
Faults in Linux: Ten Years Later, Proc. ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’11), pp.305–318 (2011).

[2] Yoshimura, T., Yamada, H. and Kono, K.: Is Linux Kernel Oops Use-
ful Or Not?, Proc. 8th Workshop on Hot Topics in System Dependabil-
ity (HotDep’12) (2012).

[3] Ng, W.T. and Chen, P.M.: The Systematic Improvement of Fault Tol-
erance in the Rio File Cache, Proc. 29th Symposium on Fault-Tolerant
Computing (FTCS ’99), pp.76–83 (1999).

[4] Swift, M.M., Bershad, B.N. and Levy, H.M.: Improving the Reliabil-
ity of Commodity Operating Systems, Proc. 19th ACM Symposium on
Operating Systems Principles (SOSP ’03), pp.207–222 (2003).

[5] Swift, M.M., Annamalai, M., Bershad, B.N. and Levy, H.M.: Recov-
erying Device Drivers, Proc. 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’04), pp.1–16 (2004).

[6] Depoutovitch, A. and Stumm, M.: Otherworld - Giving Applications
a Change to Servive OS Kernel Crashes, Proc. 5th European Confer-
ence on Computer Systems (EuroSys ’10), pp.181–194 (2010).

[7] Yamakita, K., Yamada, H. and Kono, K.: Phase-based Reboot:
Reusing Operating System Execution Phases for Cheap Reboot-based
Recovery, Proc. 41st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’11), pp.169–180 (2011).

[8] Ng, W.T. and Chen, P.M.: The Design and Verification of the Rio File
Cache, IEEE Trans. Comput., Vol.50, No.4, pp.322–337 (2001).

[9] Gu, W., Kalbarczyk, Z., Iyer, R.K. and Yang, Z.: Characterization of
Linux Kernel Behavior under Errors, Proc. 2003 IEEE International
Conference on Dependable Systems and Networks (DSN ’03), pp.459–
468 (2003).

[10] Gu, W., Kalbarczyk, Z. and Iyer, R.K.: Error Sensitivity of the Linux
kernel Executing on PowerPC G4 and Pentium 4 Processors, Proc.
4th IEEE International Conference on Dependable Systems and Net-
works (DSN ’04), pp.887–896 (2004).

[11] Chen, D., Jacques-Silva, G. and Mealey, B.: Error Behavior Com-
parison of Multiple Compuing System: A Case Study Ui Linux
on Pentium, Solaris on SPARC, and AIX and POWER, Proc. 14th
IEEE Pacific Rim International Symposium On Dependable Comput-
ing (PRDC ’08), pp.339–346 (2008).

[12] Patterson, D.A.: An Introduction to Dependability, ;login;, Vol.27,
No.4 (2002).

[13] Yoshimura, T., Yamada, H. and Kono, K.: Can Linux be Rejuvenated

without Reboots?, Proc. IEEE 3rd International Workshop on Soft-
ware Aging and Rejuvenation (WoSAR ’11) (2011).

[14] Pham, C., Chen, D., Kalbarczyk, Z. and Iyer, R.K.: CloudVal: A
framework for validation of virtualization environment in cloud in-
frastructure, Proc. 41st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN ’11), pp.189–196 (2011).

[15] Duraes, J. and Madeira, H.S.: Emulation of Software Faults: A Field
Data Study and a Practical Approach, IEEE Trans. Softw. Eng., Vol.32,
No.11, pp.849–867 (2006).

[16] Cotroneo, D., Lanzaro, A., Natella, R. and Barbosa, R.: Experimental
Analysis of Binary-Level Software Fault Injection in Complex Soft-
ware, Proc. IEEE 9th European Dependable Computing Conference
(EDCC ’12) (2012).

[17] Chou, A., Yang, J., Chelf, B., Hallem, S. and Engler, D.: An Empir-
ical Study of Operating Systems Errors, Proc. 18th ACM Symposium
on Operating Systems Principles (SOSP ’01), pp.73–88 (2001).

Takeshi Yoshimura was born in 1988.
He received his B.E. degree from the De-
partment of Information and Computer
Science at Keio University. He is cur-
rently a graduate student at the School of
Science for Open and Environmental Sys-
tems at Keio University. His research in-
terests include dependable systems, oper-

ating systems and virtualization.

Hiroshi Yamada was born in 1981. He
received his B.E. and M.E. degrees from
the University of Electro-communications
in 2004 and 2006, respectively. He re-
ceived his Ph.D. degree from Keio Univer-
sity in 2009. He is currently an associate
professor of the Division of Advanced In-
formation Technology & Computer Sci-

ence at Tokyo University of Agriculture and Technology. His
research interests include operating systems, virtualization, and
dependable systems. He is a member of ACM, USENIX and
IEEE/CS.

Kenji Kono received his B.Sc. degree in
1993, M.Sc. degree in 1995, and Ph.D.
degree in 2000, all in computer science
from the University of Tokyo. He is an as-
sociate professor of the Department of In-
formation and Computer Science at Keio
University. His research interests include
operating systems, system software, and

Internet security. He is a member of IEEE/CS, ACM and
USENIX.

c© 2013 Information Processing Society of Japan 10


