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Abstract: We present a Bayesian analysis method that estimates the harmonic structure of musical instruments in
music signals on the basis of psychoacoustic evidence. Since the main objective of multipitch analysis is joint estima-
tion of the fundamental frequencies and their harmonic structures, the performance of harmonic structure estimation
significantly affects fundamental frequency estimation accuracy. Many methods have been proposed for estimating the
harmonic structure accurately, but no method has been proposed that satisfies all these requirements: robust against
initialization, optimization-free, and psychoacoustically appropriate and thus easy to develop further. Our method sat-
isfies these requirements by explicitly incorporating Terhardt’s virtual pitch theory within a Bayesian framework. It
does this by automatically learning the valid weight range of the harmonic components using a MIDI synthesizer. The
bounds are termed “overtone corpus.” Modeling demonstrated that the proposed overtone corpus method can stably
estimate the harmonic structure of 40 musical pieces for a wide variety of initial settings.
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1. Introduction

Popular music is usually performed by people playing multiple
instruments, for example, piano, guitar, bass, and drums, and one
or more people singing [1], [2]. Multipitch analysis is used to esti-
mate the simultaneous pitches (melodies, bass lines, and chords),
at each moment in a musical performance. Trained musicians can
do this quite accurately, and even untrained listeners can do it to a
certain extent [3]. On the other hand, this is still an unsolved prob-
lem in music signal processing [4], [5], [6], [7], [8], [9], [10], [11].
This is because music signals contain many fluctuations, includ-
ing vibrato, time-varying timber, and tempo variation. To make
matters worse, most commercially-available audio files are in
monaural or stereo format. Despite the obstacles, multipitch anal-
ysis is an important research area because the automatic extrac-
tion of pitch patterns benefits a wide range of applications, in-
cluding sound source separation [12], musical signal manipula-
tion [13], [14], [15], musical instrument identification [16], and
musical chord recognition [17], [18].

Two approaches have been taken to solving this problem: au-
ditory [8], [19] and statistical [5], [6], [7]. Auditory-approach-
based methods try to imitate the human hearing system because
humans are good at recognizing multiple pitches sounding simul-
taneously. This approach is good to a certain extent, but the es-
timation accuracy is easily saturated. Our knowledge of the hu-
man auditory system is limited, which prevents us from perfectly
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imitating it. Indeed, the recognition result of the human auditory
system is not equal to the direct output of the cochlea. The system
has a complex mechanism for tracking the sources of the sounds
we hear.

By contrast, statistical-approach-based methods try to estimate
the relationship between the pitch pattern and other musical as-
pects, including music structure [20], musical instrument [21],
harmonic structure [7], chord [22], and onset [20]. Since these
aspects strongly depend on each other, their joint estimation im-
proves the accuracy of multipitch estimation. Bayesian proba-
bilistic models [5], [6], [7], [20], [21], [22] are widely used be-
cause they are suitable for representing the probabilistic relation-
ships [23]. In this article, we focus on latent harmonic allocation
(LHA) [7], a promising Bayesian multipitch analysis method that
estimates the most likely combination of latent variables, includ-
ing fundamental frequency, pitch activity, and harmonic structure.

Successful estimation of LHA requires precise initialization
of the fundamental frequencies (F0s) and the volumes of the
sound sources, because the model contains many inappropriate
optima. Numerous techniques have been developed for solv-
ing this optimization problem. They include careful initializa-
tion [6], Gibbs sampling [24], collapsed estimation [7], [25], de-
terministic annealing [26], [27], [28], and prior distribution op-
timization [6], [7], [20], [22]. These methods, except the prior-
based ones, focus on the search for better optimal points. They
do not, however, guarantee that the global optimum corresponds
to the most suitable answer to the problem. The prior-based meth-
ods directly modify the optimal solution, so they are perceptually
more appropriate.

The aim of prior distribution optimization is to avoid invalid es-
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timation results. For example, earlier methods [5], [6] manually
set the prior distribution parameters, known as hyperparameters,
to prefer an exponentially decaying harmonic structure. How-
ever, there is an inherent problem with this approach: there is no
universal parameter for estimating the multiple pitches of all mu-
sical genres and all musical instruments. To make matters worse,
the search for an optimal parameter requires very expensive algo-
rithms like cross-validation.

Recently introduced nonparametric methods [7], [20], [22],
[29] have been widely adopted because they optimize the model
parameters automatically. While this approach is successful to
a certain extent, the estimation accuracy easily saturates because
these methods only estimate the posterior distribution that max-
imizes the model likelihood. Also, further improvement is dif-
ficult because they are purely mathematical, making it difficult
to imitate the recognition process of humans such as multipitch
analysis.

To solve the optimization problem, we introduce a new con-
struction of harmonic structure. Our method is prior-based and
free from initialization and hyperparameter optimization. The
obtained model is suitable for multipitch analysis. For each har-
monic structure model, the division of total sound volume into
M harmonic components is represented as a point on an (M − 1)-
simplex. We divide the simplex into two regions, one correspond-
ing to valid harmonic structure and the other corresponding to
invalid structure. Further, the former region is approximated as
a convex hull based on psychoacoustic evidence [30]. We con-
structed a newly designed probabilistic model that enforces all
the harmonic structure parameters contained in the convex hull
and successfully derived a variational Bayesian update.

2. Overtone Structure Modeling

2.1 Spectrogram Modeling
To obtain the multiple pitch activities of a musical piece, we

need to analyze the prominent frequency components at any mo-
ment of the piece. For this purpose, we use the constant Q trans-
form [31]. We use Xd f to denote the amplitude of the constant Q
wavelet spectrogram obtained from the input signal, d to denote
the time frame index, and f to denote the log-frequency bin index.
The log-frequency scale is defined, for the sake of simplicity, as

flog = 1200(log2 flinear − log2 440) + 5700. (1)

A common way of analyzing a spectrogram is to represent each
time frame spectrum as a linear combination of K basis spectra:

Xd f ≈
K∑

k=1

UdkHf k, (2)

where Udk represents the mixing coefficients and Hf k represents
the spectrum of the k-th basis. This idea has been used quite
extensively in music analysis [5], [6], [7], [10], [11], [12], [21],
[28], [29]. In many multipitch analysis methods, Hf k is further
decomposed into a series of harmonic component spectra:

Hf k =

M∑
m=1

τkmHkm(x f ), (3)

where τkm represents the relative weight of m-th overtone com-
ponent, Hkm represents the energy distribution function of the
component over the log-frequency axis, and x f denotes the log-
frequency of the f -th frequency bin. To simplify the discussion,
τkm and Hkm are assumed to satisfy

∑
m τkm = 1 and

∫
Hkm(x)dx =

1. M is used to denote the number of harmonic components con-
sidered in the model.

There are several ways of modeling the shape of harmonic
components. They include using a normal distribution [5], [6],
[7], using a sinc function [11], and using a nonparametric *1 spec-
trum with binary mask [32]. We use a normal distribution:

Hkm(x) = N(x|μk + om, λ
−1
k ), (4)

om = 1200 log2 m, (5)

where N denotes a normal distribution, μk denotes the funda-
mental frequency, λk denotes the precision of the distribution,
and om denotes the relative position of the m-th overtone compo-
nent on the log-frequency axis. This kind of spectrum modeling
using a normal distribution was developed by Goto and termed
“predominant-F0 estimation (PreFEst)” [5]. It was followed by
harmonic temporal clustering (HTC) [6] and latent harmonic al-
location (LHA) [7].

Generally, only the wavelet spectrogram Xd f is observed; all
the other parameters are estimated. They include Udk, μk, λk,
and τkm. The most difficult part of such methods is estimating
the overtone structure τkm. We will discuss this problem in detail
in the next section. We categorize these methods as “harmonic
clustering.”

2.2 Previous Methods
The quality of multipitch estimation depends on the accu-

racy of the harmonic structure estimation. This is illustrated by
the following situation. Imagine that the estimation result for
a basis function is μk = 440 Hz while τk = [τk1, · · · , τkM] =
[0, 0, 1, 0, · · · , 0]. The estimation result is not reliable because
the parameter is unrealistic. When we hear a harmonic sound
with that parameter, it is heard as 1,320 Hz, that is, the frequency
of only a salient component. There is thus a difference between
the estimation result and our recognition.

This conflict occurs because we have not restricted the rela-
tive overtone weight τk so that the parameter does not become
an unrealistic value. To obtain a more accurate result, we should
reflect prior knowledge about the harmonic structure in the es-
timation method. Two main techniques have been proposed for
doing this.

The first one uses an optimized conjugate prior distribution of
the relative overtone weights, so that it prefers typical harmonic
structures. PreFEst and HTC use this technique. It works well
to a certain extent, but further development is difficult because
the appropriate conjugate prior distribution cannot be determined
automatically nor universally. Since a Bayesian framework does
not provide a statistically meaningful way of training hyperpa-
rameters, they must be optimized manually or be updated using

*1 Here, the term nonparametric does not mean using an infinite mixture of
components as in Dirichlet Process.
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Fig. 1 Illustration of appropriate and inappropriate regions of a harmonic
sound. Only the first three components are shown due to high-
dimensionality.

a costly method like cross-validation. Moreover, the universality
problem is also difficult to solve. A good prior distribution should
reflect the combination of the musical instruments used to play
the target piece and the distribution of their pitch. Since the dis-
tribution varies significantly from piece to piece, their universal
distribution is unlikely to be considered. Although using infinite
LHA [7] is a possible approach to this problem, its methodology
is indirect because it tries to solve the problem of auditory recog-
nition by using a purely mathematical approach. As a result, dis-
cussion and further development of the method is difficult.

Vincent et al. [11] proposed another approach to this prob-
lem. They focused on the fact that the perceived fundamental
frequency is the greatest common divisor of the overtone compo-
nent frequencies. To make the model fundamental frequency and
the perceived one equal, they force each harmonic component in
the model to always appear with its adjacent harmonic compo-
nents. This modification to harmonic clustering also works well
to a certain extent, but further extension is difficult because the
technique does not always guarantee correspondence between the
model fundamental frequency and the perceived one.

Given these considerations, we developed a method that ex-
plicitly forces the model fundamental frequency and the per-
ceived one, also known as virtual pitch [30], to correspond.

2.3 Overtone Corpus
In contrast to previous methods, our overtone corpus (OC)

method is a more direct method that enforces desirable behav-
ior in harmonic structure estimation. As illustrated in Fig. 1, each
overtone weight vector τk is represented as a point on an (M−1)-
simplex. There are some inappropriate regions where the weight
of the upper harmonic component is too large. As a result, the
perceived fundamental frequency is a multiple of μk.

Our method avoids this situation by restricting the overtone
weight to one existing in a convex hull, which excludes inap-
propriate overtone structures. The vertices of the convex hull
are determined by a collection of single notes of musical instru-
ments. The reference signals are recorded using a musical instru-
ment digital interface (MIDI) synthesizer. Each harmonic struc-
ture is represented as a nonnegative linear combination of J tem-
plates, where J is the number of vertices. Figure 2 illustrates this
method. Let τ0

j = [τ0
j1, · · · , τ0

jM] be the j-th harmonic template
and ηk = [ηk1, · · · , ηkJ] be the mixing coefficients of the tem-
plates. We model the probabilistic energy distribution function of
k-th harmonic sound as

pk(x|ηk, μk, λk) =
J∑

j=1

ηk j

M∑
m=1

τ0
jmN(x|μk + om, λ

−1
k ). (6)

Among the parameters, τ0
jm are calculated in advance and are not

Fig. 2 Illustration of proposed overtone corpus method. Each harmonic
structure is designed as a summation of J reference harmonic struc-
tures.

Fig. 3 Upper and lower bounds of relative weight of harmonic partials of
reference signals.

updated during estimation. The total weight of each overtone is
represented as

τkm =

J∑
j=1

ηk jτ
0
jm. (7)

Due to the characteristics of a convex hull, any of its interior
points can be represented by this method, and the other points
cannot be represented. As a result, the harmonic structure is
forced to be appropriate.

This model introduces upper and lower bounds on each over-
tone weight. Let τ(min)

m be the smallest value of the m-th compo-
nent weight among J templates and τ(max)

m be the largest one:

τ(min)
m = min

j
τ0

jm, τ(max)
m = max

j
τ0

jm. (8)

It is obvious that the value τkm is between τ(min)
m and τ(max)

m because
of the non-negativity of the coefficients. The limits of the com-
ponent weights obtained in our experiments are shown in Fig. 3.

This method of restricting the mixing coefficients to ones in a
precalculated convex hull was previously and independently pro-
posed as latent variable decomposition [33]. Our contribution is
to set appropriate criteria for determining the convex hull that is
supported by the psychoacoustic evidence of pitch perception.

The most costly part of the computation is the calculation of
the responsibility, the expected value of a latent variable, which
will be described in the next section. The total computation time
is quite large and nearly proportional to the number of template
vectors. The number should be reduced without degrading per-
formance substantially. To do this, we focus on the fact that any
interior point of the convex can also be represented as a weighted
average of its vertices. This reduction can be strictly done by
using multidimensional Delaunay triangulation, but this does not
guarantee a reduction in the number of points. Therefore, we use
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Fig. 4 Illustration of vertex reduction with J = 20, I = 2, and M = 3. Ver-
tices J̃1, J̃2, and J̃3 are selected from both ends of each component
axis. Solid line indicates convex hull, J̃.

another technique that limits the maximum number of vertices in
the reduced set. The reduced set J̃ is obtained using

Ĵm = argsort
j

τ0
jm = [ ĵm1, · · · , ĵmJ], (9)

J̃m =

I⋃
i=1

{
ĵmi, ĵm,J−i+1

}
, (10)

J̃ =
M⋃

m=1

J̃m, (11)

where I determines the approximation accuracy of the convex and
J̃m is the set of vector indices that contain I indices at both ends
of the m-th axis. This method efficiently reduces the number of
vertices to less than 2IM. The reduction procedure is illustrated
in Fig. 4.

3. Latent Harmonic Allocation Combined
with Overtone Corpus

In this section, we construct a Bayesian framework that com-
bines the original LHA and our overtone corpus. Let D be the
number of time frames and F be the number of frequency bins.
To fit the observed spectrogram to the variational Bayesian (VB)
framework, we interpret spectrogram Xd f as a histogram of a
large number of independently observed particles. Therefore, we
assume that the particles in the d-th frame and the f -th frequency
bin are observed Xd f times. To do this, Xd f is multiplied by a
large scaling factor and then quantized to an integer value. In the
following, X = [X1, · · · , XD] denotes the set of all observed par-
ticles, Xd = [xd1, · · · , xdNd ] denotes the set of particles in the d-
th frame, and xdn denotes the independently observed frequency
value. Here, Nd is the number of particles observed in the d-th
frame. For each observation xdn, we introduce a latent variable
zdn. This is a KJM-dimensional vector. zdnk jm = 1 indicates that
observation xdn is produced by the m-th overtone of the j-th tem-
plate of the k-th harmonic sound. Further, α0, β0, γ0, δ0, m0, and
w0 denote the hyperparameters of the model. The likelihoods of
the proposed model are stated as

p(X|Z, μ, λ) =
∏

dnk jm

N(xdn|μk + om, λ
−1
k )zdnk jm , (12)

p(Z|π, η) =
∏

dnk jm

(
πdkηk jτ

0
jm

)zdnk jm
, (13)

and the prior probabilities are stated as

p(π) =
D∏

d=1

Dir(πd |α0) ∝
D∏

d=1

K∏
k=1

π
α0

k−1
dk , (14)

p(η) =
K∏

k=1

Dir(ηk |β0) ∝
K∏

k=1

J∏
j=1

η
β0

j−1

k j , (15)

Fig. 5 Graphical model of proposed method. Single solid lines indicate
latent variables, and double solid lines indicate observed variables.

p(μ, λ) =
K∏

k=1

N(μk |m0, (γ0λk)−1)W(λk |w0, δ0), (16)

where Dir denotes a Dirichlet distribution and W denotes a
Wishart distribution. Figure 5 shows a graphical model of our
method.

The latent variables of this model are Z, π, η, μ, and λ. The
goal of estimation is to obtain their joint posterior distribu-
tion, p(Z, π, η, μ, λ|X). This is an intractable problem, so we
use variational Bayesian approximation that decomposes it as
p(Z, π, η, μ, λ|X) � q(Z)q(π, η, μ, λ). We update q(Z) and
q(π, η, μ, λ) iteratively to search for a local optimum of approx-
imation.

3.1 VB-E Step
In the VB-E step, we calculate ρdnk jm = E[zdnk jm] using the

temporal estimation of π, η, μ, and λ:

log q∗(Z) = Eπ,η,μ,λ
[
log p(X,Z, π, η, μ, λ)

]
+ const.

=
∑

dnk jm

zdnk jm log ρdnk jm + const., (17)

where ρdnk jm is calculated as

log ρ̃dnk jm = E
[
log πdk

]
+ E

[
log ηk j

]
+ log τ0

jm

+ E
[
logN

(
xdn|μk + om, λ

−1
k

)]
, (18)

ρdnk jm =
ρ̃dnk jm∑

k jm ρ̃dnk jm
. (19)

3.2 VB-M Step
In the VB-M step, we calculate the variational posterior distri-

bution of π, η, μ, and λ. Since all the prior distributions are conju-
gate, their variational posterior probability q(π, η, μ, λ) is decom-
posed as

q(π, η, μ, λ) =
D∏

d=1

q(πd)
K∏

k=1

{q(ηk)q(μk, λk)} , (20)

where

q(πd) = Dir(πd |αd), q(ηk) = Dir(ηk |βk), (21)

q(μk, λk) = N(μk |mk, (γkλk)−1)W(λk |wk, δk). (22)

The decomposed posterior distributions are described with the
hyperparameters αdk, βk j, γk, δk, mk, and wk. These values are
calculated as
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Table 1 Parameters of proposed method.

Model parameters
Symbol Description
x f log-frequency of f -th frequency bin
om relative position of m-th overtone component
Observed and latent variables
Symbol Description
xdn log-frequency of independent observation
zdnk jm indicator of class allocation
μk , λk log-frequency and precision of harmonic components
πdk relative weight of k-th sound
ηk j relative weight of j-th template
τ0

jm overtone amplitude ratio of j-th template
Prior and posterior hyperparameters
Symbol Description
ρdnk jm temporal posterior estimation of zdnk jm

α0
k , αdk prior and posterior hyperparameters of πdk

β0
j , βk j those of ηk j

m0,mk those of μk

γ0, γk those of μk

w0, wk those of λk

δ0, δk those of λk

αdk = α
0
k + Ndk, βk j = β

0
j + Nk j, (23)

γk = γ0 + Nk, δk = δ0 + Nk, (24)

mk =
γ0m0 +

∑
f m N f km(x f − om)

γ0 + Nk
, (25)

w−1
k = w

−1
0 + γ0m2

0 +
∑
f m

N f km(x f − om)2 − γkm2
k . (26)

Nk,Ndk,Nk j, and Nf km are called sufficient statistics and are cal-
culated as

Nk =
∑
dn jm

ρdnk jm, Ndk =
∑
n jm

ρdnk jm, (27)

Nk j =
∑
dnm

ρdnk jm, Nf km =
∑
d j

∑
xdn=x f

ρdnk jm, . (28)

The main symbols of the model are described in Table 1.

3.3 Implementation Issues
Since the calculation of the proposed method is heavy, we op-

timized implementation. First, we omit the calculation of the re-
sponsibility at the tail of Gaussian distribution. To do this, the cal-
culation is performed only in mk+om−Wk ≤ x f ≤ mk+om+Wk for
the m-th harmonic partial of the k-th harmonic sound. The width
Wk is determined as the maximum of the following two values:

Wk = max(W ′k, 200 [cents]), (29)

W ′k =
3√
E [λk]

. (30)

The calculation of LHA is performed as its definition because the
computation time is relatively short. Second, we do not retain
all the values of ρdnk jm in memory; instead we retain only suf-
ficient statistics. The calculated responsibilities are immediately
summed up to the statistics. This optimization greatly reduces
the space complexity. Third, the calculation is parallelized using
OpenMP [34].

4. Evaluation

To evaluate the robustness of the proposed model, we con-
ducted multipitch estimation experiments using 40 musical pieces
with three initialization conditions.

4.1 Corpus Construction
We recorded 80 General MIDI (GM) instrument sounds us-

ing a MIDI synthesizer (Roland SD-80). They were recorded at
A4 (440 Hz) for one second and then transformed into wavelet
spectrograms using Gabor wavelets. Instruments 81 to 128 were
omitted for simplicity because most of them are artificial sounds,
which would complicate the discussion of pitch validity. Tem-
plate overtone structures were filtered using the following three
criteria.
4.1.1 Harmonicity

First, we chose instruments that contain more than 50% of their
energy on the harmonic partials. More specifically, the instru-
ments that satisfied

D∑
d=1

M∑
m=1

∑
am<x f<bm

Y ( j)
d f ≥

D∑
d=1

F∑
f=1

Y ( j)
d f

2
(31)

were selected. Here,

am = f (log)
m − 100 [cents], (32)

bm = f (log)
m + 100 [cents], (33)

Y ( j)
d f is the wavelet spectrogram of the j-th instrument sound, and

f (log)
m is the log-frequency of the m-th harmonic partial.

4.1.2 Pitch Validity
Second, we chose instruments with valid pitch [35]. The valid-

ity was measured using subharmonic summation [30]. The mea-
surement was done using a pitch salience p f :

p f =

D∑
d=1

M∑
m=1

(0.84)mY ( j)
d, f+gm

, (34)

where gm is the offset of the m-th harmonic partial. The in-
struments that did not satisfy 5,650 [cents] ≤ argmax p f ≤
5,750 [cents] were omitted. Here, 5,700 cents is the log-
frequency of 440 Hz.
4.1.3 Filtering

Next, we integrated the spectrograms over time and each over-
tone frequency band, f̃m ≤ x f < f̃m+1, to create the overtone
weights:

f̃m =

(
m − 1

2

)
× f0, τ0

jm ∝
D∑

d=1

∑
f̃ (log)
m ≤x f< f̃ (log)

m+1

Y ( j)
d f , (35)

where f0 is the fundamental frequency and f̃ (log)
m is the corre-

sponding log-frequency of f̃m.
The obtained vertices, τ0

jm, were reduced using the criteria ex-
plained in Section 2.3. We set I = 2 and then the size of the
corpus, J, became 14. All the template candidates and the se-
lected ones are represented in Fig. 6. These graphs indicate that
the upper harmonic partials generally had less energy than the
lower ones. This algorithm is more objective than the prior corpus
selection algorithm [36]. Following the procedure, we automati-
cally obtain a convex hull corresponding to appropriate harmonic
structures.
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Fig. 6 All overtone template candidates and selected ones. Illustrations
show projection of overtone templates to different axes. Solid line
indicates convex hull used in multipitch estimation.

4.2 Estimation Target
From the RWC Music Database [37], we used five piano solo

pieces (RM-J001 to RM-J005), five guitar solo pieces (RM-J006
to RM-J010), ten jazz duo pieces (RM-J011 to RM-J020), ten
jazz pieces played with three or more players (RM-J021 to RM-
J030), and ten classical chamber pieces (RM-C012 to RM-C021)
to compare the performance of the proposed method with that
of LHA. They were recorded using another MIDI synthesizer
(Yamaha MOTIF-XS) to generate audio signals. All the drum
tracks were muted, and the number of players excluded the drum
player. The recorded signals were truncated to the first 32 sec-
onds to reduce the computational time. They were transformed
into wavelet spectrograms using Gabor wavelets with a time res-
olution of 16 [ms], frequency bins from 30 to 3,000 [Hz], and fre-
quency resolution of 12 [cents]. This was done using constant-Q
transform [31], and the Q-factor was set to 0.2.

4.3 Experimental Setting
In the experiment, three different initializations of the model

were evaluated: random, linear, and exponential. The first ini-
tializes the responsibility parameters, and the other two initialize
the other parameters to start estimation. For the random initializa-
tion, we initialized ρdnkm or ρdnk jm by using a uniform distribution.
Here, ρdnkm is the responsibility parameter in the original LHA.
This initialization setting tests model stability against initializa-
tion because this is substantially the worst case. This is because
it uses no prior knowledge about model parameters. For the latter
two, the model fundamental frequencies mk were initialized from
33 Hz (C1) to 2,093 Hz (C7), which reflected the scale of equal
temperament. Their standard deviations, σk = (wkδk)−1/2, were
initialized as 50 [cents]. For the linear initialization, the overtone
weights were initialized as uniform; for the exponential one, they
were initialized as decaying exponentially. The relative weight
of each harmonic structure of each time frame, πdk, was initial-
ized proportionally to the sum of the amplitudes of the nearest
frequency bins of its overtones. For example, the exponential ini-
tialization of LHA was done using

αdk ∝
M∑

m=1

2−mXd fkm , βkm ∝ 2−m, (36)

γk =

D∑
d=1

αdk, δk =

D∑
d=1

αdk, w
−1
k = δk (50 [cents])2 . (37)

For the initialization of αdk and βkm, their total sums were set
identical to the number of observation particles to imitate the up-
date equation of the standard VB-M step. Since the proposed
method represents the overtone component weight τkm as a sum-
mation of other parameters, it is impossible to initialize them di-

Table 2 Calculated F-measures: rand stands for random initialization, lin-
ear stands for linear initialization, and exp stands for exponential
initialization.

LHA OC-LHA (proposed)
Music type rand linear exp rand linear exp
Piano solo 0.339 0.535 0.586 0.563 0.626 0.584

Guitar solo 0.137 0.514 0.745 0.659 0.736 0.710
Jazz (duo) 0.228 0.532 0.559 0.484 0.555 0.542

Jazz (trio∼) 0.258 0.478 0.559 0.474 0.542 0.531
Chamber 0.247 0.374 0.496 0.464 0.539 0.509

rectly. Instead, we optimized βk j by using EUC-NMF [38] so that
the total overtone weight

∑
j βk jτ jm approximated the desired one.

The iteration of EUC-NMF was truncated at 100 iterations.
For the evaluation, all the prior distributions were set as non-

informative. That is, α0, β0, δ0, and w0 were set to unity, γ0 was
set to 10−3, and m0 was set to zero. Model complexities K, J, and
M were 73, 14, and 6, respectively. The number of overtones M

was determined in accordance with the setting of HTC [6]. The
estimation was truncated at 1,000 iterations for the random ini-
tialization, and 100 iterations for the linear and exponential ones.
These truncation points were determined experimentally on the
basis of estimation accuracy saturation.

After the iterations, we calculated the pitch activity by using
the posterior hyperparameters. Let r be the threshold. For each
basis of each time frame, those satisfying Ndk ≥ r maxdk Ndk were
interpreted as being heard. We tried r between 0 and 1 in steps
of 0.01 for each piece, initialization, and method to achieve fair
comparison between all settings. Note that this procedure evalu-
ates potential performance, not actual performance, because the
optimization of the threshold itself is a problem remaining to be
solved. Afterwards, the resultant temporal activity of μk was con-
sidered as that of the nearest note number.

We used D × 128 binary matrix representation in the perfor-
mance evaluation. We used the F-measure for comparison, that
is, the harmonic mean of precision and recall. Let N be the num-
ber of true entries in the estimated matrix, C be the number of
entries in the ground truth matrix, and R be the number of correct
true entries in the estimated matrix. The F-measure was calcu-
lated using F = 2R/(N + C). By definition, F = 1 means perfect
estimation and F = 0 means failure, so the larger the F-measure,
the better the performance.

4.4 Results
4.4.1 F-measure

Table 2 shows the overall performance. Since LHA with expo-
nential initialization and the proposed method with linear initial-
ization had similar performances, they both worked properly once
the appropriate initialization had been completed. Comparison of
the linear and exponential columns shows the proposed method
was more robust against initialization. This is because the perfor-
mance degradation between the optimal and suboptimal settings
was smaller with our method for all five musical genres. The
initialization sensitivity of LHA appears in the random column
because LHA could not estimate the appropriate overtone struc-
ture in that case. By contrast, our method was considerably more
robust against initialization.
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Fig. 7 Precision-recall curve of three initialization settings for previous and
proposed method. Black and blue lines show results of previous and
proposed methods, respectively. Optimal performance shows result
of exponential initialization for previous method and that of linear
one for proposed method.

4.4.2 Precision-recall Curve
The precision-recall curves of the previous and proposed meth-

ods are shown in Fig. 7. The plotted values are the average over
the 40 target musical pieces. During plotting, the threshold of
estimation r varied from 0 to 0.5. These graphs indicate the esti-
mation stability of the proposed method against the initialization
settings.
4.4.3 Example

The ground truth and estimated pitch salience results of the
previous and proposed methods obtained using the random ini-
tialization are shown in Fig. 8. The proposed method captured
the pitch salience more accurately. This indicates that the pro-
posed method is able to extract the pitch salience automatically
even from random initialization.

Figure 9 shows an example result for overtone weights. LHA
tended to estimate the source models using only a second over-
tone or only a third overtone while the proposed method did not
estimate the source models using incorrect overtone weights.

4.5 Effect of Convex Vertex Reduction
We briefly evaluated the effect of the vertex reduction de-

scribed in Section 2.3. The experiment was limited in scale due
to the time complexity.

Figure 10 shows the F-measure calculated for five musical
pieces using four different corpus sizes against random initializa-
tion. The corpus size (7, 14, 21, and 70) corresponds to approx-
imation accuracy I (1, 2, 3, and 35, respectively). I ≥ 35 means
no filtering since the original corpus size was 70 (Eq. (10)). Three
musical pieces slightly favored more precise corpus construction
while the result for the other two did not change against the cor-
pus size. Therefore, an increase in the corpus size may slightly
improve the overall performance of the method although it in-
creases the computational time.

Fig. 8 Ground truth and estimated pitch salience for musical piece RM-
C012. Illustrations show ground truth (top), result of proposed
method with random initialization (middle), and that of LHA (bot-
tom).

Fig. 9 Estimated component weights of first three harmonic components of
73 sound source models obtained for random initialization with mu-
sical piece RM-C012. Convex hull projected to 2-simplex is shown
as solid lines. Corresponding F-measures are 0.206 for LHA and
0.593 for OC-LHA.

Fig. 10 Number of reduced vertices and performance change. Each solid
line indicates performance change between different corpus reduc-
tion levels.

5. Discussion

5.1 Properties of Overtone Corpus
For the model construction and evaluation, we made a non-
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trivial assumption: each interior point of the convex hull corre-
sponds to a valid harmonic structure. This assumption is justi-
fied as follows. Suppose we have J valid harmonic structures in
the sense that model fundamental frequency and perceived virtual
pitch are equal. In this case, any interior point of the convex hull,
which is spanned by the template structures, corresponds to a lin-
ear combination of template sounds with their sinusoidal com-
ponent phases being identical. Therefore, the perceived pitch of
the sound is almost certainly equal to that of the template sounds.
More precisely, there is a convex region corresponding to a valid
harmonic structure, and the convex hull is an approximation of it.

Other important properties of this method indicate possible re-
search directions. First, we simply divided the overall region into
valid and invalid subsets as if there is a universal division that is
true for all people. There should also be a region between the
valid and invalid regions, where people cannot perceive a defi-
nite pitch. A precise investigation of this point may improve our
knowledge of the human auditory system and multipitch analysis
performance.

The second point is the effect of audio equalization. In most
commercially-available audio files, the harmonic structures are
often distorted from the original ones because some frequency
bands are reduced or boosted. The estimation of the proposed
method fails when the post-processed overtone structure is rep-
resented as the external point of the convex hull. Since it is un-
known what kind of equalization has been used to the original
signal, a possible way of solving the problem is the use of addi-
tional prior knowledge from different viewpoints of music signal.
For example, audio equalization is generally used to avoid the
collision of two or more instrument sounds. Conversely, we may
improve the performance of multipitch estimation by detecting
the existence of other instruments.

Third, the template and model spectra are averaged over time.
This assumption should be relaxed in future research, because the
harmonic structures of musical instruments significantly change
over time. Since the optimistic modeling of spectrum variation in-
troduces a difficult problem of local optimum, we should develop
a perceptually appropriate construction of spectrum variation.

We implemented a multipitch analyzer supported by Terhardt’s
virtual pitch theory [35]. In addition to his research, the theory
of virtual pitch has been studied extensively [30], [35], [39], [40],
[41]. In particular, it is reported that the valid pitch region slightly
differs from pitch to pitch [30]. The knowledge thereby gained
should be applied to machine-learning-based multipitch analysis.

5.2 Relationship with Conventional Method
Our method includes the original LHA as a special case when-

ever the harmonic templates are set to τ jm = ω jm, where ω jm is
the Dirac delta function. In that case, the update equation is writ-
ten as

log ρ̃dnk jm =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
E

[
log πdk

]
+ E

[
log ηk j

]
+E

[
logN

(
xdn|μk + om, λ

−1
k

)] ( j = m)

−∞ ( j � m).

(38)

As a result, the update equation for the responsibility is

ρdnk jm = ω jm
ρ̃dnk jm∑
km ρ̃dnk jm

, (39)

which is equivalent to the one obtained for the conventional
method.

6. Conclusion

Our proposed Bayesian method for expressing harmonic struc-
tures is based on Terhardt’s virtual pitch theory. The proposed
method is robust against initialization, optimization-free, and
psychoacoustically appropriate so that it is useful for a wide range
of further developments of Bayesian multipitch analysis. The ap-
propriate harmonic structure region is automatically learned by
using a MIDI synthesizer. Evaluation showed that the proposed
method stably estimates the harmonic structure for a wide variety
of initial settings. We are planning to apply the obtained robust-
ness characteristics to complex Bayesian estimation frameworks
that jointly estimate multiple musical features.
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Appendix
The expected values used in this article were calculated using

E
[
log πdk

]
= ψ(αdk) − ψ

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

αdk

⎞⎟⎟⎟⎟⎟⎠ , (A.1)

E

[
log ηk j

]
= ψ(βk j) − ψ

⎛⎜⎜⎜⎜⎜⎜⎝
J∑

j=1

βk j

⎞⎟⎟⎟⎟⎟⎟⎠ , (A.2)

E

[
logN(xdn|μk + om, λ

−1
k )

]

=
E

[
log λk

] − log 2π − E
[
λk(xdn − μk − om)2

]
2

, (A.3)

E
[
log λk

]
= ψ

(
δk

2

)
+ log(2wk), (A.4)

E

[
λk(xdn − μk − om)2

]
= β−1

k + wkδk(xdn − μk − om)2, (A.5)

where ψ is the digamma function.

Daichi Sakaue received his B.E. degree
in Science in 2011 from Kyoto Univer-
sity, Japan. He is currently an M.S. candi-
date in Informatics, Kyoto University. His
research interests include music informa-
tion retrieval, especially multipitch analy-
sis, music structure analysis, and musical
sound source separation. He is a member

of IPSJ, ASJ, and IEEE.

Katsutoshi Itoyama received his B.E.
degree in 2006, M.S. degree in Informat-
ics in 2008, and Ph.D. degree in Infor-
matics in 2011 all from Kyoto Univer-
sity. He is currently an Assistant Profes-
sor of the Graduate School of Informatics,
Kyoto University, Japan. His research in-
terests include musical sound source sep-

aration, music listening interfaces, and music information re-
trieval. He recieved the 24th TAF Telecom Student Technology
Award and the IPSJ Digital Courier Funai Young Researcher En-
couragement Award. He is a member of IPSJ, ASJ, and IEEE.

Tetsuya Ogata received his B.S., M.S.
and D.E. degrees in Mechanical Engineer-
ing, in 1993, 1995 and 2000, respectively,
from Waseda University. From 1999 to
2001, he was a Research Associate in
Waseda University. From 2001 to 2003,
he was a Research Scientist in the Brain
Science Institute, RIKEN. From 2003 to

2012, he was an Associate Professor in the Graduate School of In-
formatics, Kyoto University. Since 2012, he has been a Professor
of the Faculty of Science and Engineering, Waseda University.
Since 2009, he has been a JST (Japan Science and Technology
Agency) PRESTO Researcher (5 years). His research interests
include human-robot interaction, dynamics of human-robot mu-
tual adaptation and inter-sensory translation in robot systems.

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.2

Hiroshi G. Okuno received his B.A. and
Ph.D. degrees from the University of
Tokyo in 1972 and 1996, respectively. He
worked for NTT, JST, and Tokyo Univer-
sity of Science. He is currently a Profes-
sor of the Graduate School of Informat-
ics, Kyoto University. He was a Visiting
Scholar at Stanford University from 1986

to 1988. He is currently engaged in computational auditory scene
analysis, music information processing and robot audition. He
received various awards including the 1990 Best Paper Award of
JSAI, the Best Paper Award of IEA/AIE-2001, 2005 and 2010,
IEEE/RSJ IROS-2001 and the 2006 Best Paper Nomination Fi-
nalist, and NTF Award for Entertainment Robots and Systems in
2010. He co-edited “Computational Auditory Scene Analysis”
(Lawrence Erlbaum Associates, 1998), “Advanced Lisp Technol-
ogy” (Taylor and Francis, 2002), and “New Trends in Applied Ar-
tificial Intelligence (IEA/AIE)” (Springer, 2007). He is an IEEE
Fellow and a member of AAAI, ACM, ASJ, and 5 Japanese soci-
eties.

c© 2013 Information Processing Society of Japan


