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Abstract: It is well known that dimensionality reduction based on multivariate analysis methods and their kernelized
extensions can be formulated as generalized eigenvalue problems of scatter matrices, Gram matrices or their aug-
mented matrices. This paper provides a generic and theoretical framework of multivariate analysis introducing a new
expression for scatter matrices and Gram matrices, called Generalized Pairwise Expression (GPE). This expression is
quite compact but highly powerful. The framework includes not only (1) the traditional multivariate analysis methods
but also (2) several regularization techniques, (3) localization techniques, (4) clustering methods based on generalized
eigenvalue problems, and (5) their semi-supervised extensions. This paper also presents a methodology for designing
a desired multivariate analysis method from the proposed framework. The methodology is quite simple: adopting the
above mentioned special cases as templates, and generating a new method by combining these templates appropriately.
Through this methodology, we can freely design various tailor-made methods for specific purposes or domains.
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1. Introduction

We can easily obtain a massive collection of texts (long ar-
ticles *1, microblogs *2), images [1], [2], [3], [4], videos [5], [6]
and musics [7] *3 nowadays. However, we are now facing a dif-
ficulty in finding an intrinsic trend and nature of such a massive
collection of data. Multivariate analysis [8] is traditional, quite
simple but might be one of the powerful tools to obtain a hid-
den structure embedded in the data, via classification, regression
and clustering [9], [10]. Actually, multivariate analysis has been
still an important tool, and recent reports showed its effectiveness
for several applications, e.g., human detection [11], image anno-
tation [12], [13], and sensor data mining [14], [15], [16], [17].

Principal component analysis (PCA) [18], Fisher discrimi-
nant analysis (FDA) [19], multivariate linear regression (MLR),
canonical correlation analysis (CCA) [18], and partial least
squares (PLS) [20] are well known as standard multivariate anal-
ysis methods. These methods can be formulated as a general-
ized eigenvalue problem of a scatter matrix or an augmented
matrix composed of several scatter matrices. Several extended
researches tried to tackle the small sample size problem [21],
i.e., the situation where the number of training samples is small
compared with their dimensionality (e.g., robust PCA [22], [23],
[24], [25] and robust FDA [26], [27], [28]). Kernelized exten-
sions of those standard methods have been also developed to
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deal with non-vector samples and non-linear analysis (e.g., ker-
nel PCA [29], kernel FDA [30], [31], [32], kernel MLR [33], and
kernel CCA [34], [35]). They can be formulated as a generalized
eigenvalue problem of an augmented matrix composed of Gram
matrices, instead of scatter matrices. Kernel multivariate analy-
sis often needs some regularization techniques such as �2-norm
regularization [36], [37], [38] to inhibit overfitting and the graph
Laplacian method [39] to fit underlying data manifolds smoothly.
In addition, improvements of robustness against outliers and non-
Gaussianity (i.e., multi-dimensional scaling (MDS) [40], local-
ity preserving projection (LPP) [41] and local Fisher discriminant
analysis (LFDA) [42]) and their extensions to semi-supervised di-
mensionality reduction [39], [43], [44] have been considered.

In addition, a lot of multivariate analysis methods and sev-
eral trials to unify these methods have been presented so far.
Borge et al. [45] and De Bie et al. [46] showed that several ma-
jor linear multivariate analysis method can be formulated by a
unified form of generalized eigenvalue problems by introducing
the augmented matrix expression. Sun et al. [47], [48] showed
the equivalence between a certain class of generalized eigenvalue
problems and least squares problems under a mild assumption.
De la Torre [49], [50] further extended their work to a various
kind of component analysis methods by introducing the formu-
lation of least-squares weighted kernel reduced rank regression
(LS-WKRRR). However, freely designing a tailor-made multi-

* A preliminary version of this paper was previously presented in Confer-
ence on International Association for Pattern Recognition (ICPR2012).
*1 New York Times Article Archive:

http://www.nytimes.com/ref/membercenter/nytarchive.html
*2 Tweets2011 corpus for TREC2011 microblog track:

http://trec.nist.gov/data/tweets/
*3 Last.fm: http://www.lastfm.jp, Freesound: http://www.freesound.org
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variate analysis for a specific purpose or domain still remains an
open problem. Until now, researchers and engineers have had to
choose one of the existing methods that seems best to address the
problem of interest, or had to laboriously develop a new analysis
method tailored specifically for that purpose.

In view of the above discussions, this paper provides a new
expression of second-order statistics including covariance matri-
ces and Gram matrices, which we call the Generalized Pairwise

Expression (GPE). GPE is originated in Pairwise Expression
(PE) [42], [43], [51] that tries to describe the relation between
pairs of samples regarding whether pairs are close together or far
apart. Through the PE framework, we can obtain an interpretation
of a multivariate analysis method as to how it works. Our GPE
framework extends the PE framework to larger classes of multi-
variate analysis methods, and it can be also diverted to designing
a new multivariate analysis method. Our main contributions of
this paper can be summarized as follows:
( 1 ) GPE makes it easy to design a new multivariate analysis

method with desired properties without any special knowl-
edge of multivariate analysis.

( 2 ) The methodology is quite simple: Exploiting the above men-
tioned existing methods as templates, and constructing a
new method by combining these templates appropriately.
This property has not been discussed yet in any previous re-
searches to our best knowledge.

( 3 ) It is also possible to individually select and arrange samples
for calculating the second-order statistics of the methods to
be combined, which enables us to extend multivariate analy-
sis methods to semi-supervised ones and multi-modal ones,
where some parts are calculated from only labeled samples,
and the other parts are obtained from both labeled and unla-
beled samples.

The rest of this paper is organized as follows: Section 2 defines
a class of multivariate analysis methods we are concerned with in
this paper. Next, Section 3 describes our proposed framework,
GPE, and its fundamental properties. These properties provide
a methodology to design multivariate analysis methods with de-
sired characteristics. Then, Section 4 reviews major multivariate
analysis methods from the viewpoint of GPE. This review will
give us templates of the GPEs for designing desired methods. Af-
ter the above preparations, Section 5 demonstrates how to design
a new multivariate analysis method. By replicating the methodol-
ogy shown in the preceding sections, we can easily design various
multivariate analysis methods at will. Additionally, Section 6 de-
scribes a non-linear and/or non-vector extension of GPE with the
help of the kernel trick, which is not trivial. With this extension,
non-linear dimensionality reduction, and several clustering meth-
ods are all in the class of multivariate analysis methods we are
concerned with.

2. Multivariate Analysis for Vector Data

2.1 Preliminaries
Consider two sets X and Y of samples *4, where each set con-

tains Nx and Ny samples, and each sample can be expressed as a

*4 The following discussion can be easily extended to more than 2 sets of
samples sets [52].

vector with dx and dy dimensions, respectively, as follows:

X = {x1, . . . , xNx },
Y = {y1, . . . , yN , yNx+1, . . . , yNx+Ny−N} (N ≤ Nx).

For brevity, both of the sample sets X and Y are supposed to be
centered on the origin by subtracting the mean from each com-
ponent. Suppose that samples xn and yn with the same suffix are
co-occurring. Each set X and Y of samples is separated into the
following two types: Complete sample sets X(C) and Y(C) so that
every sample xn (resp. yn) has co-occurring sample yn (resp. xn),
and incomplete sample sets X(I) and Y(I) so that every sample xn

(resp. yn) cannot find the co-occurring sample.

X(C) = {x1, x2, . . . , xN},
= {x(C)

1 , x
(C)
2 , . . . , x

(C)
N },

Y(C) = {y1, y2, . . . , yN},
= {y(C)

1 , y
(C)
2 , . . . , y

(C)
N },

X(I) = {xN+1, xN+2, . . . , xNx },
= {x(I)

1 , x
(I)
2 , . . . , x

(I)
Nx−N},

Y(I) = {yNx+1, yNx+2, . . . , yNx+Ny−N},
= {y(I)

1 , y
(I)
2 , . . . , y

(I)
Ny−N}

First, we concentrate on the case that Nx = Ny = N, namely all
the samples are paired, unless otherwise stated.

2.2 Formulation
Many linear multivariate analysis methods developed so far

involve an optimization problem of the following form for a d-
dimensional vector w:

w(opt) = arg max
w∈Rd

R(w), (1)

R(w) = w�Cw(w�Cw)−1,

where C and C are square matrices with certain statistical nature.
For example, C is a scatter matrix of X and C is an identity matrix
in PCA, and C is a between-class scatter matrix and C is a within-
class scatter matrix in FDA. Roughly speaking, C encodes the
quantity that we want to increase, and C corresponds to the quan-
tity that we want to decrease. The denominator of the function
R(w) is often normalized to remove scale ambiguity, resulting in
the following form:

w(opt) = arg max
w∈Rd

R1(w) s.t. R2(w) = 1, (2)

R1(w) = w�Cw, R2(w) = w�Cw.

The above optimization problem can be converted to the follow-
ing generalized eigenvalue problem via the Lagrange multiplier
method:

Cw = λCw. (3)

The solution wk (k = 1, 2, . . . , r) of the above generalized eigen-
value problem gives a solution of the original multivariate analy-
sis formulated in Eq. (1).

It can be confirmed that Eq. (1) is invariant against any kinds of
linear transformations, i.e., a vector Uw(opt) transformed by any
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Fig. 1 Various multivariate analysis methods can be described via general-
ized pairwise expression (GPE).

r-dimensional unitary matrix U is also a global solution. This
implies that the range of the embedding space can be uniquely
determined by Eq. (1), but the metric in the embedding space is
arbitrary. A practically useful heuristic is to set

U = diag(
√
λ1,
√
λ2, . . . ,

√
λd), (4)

where diag(a, b, · · · , c) denotes the diagonal matrix with the di-
agonal elements a, b, . . . , c, and {λk}rk=1 denotes the generalized
eigenvalues. Finally, we obtain the solution as

W(opt) = {√λ1w1,
√
λ2w2, . . . ,

√
λrwr}. (5)

Thus, the minor eigenvectors are de-emphasized according to the
square root of the eigenvalues.

3. Generalized Pairwise Expression

3.1 Definition
When addressing linear multivariate analysis methods, we of-

ten deal with the following type of second-order statistics [42],
[51] as an extension of scatter matrices, since it is convenient to
describe the relation between two features regarding whether they
are close together or far apart:

SQ,xx =

N∑
n=1

N∑
m=1

Qn,m(xn − xm)(xn − xm)�,

where Q is an N × N non-negative, positive semi-definite and
symmetric matrix *5. A typical example is the scatter matrix:

Sxx = N−1∑N
n=1 xnxn

�.

Let DQ be the N × N diagonal matrix with

DQ,n,n =

N∑
n2=1

Qn,n2 ,

and let LQ be LQ = DQ − Q. Then, the matrix SQ,xx can be ex-
pressed in terms of LQ as follows:

SQ,xx = XLQX�.

The above expression is called the pairwise expression (PE) of
the second-order statistics SQ,xx. If Q is a weight matrix for a
graph with N nodes, LQ can be regarded as a graph Laplacian
matrix in the spectral graph theory. If Q is symmetric and its
elements are all non-negative, LQ is known to be positive semi-
definite.

*5 When dealing with 2 sample sets in this framework, it is sufficient to
introduce a concatenated sample set Z = (X�,Y�)�.

Here, we extend PE to the following expression introducing an
additional matrix independent of Q:

ŜQ,xx = XLQ,1X� + L2,

where LQ,1 is an N × N positive semi-definite matrix, and L2 is
a dx × dx non-negative symmetric matrix. We do not have to ex-
plicitly consider the matrix Q for the following discussions:

Ŝxx = XL1X� + L2. (6)

After all, we call this expression as the generalized pairwise ex-

pression (GPE) (See Fig. 1). The first term of Eq. (6) is called
the data term since it depends on the sample data, and the second
term is called the bias term.

3.2 Properties
We can derive the following fundamental properties of GPE

from the definition, if the number of samples, N, is sufficiently
large:
( 1 ) If A is GPE and β > 0 is a constant, then βA is also GPE.
( 2 ) If both A and B are GPE, then A + B is also GPE.
( 3 ) If both A and B are GPE, then AB is also GPE.

Proof. The first and second claims can be easily proved, so we
concentrate on proving the third one.

First, let us denote A and B as follows:

A = XLA1X� + LA2,

B = YLB1X� + LB2,

where LA1 and LB1 are positive semi-definite N×N matrices, and
LA2 and LB2 are dx × dx non-negative symmetric matrices. Then,
we obtain

AB = (XLA1X� + LA2)(XLB1X� + LB2),

= X(LA1X�XLB1)X�

+LA2XLB1X� + XLA1X�LB2 + LA2LB2.

We can find some matrices LCi (i = 1, 2, 3) satisfying the follow-
ing relationships, if N ≥ dx:

LC1 = LA1X�XLB1,

LC2X� = LA1X�LB2,

XLC3 = LA2XLB1.

Here, we will show that those matrices LCi (i = 1, 2, 3) are all
positive semi-definite. For any matrix X ∈ Rdx×N , we have

XLC1X� = (XLA1X�)(XLB1X�),

XLC2X� = (XLA1X�)LB2,

XLC3X� = LA2(XLB1X�).

Recalling that LA1 and LB1 are positive semi-definite and LA2 and
LB2 are non-negative symmetric, we can see that all the above ma-
trix product XLCiX� (i = 1, 2, 3) are non-negative, which means
that the matrices LCi (i = 1, 2, 3) are all positive semi-definite.
This implies that

AB

= X(LC1 + LC2 + LC3)X� + LA2LB2
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= XLD1X� + LD2,

for a positive semi-definite matrix LD1 and a non-negative sym-
metric matrix LD2, which means AB is also GPE. �

These fundamental properties of GPE provide us a promising
way to design various multivariate analysis methods very easily,
namely with addition, weighting and multiplication of GPEs of
existing methods with desired characteristics. The rest of the
problem is to reveal GPE of existing methods and the function
of every type of combinations (addition and/or multiplication),
which will be described in the next section.

4. Reviewing Multivariate Analysis

4.1 Preliminaries
This section reviews major multivariate analysis methods from

the viewpoint of GPE. As shown in Sections 2 and 3, the GPEs
of PCA and FDA respectively are given by

C
(PCA)

= Sxx, C(PCA) = Idx ,

C
(FDA)

= S(b)
xx , C(FDA) = S(w)

xx ,

where S(b)
xx and S(w)

xx are respectively between-class and within-
class scatter matrices of X. From these examples, a scatter matrix
Sxx is a typical example of the data term in GPE, and an identity
matrix Id is a typical example of the bias term. Note that unlike
FDA, C(PCA) does not have a PE since Idx cannot be expressed
in a pairwise form. This indicates the significance of introduc-
ing GPE when reviewing various multivariate analysis methods
within a unified framwork.

4.2 Canonical Correlation Analysis (CCA)
Canonical correlation analysis (CCA) [18] is a method of cor-

relating linear relationships between two sample sets. Formally,
CCA finds a new coordinate (wx,wy) to maximize the correlation
between the two vectors in the new coordinates. In other words,
the function ρ(wx,wy|X,Y) to be maximized is

ρ(CCA)(wx,wy|X,Y)

=
〈X�wx,Y�wy〉
‖X�wx‖ · ‖Y�wy‖

= max
(wx ,wy)

Ê[〈wx, x〉〈wy, y〉]√
Ê[〈wx, x〉2] · Ê[〈wy, y〉2]

= max
(wx ,wy)

w�x Ê[xy�]wy√
w�x Ê[xx�]wxw�y Ê[yy�]wy

=
w�x Sxywy√

w�x Sxxwxw�y Syywy
, (7)

where Ê[·] denotes an empirical expectation. The maximum of
the function ρ(X(C),Y(C)) is not affected by re-scaling wx and
wy either together or independently. Therefore, the maximiza-
tion of ρ(X(C),Y(C)) is equivalent to maximizing the numerator of
ρ(X(C),Y(C)) subject to

w�x Sxxwx = w
�
y Syywy = 1.

Taking derivatives of the corresponding Lagrangian with respect

to wx and wy, we obtain

Sxywy − λSxxwx = 0,

Syxwx − λSyywy = 0,

where λ is a Lagrange multiplier.
From the above discussion, the GPE of CCA can be obtained

as follows:

C
(CCA)

=

⎛⎜⎜⎜⎜⎝ 0 Sxy

Syx 0

⎞⎟⎟⎟⎟⎠ , C(CCA) =

⎛⎜⎜⎜⎜⎝Sxx 0
0 Syy

⎞⎟⎟⎟⎟⎠ ,
w = (w�x ,w

�
y )�.

We additionally note that when every sample yn in Y represents
a class indicator vectors, namely yn ∈ {0, 1}M ,

∑M
m=1 yn,m = 1 and

M is the number of classes, CCA is reduced to FDA [53] *6. Thus,
CCA can be regarded as a generalized variant of FDA so that each
sample can belong to multiple classes.

4.3 Multiple Linear Regression (MLR)
Multiple linear regression (MLR) is a method of finding a pro-

jection matrix W with the minimum squared error between y and
its linear approximation Wx. For simplicity, we first consider the
case that the projection matrix W is with rank 1, which can be
written as a direct product of two bases wx and wy. This assump-
tion is useful to understand MLR from the viewpoint of GPE.
Then, the objective function to be minimized is the following
squared error:

ε(MLR)(wx,wy|X,Y)

= Ê
[
‖y − αwyw�x x‖2

]
= Ê
[
y�y
]
− 2αw�y Ê

[
y�x
]
wx + α

2w�x Ê
[
x�x
]
wx

= Ê
[
y�y
]
− 2αw�y S�xywx + α

2w�x Sxxwx.

To get an expression for α, we calculate the derivative

∂

∂α
ε(MLR)(wx,wy|X,Y)

= 2(αw�x Sxxwx − w�y S�xywx) = 0,

which gives

α = (w�y S�xywx)(w�x Sxxwx)−1.

Then, we obtain

ε(MLR)(wx,wy|X,Y)

= E
[
y�y
]
− (w�y S�xywx)2

w�x Sxxwx
. (8)

Since the squared error cannot be negative and the first term of
the objective function is independent of the two directions wx and
wy, we can minimize it by maximizing the following generalized
Rayleigh quotient:

ρ(MLR)(wx,wy|X,Y) =
w�x Sxywy√
w�x Sxxwxw�y wy

,

*6 Note that the technical report [53] includes several mistakes in the dis-
cussion as to the equivalence between CCA and FDA.
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where wx and wy are supposed to be normalized as w�x Sxxwx = 1
and w�y wy = 1. By comparing the above equation and Eq. (7) and
the objective function for CCA, we can see that MLR is a special
case of CCA, and

C
(MLR)

=

⎛⎜⎜⎜⎜⎝ 0 Sxy

Syx 0

⎞⎟⎟⎟⎟⎠ , C(MLR) =

⎛⎜⎜⎜⎜⎝Sxx 0
0 Idy

⎞⎟⎟⎟⎟⎠ ,
w = (w�x ,w

�
y )�.

The above derivation shows a part of the equivalence between
the generalized eigenproblem and the least squares, which have
been already revealed by Sun et al. [47], [48]. This equivalence
property will be often exploited in the following discussions.

4.4 Principal Component Regression (PCR)
Principal component regression (PCR) [54] is a variant of MLR

that uses PCA when estimating regression coefficients W. It is a
procedure used to overcome problems which arise when the ex-
ploratory variables are nearly co-linear. In PCR, instead of re-
gressing the dependent variable y on the independent variables
x directly, the principal components Vx of the independent vari-
ables are used. One typically only uses a subset of the principal
components in the regression, making a kind of regularized esti-
mation. Often the principal components with the highest variance
are selected. A larger class of multivariate analysis methods that
introduces a latent model into the standard linear regression is
called latent variable regression (LVR) [55].

In the same way as MLR, we assume that the projection matrix
W is with rank 1, namely W = wyw�x . A rank-K approximation X̂
of the data matrix X can be obtained by singular value decompo-
sition as

X̂ = UKΣKV�K , (9)

where ΣK is a K × K diagonal matrix whose diagonal compo-
nents are top-K eigenvalues obtained by PCA of X, and VK is a
K × dx matrix whose columns are the top-k eigenvectors. Then,
the objective function of PCR to be minimized can be obtained
by substituting X̂ into X in the objective function of MLR, as
follows:

ε(PCR)(wx,wy|X,Y)

= ε(MLR)(wx,wy|X̂,Y)

= Ê
[
‖y − αwyw�x x̂‖2

]
= Ê
[
y�y
]
− 2αw�y Ê

[
y� x̂
]
wx + α

2w�x Ê
[
y� x̂
]
wx

= Ê
[
y�y
]
− 2αw�y S�x̂ywx + α

2w�x Sx̂x̂wx,

where Sx̂y and Sx̂x̂ can be obtained as follows:

Sx̂y =
1
N

N∑
n=1

uK,nΣKV�Ky
�
n ,

Sx̂x̂ =
1
N

N∑
n=1

uK,nΣKV�KVKΣKuK,n,

=
1
N

N∑
n=1

uK,n(ΣK)2u�n .

From the description of the previous subsection, we can obtain

C
(PCR)

=

⎛⎜⎜⎜⎜⎝ 0 Sx̂y

S�x̂y 0

⎞⎟⎟⎟⎟⎠ , C(PCR) =

⎛⎜⎜⎜⎜⎝Sx̂x̂ 0
0 Idy

⎞⎟⎟⎟⎟⎠ ,
w = (w�x ,w

�
y )�.

4.5 Partial Least Squares (PLS)
Partial Least Squares (PLS) [20] (or sometimes called PLS re-

gression) belongs to a family of latent variable regression (LVR),
and tries to finds a direction for the observable sample set X that
explains the maximum variance direction for the predicted sam-
ple set Y. The contribution of PLS against the standard MLR and
PCR is to simultaneously estimate the latent model and regres-
sion from the latent space to the predicted space, which leads to
robust regression against noisy observations.

Although PLS cannot be formulated as a generalized eigen-
problem in general, orthogonal PLS (OPLS) [56], [57] as a vari-
ant of the original PLS has a form of generalized eigenproblem.
This improves the interpretability (but not the predictivity) of the
original PLS. OPLS can be formulated as follows:

XY�YX�w = λXX�w,

w = (w�x ,w
�
y )�

meaning,

C
(OPLS)

= XY�YX� ∝ SxyS�xy,

C(OPLS) = XX� ∝ Sxx.

When every sample yn in Y represents a class indicator vec-
tors (cf. Section 4.2), OPLS is called OPLS-discriminant anal-
ysis (OPLS-DA) [57], which has been often used for the task of
bio-marker identification [58].

4.6 �2-norm Regularization
�2-norm regularization is a popular regularization technique

for various optimization problems including multivariate analy-
sis. In the area of statistics or machine learning, this is some-
times called Tikhonov regularization [9], [37]. The most pop-
ular method that utilizes �2-norm regularization is ridge regres-
sion [36], which combines MLR and �2-norm regularization. The
objective function to be minimized is the following squared error:

ε(Ridge)(wx,wy|X,Y)

= Ê
[
‖y − αwyw�x x‖2

]
+ δ‖wx‖2

= Ê
[
y�y
]
− 2αw�y S�xywx + α

2w�x Sxxwx + δ‖wx‖2

= Ê
[
y�y
]
− 2αw�y S�xywx + α

2w�x (Sxx + δ̂Idx )wx,

where δ̂ = δ/α2. From the above equation and the objective func-
tion of MLR, the GPE of ridge regression can be derived as

C
(Ridge)

=

⎛⎜⎜⎜⎜⎝ 0 Sxy

Syx 0

⎞⎟⎟⎟⎟⎠ ,
C(Ridge) =

⎛⎜⎜⎜⎜⎝Sxx + δ̂Idx 0
0 Idy

⎞⎟⎟⎟⎟⎠ ,
w = (w�x ,w

�
y )�.

In a similar way to ridge regression, we can derive the GPE of
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CCA with �2-norm regularization [38], [59] as

C
(CCA−�2)

=

⎛⎜⎜⎜⎜⎝ 0 Sxy

Syx 0

⎞⎟⎟⎟⎟⎠ ,
C(CCA−�2) =

⎛⎜⎜⎜⎜⎝Sxx + δ̂Idx 0
0 Syy + δ̂Idy

⎞⎟⎟⎟⎟⎠ .
In addition, we can incorporate �1-norm regularization into the
GPE framework only if the objective generalized eigenproblem
has the following form:

XLQX�w = λXX�w,

meaning

SQ,xxw = λSxxw.

PCA, FDA, MLR, CCA, OPLS and several variants can be in-
cluded in this form. The details can be found in the previous
work [47].

As shown in the above discussion, one of the major motiva-
tions that introduce the bias term of GPE is to integrate some
regularization techniques within the framework of GPE.

4.7 Locality Preserving Projection (LPP)
Locality preserving projections (LPP) [41] seeks for an embed-

ding transformation such that nearby data pairs in the original
space close in the embedding space. Thus, LPP can reduce the
dimensionality without losing the local structure.

Let A be an affinity matrix, that is, the N-dimensional matrix
with the (n,m)-th element An,m being the affinity between xn and
xm. We assume that An,m ∈ [0, 1]; An,m is large if xn and xm are
close and An,m is small if xn and xm are far apart. There are several
different manners of defining A, such as using the local scaling
heuristics [60], i.e.,

An,m = exp

{
−‖xn − xm‖2
σnσm

}
,

σn = ‖xn − x(k)
n ‖,

where x(k)
n is the k-th nearest neighbor of xn. A heuristic choice

of k = 7 was shown to be useful through experiments [60]. The
objective function to be minimized is the following weighted
squared error:

ε(LPP)(w|X) =
N∑

n=1

N∑
m=1

An,m‖w�xn − w�xm‖2

s.t. w�X DAX�w = 1.

In the same way as the derivation of GPE (see Section 3), the
above minimization can be converted to the following general-
ized eigenvalue problem:

XLAX�w = λX DAX�w.

Thus, the GPE of LPP can be obtained as

C
(LPP)

= XLAX�, C(LPP) = X DAX�.

4.8 Local Fisher Discriminant Analysis (LFDA)
Local Fisher discriminant analysis (LFDA) [42] is a method for

supervised dimensionality reduction, and an extension of Fisher
discriminant analysis (FDA). LFDA can overcome the weakness
of the original FDA against outliers. The point is the introduction
of between-sample similarity matrix Q obtained from the affinity
matrix, for calculating the between-class scatter matrix S(lb)

Q and

the within-class scatter matrix S(lw)
Q .

S(lb)
Q =

N∑
n=1

N∑
m=1

Q(lb)
n,m(xn − xm)(xn − xm)�,

S(lw)
Q =

N∑
n=1

N∑
m=1

Q(lw)
n,m (xn − xm)(xn − xm)�,

where Q(lb) and Q(lw) are the N × N matrices with

Q(lb)
n,m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩An,m(1/N − 1/Nc) if yn = ym = c,

1/N if yn � ym,

Q(lw)
n,m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩An,m/Nc if yn = ym = c,

1/N if yn � ym,

and Nc is the number of samples in class c. Note that the local
scaling is computed in a class-wise manner in LFDA, since we
want to preserve the within-class local structure. This also con-
tributes to reducing the computational cost for nearest neighbor
search when computing the local scaling.

From the above discussion, the GPE of LFDA can be obtained
as follows:

C
(LFDA)
Q = S(lb)

Q , C(LFDA)
Q = S(lw)

Q .

4.9 Semi-supervised LFDA (SELF)
Semi-supervised local Fisher discriminant analysis, called

SELF [43], integrates LFDA as a supervised dimensionality re-
duction and PCA as an unsupervised dimensionality reduction.
SELF brings us one example for designing multivariate analysis
methods via the GPE framework from the following two view-
points:
( 1 ) combining several multivariate analysis methods via GPE by

following the properties shown in Section 3.2,
( 2 ) changing sample sets to calculate the data term in GPE,

which provides us to extend the method to a semi-supervised
one.

Assume that there are two samples sets X and Y, each sample
in Y represents a class indicator vector, and an incomplete sample
set X(I) only exists, namely there are at least one unlabeled sam-
ples in the sample set X. In such cases, we can search for solu-
tions that lie in the span of the larger sample set X, and regularize
the solution using the additional data. SELF looks for solutions
that lie along an empirical estimate of the subspace spanned by
all the samples. This gives increased robustness to the algorithm,
and increases class separability in the absence of label informa-
tion. In detail, SELF integrates the GPE (S(C,lb)

Q and S(C,lb)
Q ) of

LFDA calculated only from the labeled samples (in other words,
complete sample sets) and the GPE Sxx of PCA calculated from
all the samples, as follows:
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C
(SELF)
Q = βS(C,lb)

Q + (1 − β)Sxx,

C(SELF)
Q = βS(C,lw)

Q + (1 − β)Idx ,

where β is a hyper parameter satisfying 0 ≤ β ≤ 1. When
β = 1, SELF is equivalent to LFDA with only the labeled sam-
ples (X(C),Y(C)). Meanwhile, when β = 0, SELF is equivalent to
PCA with all samples in X. Generally speaking, SELF inherits
the properties of both LFDA and PCA, and their influences can
be controlled by the parameter β.

4.10 Semi-supervised CCA
In a similar way to that of SELF, a semi-supervised extension

of CCA can be derived, which is called SemiCCA [44].
Assume that there are two samples sets X and Y, and each in-

cludes incomplete sample set X(I) and Y(I), namely there are at
least one unpaired samples in both X and Y. SemiCCA integrates
the GPE of CCA calculated only from the complete sample sets
and the GPE of PCA calculated from the complete and incom-
plete sample sets, as follows:

C
(SemiCCA)

= β

⎛⎜⎜⎜⎜⎝ 0 S(C)
xy

S(C)
yx 0

⎞⎟⎟⎟⎟⎠ + (1 − β)
⎛⎜⎜⎜⎜⎝Sxx 0

0 Syy

⎞⎟⎟⎟⎟⎠ ,
C(SemiCCA)

= β

⎛⎜⎜⎜⎜⎝S(I)
xx 0
0 S(I)

yy

⎞⎟⎟⎟⎟⎠ + (1 − β)
⎛⎜⎜⎜⎜⎝Idx 0

0 Idy

⎞⎟⎟⎟⎟⎠ ,
When β = 1, SemiCCA is equivalent to CCA with only the com-
plete samples (X(C),Y(C)). Meanwhile, when β = 0, SemiCCA is
equivalent to PCA with all samples in X and Y under the assump-
tion that X and Y are uncorrelated with each other.

Another type of semi-supervised extension of CCA has been
developed by Blaschko et al. [39]. Please see the detail in Sec-
tion 6.

5. How to Design New Methods

To summarize the discussions so far, we describe (1) GPEs of
major existing methods, (2) the way for integrating several GPEs
and (3) some semi-supervised extensions by changing the sample
sets for calculating GPEs. This section shows that we can eas-
ily design new multivariate analysis methods at will by replicat-
ing those steps. Note that another way to generate new methods
would be possible, and the following one is only one example.

One of the simple extensions is to integrate FDA as supervised
dimensionality reduction and CCA as unsupervised dimensional-
ity reduction with a latent model. Consider a problem of video
categorization, where its training data includes image features X,
audio features Y and class indexes. Finding appropriate corre-
lations of such three different modals would be still challeng-
ing. Several approaches might be possible: (1) FDA for concate-
nated features (X�,Y�)�, which cannot obtain appropriate corre-
lations between two different types of feature vectors, (2) CCA
for two features (X,Y) followed by FDA on the compressed do-
main, which cannot find class-wise differences of correlations.

Here, we newly introduce an integration of CCA and FDA,
which enables us to extract class-wise differences of feature cor-

relations as well as to achieve discriminative embedding simul-
taneously. In the following, we call this method CFDA for the
simplicity. CFDA can be formulated by the following equations:

C
(CFDA)
Q = β

⎛⎜⎜⎜⎜⎝ 0 Sxy

Syx 0

⎞⎟⎟⎟⎟⎠ + (1 − β)S(lb)
Q , (10)

C(CFDA)
Q = β

⎛⎜⎜⎜⎜⎝Sxx 0
0 Syy

⎞⎟⎟⎟⎟⎠ + (1 − β)S(lw)
Q . (11)

When β = 1 CFDA is equivalent to CCA, while when β = 0
CFDA is equivalent to FDA for concatenated features (X�,Y�)�.

We note that we do not have to explicitly consider GPEs of
FDA and CCA when constructing CFDA. All what we need to
design a new multivariate analysis method are that existing meth-
ods to be combined can be described by GPE and operations for
the combination are shown in Section 3.2.

6. Kernelized Extensions

6.1 Kernelization of Standard Methods
Almost all the methods in the GPE framework can be kernel-

ized in a similar manner to the existing ones. First, we describe
kernel CCA [34], [35] and related regularization techniques.

The original CCA can be extended to, e.g., non-vectorial do-
mains by defining kernels over x and y,

kx(xn, xm) = 〈φx(xn), φx(xm)〉,
ky(yn, ym) = 〈φy(yn), φy(ym)〉,

and searching for solutions that lie in the span of φx(x) and φy(y)

wx =

N∑
n=1

αnφx(xn), wy =
N∑

n=1

βnφy(yn).

In this setting, we use the following empirical scatter matrix,

Ŝxy =

N∑
n=1

φx(xi)φy(yi)
�.

Denoting the Gram matrices defined by the samples as Kx and
Ky, we can obtain the solution from the following optimization
problem with respect to coefficient vectors, α and β,

ρ(kCCA)(wx,wy|X,Y) =
α�KxKyβ√
α�K2

xαβ
�K2
yβ
.

In the same way as CCA, the optimization can be achieved by
solving the following generalized eigenvalue problem:

C
(kCCA)

⎛⎜⎜⎜⎜⎝α
β

⎞⎟⎟⎟⎟⎠ = λC(kCCA)

⎛⎜⎜⎜⎜⎝α
β

⎞⎟⎟⎟⎟⎠ ,
C

(kCCA)
=

⎛⎜⎜⎜⎜⎝ 0 KxKy
KyKx 0

⎞⎟⎟⎟⎟⎠ ,
C(kCCA) =

⎛⎜⎜⎜⎜⎝K2
x 0

0 K2
y

⎞⎟⎟⎟⎟⎠ .
Although the bases (wx,wy) cannot be explicitly obtained, the
projection to those bases can be calculated with the help of the
kernel trick:

w�x φx(x) =
N∑

n=1

αnkx(x, xn),
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w�y φy(y) =
N∑

n=1

βnky(y, yn).

As discussed in Ref. [38], this optimization leads to degenerate
solutions in the case that either Kx or Ky is not invertible. There-
fore, the following �2-regularized formulation should be neces-
sary in general:

C
(kCCA−�2)

=

⎛⎜⎜⎜⎜⎝ 0 KxKy
KyKx 0

⎞⎟⎟⎟⎟⎠ ,
C(kCCA−�2) =

⎛⎜⎜⎜⎜⎝K2
x + δxKx 0

0 K2
y + δyKy

⎞⎟⎟⎟⎟⎠ .
Another popular regularization technique is the graph Lapla-

cian method [39], [61]. By using Laplacian regularization, we are
able to learn directions that tend to lie along the data manifold es-
timated from a collection of data. Denoting the empirical graph
Laplacian L̂x and L̂y obtained from Kx and Ky, the formulation
is replaced by the following equations:

C
(kCCA−Lap)

=

⎛⎜⎜⎜⎜⎝ 0 KxKy
KyKx 0

⎞⎟⎟⎟⎟⎠ ,
C(kCCA−Lap) =

⎛⎜⎜⎜⎜⎝K2
x + γxRx 0

0 K2
y + γyRy

⎞⎟⎟⎟⎟⎠ ,
Rx = Kx L̂xKx, Ry = Ky L̂yKy.

6.2 Non-linear Embedding Methods
With the kernelized extension, non-linear dimensionality re-

duction such as locally linear embedding [62] and Laplacian
eigenmaps [51] are also in the GPE framework.
6.2.1 Laplacian Eigenmaps

Laplacian eigenmaps [51] is one of the popular methods for
non-linear embedding. The goal of Laplacian eigenmaps is to
find an embedding that preserves the local structure of nearby
high-dimensional samples. Laplacian eigenmaps exploits graph
Laplacian of a neighborhood graph on the samples X, where each
edge measures the affinity between two samples. Since a set of
edge weights can be expressed by a Gram matrix Kx, the objec-
tive function of Laplacian eigenmaps to be minimized is

ρ(LE)(wx|X) = (α� L̂xα)(α� D̂xα)−1,

where D̂x is a diagonal matrix satisfying D̂x = Kx + L̂x. There-
fore, the GPE of Laplacian eigenmaps can be obtained as

C
(LE)
= L̂x, C(LE) = D̂x.

6.2.2 Locally Linear Embedding (LLE)
Locally linear embedding (LLE) [62] finds an embedding of

the samples X that preserves the local structure of nearby sam-
ples in the high-dimensional space. LLE builds the embedding by
preserving the geometry of pairwise relations between samples in
the high-dimensional manifold. LLE first computes a Gram ma-
trix Kx containing the structural information of the embedding by
minimizing the following function:

ρ(LLE1)(Kx|X) = ‖X(IN − Kx)‖2F
s.t. Kx1N = 1N ,

where each column of the Gram matrix Kx has k non-zero values.
This minimization can be solved via a linear system of equations.
Once Kx is calculated, LLE next finds a base that minimizes

ρ(LLE2)(wx|X) = α�(IN − Kx)2α s.t. α�α = 1.

Therefore, the GPE of LLE can be obtained as

C
(LLE)

= (IN − Kx)2, C(LLE) = IN .

6.3 Clustering Methods
With the benefit of the kernelized extension of the GPE frame-

work, several clustering methods such as spectral clustering
(SC) [13], [63], [64] and normalized cuts (NC) [65] can also be
included in the class of multivariate analysis we are concerned
with.

C
(SC)
= Lx, C(SC) = Dx,

C
(NC)
= D−1/2

x Lx D−1/2
x , C(NC) = IN .

Kernel k-means [66] is also known to belong to this family if we
admit ntroducing a certain iterative procedure [67]. The details
can be seen in the preceding work by De la Torre [49], [50].

6.4 How to Design New Kernelized Methods
Integrating two methods within the kernelized GPE framework

is not straightforwad, since a simple addition of Gram matrices is
not GPE.

For example, let us consider the following generalized eigen-
problem characterized by two matrices of GPE-style second-
order statistics:

Cw = λCw, (12)

C = XL1X� + L2, C = XL1X� + L2,

where L1 and L1 are both positive semi-definite matrices and L2

and L2 are both non-negative symmetric matrices, from the def-
inition of GPE. The above generalized eigenproblem can be re-
placed with the following one without essentially changing the
solution [43]

C2w = λC2w,

C2 = X{L1 + (X�L2X)†}X� = XL3X�,

C2 = X{L1 + (X�L2X)†}X� = XL3X�,

where † denotes the Moore-Penrose pseudo-inverse [68]. In this
derivation, we used the fact that the matrices C and C2 (resp.
C and C2) that characterize the generalized eigenproblems share
the same range. Following the procedure shown in Sugiyama
et al. [43], we can obtain a kernelized variant of the multivariate
analysis method formulated by Eq. (12).

From the above discussion, we can see that when dealing
with kernelized multivariate analysis, we have to explicitly de-
rive GPEs of existing methods, and replace the data matrix with
its Gram matrix.

7. Concluding Remarks

This paper provided a new expression of covariance matrices
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and Gram matrices, which we call generalized pairwise expres-
sion (GPE). This provided a unified insight into various multi-
variate analysis methods and their extensions. GPE made it easy
to design desired multivariate analysis methods by simple combi-
nations of GPEs of existing methods as templates. According to
this methodology, we designed several new multivariate analysis
methods.

The GPE framework covers a wide variety of multivariate anal-
ysis methods, and thus the way we have presented in this paper
for designing new methods is still one of the examples. Develop-
ing more general guidelines would be promising future work.
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83 Linköping, Sweden (Nov. 1997).

[46] De Bie, T., Cristianini, N. and Rosipal, R.: Eigenproblems in pattern
recognition, Handbook of Geometric Computing: Applications in Pat-
tern Recognition, Computer Vision, Neuralcomputing, and Robotics,
pp.129–170, Springer (2005).

[47] Sun, L., Ji, S. and Ye, J.: A least squares formulation for a class of gen-
eralized eigenvalue problems in machine learning, Proc. International
Conference on Machine Learning (ICML), pp.977–984 (2009).

[48] Sun, L., Ji, S. and Ye, J.: Canonical correlation analysis for multil-

c© 2013 Information Processing Society of Japan 144



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.6 No.1 136–145 (Mar. 2013)

abel classification: A least-squares formulation, extensions, and anal-
ysis, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.33,
pp.194–200 (2011).

[49] De la Torre, F.: A unification of component analysis methods, Hand-
book of Pattern Recognition and Computer Vision, 4th ed., Chen, C.
(Ed.), ch. 1, pp.3–22, World Scientific Pub Co Inc (2010).

[50] De la Torre, F.: A least-squares framework for component analysis,
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.34, No.6,
pp.1041–1055 (2012).

[51] Belkin, M. and Niyogi, P.: Laplacian eigenmaps for dimensional-
ity reduction and data representation, Neural Computation, Vol.15,
pp.1373–1396 (2002).

[52] Yanai, H. and Puntanen, S.: Partial canonical correlation associated
with the inverse and some generalized inverse of a partitioned disper-
sion matrix, Proc. Pacific Area Statistical Conference on Statistical
Sciences and Data Analysis, pp.253–264 (1993).

[53] Bach, F.R. and Jordan, M.I.: A probabilistic interpretation of canoni-
cal correlation analysis, Tech. Rep. 688, Department of Statistics, Uni-
versity of California, Berkeley (2005).

[54] Jolliffe, I.T.: A note on the use of principal components in regression,
Journal of the Royal Statistical Society, Vol.31, No.3 (1982).

[55] Burnham, A.J., MacGregor, J.F. and Viveros, R.: Latent variable mul-
tivariate regression modeling, Chemometrics and Intelligent Labora-
tory Systems, pp.167–180 (Aug. 1999).

[56] Worsley, K.J., Poline, J.b., Friston, K.J. and Evans, A.C.: Charac-
terizing the response of PET and fMRI data using multivariate linear
models, NeuroImage, Vol.6, pp.305–319 (1997).

[57] Trygg, J. and Wold, S.: Orthogonal projections to latent structures (o-
pls), Journal of Chemometrics, Vol.16, No.3, pp.119–128 (2002).

[58] Wang, H., Gottfries, J., Barrenäs, F. and Benson, M.: Identification of
novel biomarkers in seasonal allergic rhinitis by combining proteomic,
multivariate and pathway analysis, PLoS ONE, Vol.6, No.8, p.e23563
(2011).

[59] Bach, F.: Kernel independent component analysis, Journal of Machine
Learning Research, Vol.3, pp.1–48 (2002).

[60] Zelnik-manor L. and Perona, P.: Self-tuning spectral clustering, Ad-
vances in Neural Information Processing Systems (NIPS), pp.1601–
1608 (2004).

[61] Belkin, M. Niyogi, P. and Sindhwani, V.: Manifold regularization:
A geometric framework for learning from labeled and unlabeled ex-
amples, Journal of Machine Learning Research, Vol.7, pp.2399–2434
(Dec. 2006).

[62] Roweis, S.T. and Saul, L.K.: Nonlinear dimensionality reduction
by locally linear embedding, Science, Vol.290, pp.2323–2326 (Dec.
2000).

[63] Weiss, Y.: Segmentation using eigenvectors: A unifying view, Proc.
IEEE International Conference on Computer Vision (ICCV), pp.975–
982 (1999).

[64] Yu, S. and Shi, J.: Multiclass spectral clustering, Proc. IEEE Inter-
national Conference on Computer Vision (ICCV), No.10, pp.313–319
(2003).

[65] Shi, J. and Malik, J.: Normalized cuts and image segmentation,
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.22, No.8,
pp.888–905 (2000).

[66] Dhillon, I.S., Guan, Y. and Kulis, B.: Kernel k-means: spectral clus-
tering and normalized cuts, Proc. ACM International Conference on
Knowledge Discovery and Data Mining (KDD), pp.551–556, ACM
(2004).

[67] Zass, R. and Shashua, A.: A unifying approach to hard and proba-
bilistic clustering, Proc. IEEE International Conference on Computer
Vision (ICCV), pp.294–301 (2005).

[68] Albert, A.: Regression and the Moore-Penrose pseudoinverse, Mathe-
matics in Science and Engineering, Elsevier Science (1972).

Akisato Kimura received his B.E., M.E.
and D.E. degrees in communications and
integrated systems from Tokyo Institute
of Technology, Japan in 1998, 2000 and
2007, respectively. Since 2000, he has
been with NTT Communication Science
Laboratories, NTT Corporation, where he
is currently a senior research scientist in

Innovative Communication Laboratory. He has been engaged in
work on multimedia content identification, automatic multime-
dia annotation, human visual attention modeling and social media
mining. His research interests include pattern recognition, com-
puter vision, image processing, human visual perception, statis-
tical signal processing, data mining and social media. He is a
member of IEICE, IEEE and ACM SIGMM/SIGKDD.

Masashi Sugiyama received his B.E.,
M.E., and Ph.D. degrees from Department
of Computer Science, Tokyo Institute of
Technology, Tokyo, Japan, in 1997, 1999,
and 2001, respectively. In 2001, he was
appointed as a Research Associate in the
same institute, and from 2003, he is an As-
sociate Professor. His research interests

include theory and application of machine learning.

Hitoshi Sakano received his B.S. degree
in physics from Chuo University Tokyo
and the M.S. degrees in physics from
Saitama University, and the Ph.D. in ap-
plied physics from Waseda University,
Tokyo in 1988, 1990 and 2008, respec-
tively. He joined NTT Communication
Science Laboratories in 2008 and studied

pattern recognition technology. He is a member of IEEE, IEICE
and Physical Society of Japan (PSJ).

Hirokazu Kameoka received his B.E.,
M.E. and Ph.D. degrees all from the Uni-
versity of Tokyo, Japan, in 2002, 2004
and 2007, respectively. He is currently
a research scientist at NTT Communi-
cation Science Laboratories and an Ad-
junct Associate Professor at the Univer-
sity of Tokyo. His research interests in-

clude computational auditory scene analysis, statistical signal
processing, speech and music processing, and machine learning.
He is a member of IEEE, IEICE, IPSJ and ASJ. He received 13
awards over the past 9 years, including the IEEE Signal Process-
ing Society 2008 SPS Young Author Best Paper Award.

c© 2013 Information Processing Society of Japan 145


