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Abstract: Multi-objective path optimization is a critical operation in a large number of applications. Many appli-
cations execute on embedded systems, which use less powerful processors and limited amount of memory in order
to reduce system costs and power consumption. Therefore, fast and memory-efficient algorithms are needed to solve
the multi-objective path optimization problem. This paper proposes a fast and memory-efficient algorithm based on a
Genetic Algorithm (GA) that can be used to solve the multi-objective path optimization problem. The proposed algo-
rithm needs memory space approximately equal to its population size and consists of two GA operations (crossover
and mutation). During each iteration, any one of the GA operations is applied to chromosomes, which can be either
dominated or non-dominated. Dominated chromosomes prefer the crossover operation with a non-dominated chromo-
some in order to produce an offspring that has genes from both parents (dominated and non-dominated chromosomes).
The mutation operation is preferred by non-dominated chromosomes. The offspring replaces its parent chromosome.
The proposed algorithm is implemented using C++ and executed on an ARM-based embedded system as well as on an
Intel-Celeron-M-based PC. In terms of the quality of its Pareto-optimal solutions, the algorithm is compared with Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) and Simulated Annealing (SA). The performance of the proposed
algorithm is better than that of SA. Moreover, comparison with NSGA-II shows that at approximately equal amounts
of execution time and memory usage, the performance of the proposed algorithm is 5% better than that of NSGA-II.
Based on the experimental results, the proposed algorithm is suitable for implementation on embedded systems.
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1. Introduction

Path optimization (PO) is a critical operation in many applica-
tions. Navigation systems of vehicles (including electric [1], [2],
[3]) and unmanned aerial vehicles, path planning in robots, and
path selection in computer networks are some applications that
require PO. Numerous applications execute on embedded sys-
tems that have limited memory and computational speed. Nav-
igation systems of intelligent vehicles are examples of such ap-
plications that uses less powerful embedded systems to reduce
power consumption. Intelligent vehicles include electric vehicles,
hybrid vehicles, and internal combustion engine based vehicles.
Various algorithms can be used for PO. Algorithms that require a
large amount of memory and/or are computationally intense are
unsuitable for embedded systems. Therefore, algorithms that can
perform good quality PO and require lesser memory and proces-
sor speed are desired.

The PO problem generally involves two or more optimization
objectives and therefore is also called a multi-objective shortest
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path problem (MOSP) [4]. MOSPs are NP hard problems [4], [5].
The objectives in a multi-objective optimization problem can con-
tradict each other and no single solution is said to be optimal.
Therefore, multi-objective optimization algorithms determine a
set of Pareto-optimal solutions. A Pareto-optimal set contains all
solutions that are not dominated by any other solution found by
the algorithm.

The parameter values in a graph or network in which PO is
employed can change dynamically. Therefore, considering the
dynamic changes in the underlying network is also important
while solving the PO problem. Some examples of such dynamic
changes include changes in the traffic on a road network and
changes in link costs.

Evolutionary Computation (EC) algorithms have been predom-
inantly used to solve multi-objective optimization problems. In
many EC algorithms, calculations during any iteration do not de-
pend on the results of previous iterations. Therefore, the algo-
rithms are sufficiently robust to accommodate dynamic changes
in the underlying network.

When population-based algorithms are applied to a population
of solutions, they simultaneously find several solutions. This
approach is suitable for multi-objective optimization problems,
which have several Pareto-optimal solutions. Genetic Algorithms
(GAs) [6] and Particle Swarm Optimization (PSO) algorithms [7]
are examples of population-based algorithms. GAs and their dif-
ferent variants are found to be efficient in solving multi-objective
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optimization problems [8].
This paper proposes a GA-based algorithm to solve MOSPs.

The proposed algorithm needs memory space that is approxi-
mately equal to the size of its population. The algorithm consists
of two GA operations: crossover and mutation. In each iteration,
all chromosomes undergo any one GA operation. Dominated
chromosomes prefer the crossover operation and non-dominated
chromosomes prefer the mutation operation. The second parent
in the crossover operation is always a non-dominated chromo-
some that has some common genes with the first parent. The off-
spring created after the mutation or crossover operation replaces
its parent chromosome. Therefore additional memory is not re-
quired to store the offspring. Pareto-optimal chromosomes are
replaced only by better chromosomes. Therefore, it is an elitist
algorithm.

The proposed algorithm is implemented using C++ on two dif-
ferent platforms: (a) a low-power ARM9 embedded system with
a 500-MHz CPU and 128-MB RAM, and (b) an Intel-Celeron-M-
based PC with a 1.5-GHz processor and 512-MB-RAM. The per-
formance of the proposed algorithm is compared with Simulated
Annealing (SA) [6], [9] and Non-dominated Sorting Genetic Al-
gorithm -II (NSGA-II) [10]. SA works on only one solution and
therefore is extremely memory efficient. NSGA-II is a popular
algorithm for solving multi-objective optimization problems and
determining Pareto-optimal solutions. It is an elitist algorithm
that works on a population of solutions. The results show that
the Pareto-optimal solutions found by the proposed algorithm are
better than those by SA. Comparison between the proposed al-
gorithm and NSGA-II shows that given the same amount of exe-
cution time and memory usage, the performance of the proposed
algorithm is better than that of NSGA-II. Therefore, it is more
suitable that the other algorithms (NSGA-II and SA) to perform
PO on embedded systems.

This paper is organized as follows: Section 2 presents relevant
previous work, and Section 3 describes the problem of multi-
objective PO. Section 4 presents the proposed algorithm. Sec-
tion 5 presents experimental results and discussion. Finally, Sec-
tion 6 concludes the paper.

2. Previous Work

This section briefly discusses some existing algorithms for
solving MOSPs. In addition, some GAs and their variants that
are used to solve the multi-objective optimization problem are
discussed. Mandow et al. [11] presented initial results of ex-
tending the A* search algorithm to the solution of MOSPs. The
new algorithm is named MOA*, which is a heuristic search algo-
rithm used to find non-dominated solutions. The search process
in MOA* is guided by heuristic functions. When the guiding
heuristic does not meet a certain bounding test, MOA* becomes
unreliable and cannot produce any useful solution. However, it
is reliable when used with a proper set of heuristics. Tsaggouris
and Zaroliagis [12] proposed an improved Fully Polynomial Time
Approximation Scheme (FPTAS) algorithm for solving MOSPs.
Their algorithm resembles the multi-objective Bellman-Ford al-
gorithm. Among FTPASs, it has the best time complexity.
Horoba [13] performed an analysis of a simple evolutionary al-

gorithm that consists of a fitness function and mutation opera-
tion and found that it met the requirements of a Fully Polynomial
Time Randomized Approximation Scheme and its runtime was
comparable to that of Tsaggouris and Zaroliagis’s algorithm [12].
The conventional FTPAS requires pre-computation of some val-
ues that change to reflect dynamic changes in the network. There-
fore, the conventional FTPAS does not robustly accommodate
dynamic changes and the calculation of the shortest path must
be restarted several times whenever there are dynamic changes
in the network. Because simple EC algorithms perform well and
robustly accommodate dynamic changes in the network, they are
often used to solve MOSPs.

Elitist Evolutionary Multi-objective Optimization (EMO) algo-
rithms are the most recent EMOs used for finding Pareto-optimal
sets. In elitist EMO algorithms, good solutions are preserved dur-
ing iterations. The following text discusses some popular elitist
EMOs.

Deb et al. [10] proposed an elitist multi-objective genetic al-
gorithm, called “Non-dominated Sorting Genetic Algorithm II”
(NSGA-II) . This algorithm has low computational complexity.
During iterations, it preserves two types of solutions: (i) non-
dominated solutions and (ii) solutions that are the most distinct in
the population. By doing so, it maintains both quality and diver-
sity in solutions. Experimental results show that this algorithm
is very successful in finding diverse Pareto-optimal sets of multi-
objective optimization problems.

Bora et al. [14] applied the greedy selection reinforcement
learning technique to perform self-tuning of NSGA-II algorithm
parameters. Their new algorithm is named NSGA-RL. They con-
sidered four parameters of NSGA-II: probabilities of crossover
and mutation operations and distribution indexes in crossover and
mutation operations. The parameter values are determined on the
basis of past generations and the respective results. The algorithm
maintains a three-dimensional matrix that stores the rewards of
crossover and mutation operations. After each crossover or mu-
tation operation, the three-dimensional matrix is updated at the
corresponding location. Reward assignment can be performed
using different types of equations; therefore, different variants
of NSGA-RL can be created by changing the reward assignment
equation. NSGA-RL is slower than NSGA-II; however, its results
are closer to those of NSGA-II with the best possible parameter
values.

Zhang et al. [15] applied a GA based on the fuzzy logic infer-
ence (FLI) rules to solve the covariance matching problem, which
is generally solved using an exhaustive search. FLI rules were
used to determine the values of crossover and mutation probabili-
ties. The output of FLI is based on the current iteration count, the
number of iterations in which the highest fitness value remains
unchanged, and equations that use the maximum and minimum
fitness values. Comparison results show that the performance of
their algorithm is very close to that of an exhaustive search.

Ahn et al. [16] proposed a GA for shortest-path problems. The
GA consists of crossover and mutation operations. The crossover
operation is performed by finding common nodes between two
chromosomes and swapping their partial portions. In the mu-
tation operation, a node is randomly selected in the chromo-
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some and the subpath from the selected node to the last node
in the chromosome is changed by another randomly generated
subpath. The authors mentioned that their algorithm is faster
than Dijkstra’s Algorithm and therefore suitable for real-time
operations. The limitation of their algorithm is that they did
not consider the multi-objective optimization case. Li [17] pro-
posed a PSO-based multi-objective optimization algorithm called
Non-dominated Sorting Particle Swarm Optimization (NSPSO).
In NSPSO, any one of the non-dominated particles is consid-
ered the best global position and is used for calculating parti-
cles velocities. The experimental results of NSPSO show that
it is competitive to NSGA-II. Kim et al. [18] proposed a multi-
objective optimization algorithm that uses fast non-dominated
sorting and preference-based sorting. Preference-based sorting
uses FLI measures to assign preferences to non-dominated solu-
tions. The solution having the highest evaluation value is selected
as the preferred solution. The algorithm requires a large memory
to store the population, offspring and solution archive of size less
than the population size.

The proposed algorithm is distinct from the previous algo-
rithms because it requires a memory space equal to its population
size and does not require memory to store the offspring.

3. Problem Description

For an undirected graph, G = (V, E), the vertices or nodes of
the graph are contained in the set V and the edges or segments
that join the nodes are contained in the set E. If the graph con-
tains a total of Nv number of vertices and Ne number of edges,
then any edge ei ∈ E is represented as ei = (nx, ny), where nx is
the starting node and ny is the ending node of the edge ei. ei is
associated with up to K weights, i.e., ei.w1, ei.w2, ei.w3, ..., ei.wk.
A path between a source node, i.e., nA, and a destination node,
i.e., nB, where nA, nB ∈ V , is represented as: P = {e1, e2, ..., em}
such that P ⊆ E, e1 = (nA, nx), em = (ny, nB), nx, ny ∈ V , and
m ≤ Ne. The destination node nB should be reachable from the
source node nA in order for the path P to exist between them.

In MOSPs, the objective function value of any path P is equal
to the summation of the weights of the edges that are included in
it. Therefore, MOSPs can have up to K objective functions, which
are represented as fk(P) =

∑
ex∈P ex.wk, for k = 1 to K. The goal

of the optimization can be represented as Minimize( f1, f2, ..., fk),
i.e., minimizing each objective function value.

The solution of any multi-objective optimization problem is a
set of Pareto-optimal solutions, i.e., S PO = {P1, P2, ..}, such that
any Pi ∈ S PO is a complete path from a source node (nA) to a
destination node (nB) and is not dominated by any other solution
found by the algorithm. A solution dominates another solution if
it is better than the other solution in at least one objective func-
tion value and is not inferior to the other solution in any objective
function value.

The quality of solutions in the Pareto-optimal set is determined
by measuring the hypervolume [19], [20]. The hypervolume cal-
culates the area occupied by the Pareto-optimal set in the solution
space. It measures both quality and diversity of solutions. There-
fore, higher quality Pareto-optimal sets have a greater hypervol-
ume.

4. Proposed Algorithm

This section describes the proposed algorithm in detail. A
chromosome is a complete solution or path between source (nA)
and destination (nB) nodes. Each edge in the chromosome repre-
sents a gene. The search space consists of all possible solutions.
The salient features of the proposed algorithm are as follows:
( 1 ) It consists of a set of GA operations represented as GAset.

GAset consists of crossover and mutation operations, i.e.,
GAset = {Crossover,Mutation}.

( 2 ) In each iteration, all chromosomes go through any one of the
GA operation.

( 3 ) The procedure to select the GA operation for the chromo-
some is based on whether the chromosome is non-dominated
or dominated.

( 4 ) The offspring created after the GA operations replace their
parents. Therefore, additional memory is not required to
store offsprings.

The different steps of the proposed algorithm are illustrated in
Fig. 1. The inputs to the algorithm are the network (G), source
and destination nodes (nA and nB), population size (M), and Pb

and Rz, which are real numbers between 0 and 1 and between 0.5
and 1, respectively. The first step is the initialization in which

Fig. 1 Illustration of the steps of the proposed algorithm.
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Input: nodes: nA, & nB, G=(V,E), Ne= Number of elements in E

Output: Q: Path from nA to nB nodes.

1: Wm[]= random(Ne)

2: Q= Apply Dijkstra’s Algorithm (nA, nB)

3: return Q

Fig. 2 Method used to find a random path: f orm path(nA, nB).

the population (POP) is initialized with M unique solutions. The
second step is to find all non-dominated chromosomes in the pop-
ulation. The third step consists of a loop that executes M times.
In the loop, Pi refers to a chromosome. Pi first selects a GA op-
eration by calling the function S electOperation(). The selected
GA operation is stored in OPER, which is applied to Pi to pro-
duce a child C. The next step in the flowchart consists of three
parallel decision boxes, which check the conditions under which
the currently selected chromosome Pi is replaced by the newly
formed child C. The stopping criterion can be the maximum time
or number of iterations. After the stopping criterion is met, the
non-dominated or Pareto-optimal solutions in the population are
returned. The steps are described in detail in the remaining part
of this section.

4.1 Initialization
The population consists of M chromosomes and is represented

as POP = {P0, P1, ..., PM−1}. Each chromosome Pj ∈ POP is a
complete path between nodes nA and nB. The population is ini-
tialized with M chromosomes, and each chromosome is distinct
from the other chromosomes. Figure 2 shows an algorithm used
to generate a random path between nodes nA and nB. In line 1, the
matrix Wm stores the weights of the edges. Randomly generated
real numbers are stored in Wm. In line 2, Dijkstra’s Algorithm is
applied to find the shortest path with respect to the weights in ma-
trix Wm. Owing to random weight assignment, the method returns
a random path between nodes nA and nB. The method shown in
Fig. 2 is also used in the mutation operation.

4.2 Finding Non-dominated Chromosomes
In each iteration, the non-dominated chromosomes in the pop-

ulation are marked with probability Rz in order to distinguish
them from the other chromosomes. The procedure is shown in
Fig. 3. The input is chromosomes population (POP). The chro-
mosomes have an attribute marked that is set to true for Pareto-
optimal or non-dominated chromosomes. In the second f or loop,
all non-dominated chromosomes are marked true with probabil-
ity Rz. The � symbol is used to indicate whether the chromosome
on its left-hand side dominates the chromosome on its right-hand
side.

4.3 Selection of the GA Operation
The proposed algorithm contains a set of GA operations, which

is represented as GAset. The set consists of two elements, i.e.,
GAset = {Crossover,Mutation}. All chromosomes must go
through any one of the operations from the set GAset. The
crossover operation requires that a common node should exist
between the two parents [16]. In a conventional GA, parents are
selected by methods such as roulette-wheel or tournament selec-

Input: POP = {P0, P1, ..., PM−1}, Rz ∈ {x ∈ R|0 ≤ x ≤ 1}
Output: POP in which the Pareto-optimal chromosomes are marked

1: for i=0 to M − 1 do

2: Pi.marked = f alse

3: end for

4: for i = 0 to M − 1 do

5: cnt=0;

6: for j = 0 to M − 1 do

7: if Pj � Pi then

8: cnt + +:

9: end if

10: end for

11: r: random real number between 0 and 1

12: if cnt == 0 and r ≤ Rz then

13: Pi.marked = true

14: end if

15: end for

16: return POP

Fig. 3 Procedure to distinguish the Pareto-optimal chromosomes in the pop-
ulation.

Input: Pj ∈ POP, nA: source node, POP: population

Output: y=1, if Pj has a feasible pair in POP. .

1: cnt=0

2: for each chromosome Pi ∈ POP and Pi � Pj do

3: for each edge ex = (na, nb) ∈ Pi do

4: for each edge ey = (nu, nv) ∈ Pj do

5: if na == nu � nA then

6: cnt++

7: Exit from the nested f or loops

8: end if

9: end for

10: end for

11: end for

12: if cnt > 0 then

13: return 1

14: else

15: return 0

16: end if

Fig. 4 Method used to find if Pj has a feasible pair in the population POP
y = CheckCn(Pj).

tion. This work proposes that the crossover operation can be ap-
plied to any chromosome Pj such that the second parent is any
feasible pair for Pj from the population. A feasible pair for Pj

is a non-dominated chromosome that has at least one common
node with Pj (excluding source and destination nodes). The pro-
cedure to check if any feasible pair exists for a chromosome Pj

is shown in Fig. 4 and is represented as CheckCn(). The func-
tion CheckCn(Pj) returns 1 if at least one pair exists for Pj in the
population, otherwise it returns 0.

The method used to select a GA operation for the chromosome
is shown in Fig. 5. The basic idea behind the proposed assignment
of GA operations is the following. The chromosomes are distin-
guished into two classes: non-dominated and dominated. The
crossover operation is selected for the dominated chromosomes
with a high probability (Pb). As previously mentioned, the sec-
ond parent in the crossover operation should be a non-dominated
chromosome. Therefore, the dominated chromosomes have a
high probability of producing a better offspring by exchanging
genes with a non-dominated chromosome. On the other hand,
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Input: Pj ∈ POP, Pb ∈ {x ∈ R|0.5 < x ≤ 1}
Output: OPER : A GA operation for Pj

1: v= CheckCn(Pj)

2: r: random real number between [0, 1]

3: if v == 0 then

4: return Mutation

5: else if Pj.marked == true and r ≤ Pb then

6: return Mutation

7: else if Pj.marked == true then

8: return Crossover

9: else if r ≤ Pb then

10: return Crossover

11: else

12: return Mutation

13: end if

Fig. 5 Method used to select a GA operation for the chromosome Pj,
OPER = S electOperation(Pj).

a mutation operation is selected for the non-dominated chromo-
somes with a higher probability (Pb) so that they try to produce
a better quality offspring by introducing new genes. The inputs
to the method in Fig. 5 are as follows: chromosomes Pj and Pb,
which is a real number between 0.5 and 1. At the end of the
method, a GA operation is selected for the input chromosome Pj.

4.4 GA Operations
GAset consists of two operations: crossover and mutation. This

subsection describes the two operations in detail. The crossover
operation in the PO problem is different from conventional single-
point crossover. Before the crossover operation can be applied on
the chromosome Pj ∈ POP, the second parent should be deter-
mined by calling the function f indpair(Pj), which is shown in
Fig. 6. The procedure finds a feasible pair for Pj. As shown in
Fig. 6, the indexes of all feasible pairs for Pj are stored in Pc.
Then, an element is randomly selected from Pc and is returned.
The crossover operation, which is quite similar to the one pro-
posed by Ahn et al. [16], is shown in Fig. 7. The crossover oper-
ation stores the second parent in variable C. The common nodes
between C and Pj are stored in Cn. Then, an element is randomly
selected from Cn. In the second to last row, C is formed by com-
bining the upper portion of C with the lower portion of Pj. C is
updated to Pj on the basis of the conditions demonstrated at the
start of this section with the illustration of the algorithm steps.

The proposed mutation operation is shown in Fig. 8. The in-
puts are chromosome Pj and destination node nB. In the first
three lines, three random numbers (r1, r2, r3) are generated. The
variable Im stores either the edge that has maximum value of the
rth

1 component of the weight in Pj, or a randomly selected edge
(er2 ) from Pj. In line 9, a new path is formed between nodes nu

and nB. In line 10, the final offspring is created by combining the
upper portion of Pj with the subpath C.

4.5 Calculation of Memory Requirement
The memory required by the proposed algorithm primarily

consists of the memory that is required to store the chromosomes.
Therefore, the memory requirements are determined in terms of
the maximum number of chromosomes or solutions that should
be stored in the memory at any time. For example, we suppose

Input: Pj, POP, nA: source node

Output: Index of the feasible pair

1: for each chromosome Pk ∈ POP do

2: if Pk .marked == true and Pj � Pk then

3: for each edge ex = (na, nb) ∈ Pj do

4: for each edge ey = (nu, nv) ∈ Pk do

5: if na == nu � nA then

6: I= index of Pk in the population POP

7: Pc = Pc ∪ I

8: exit to the outermost for loop

9: end if

10: end for

11: end for

12: end if

13: end for

14: selP= randomly select an element from Pc

15: return selP

Fig. 6 Procedure to select a feasible pair for Pj, i.e., y = f indpair(Pj).

Input: Pj, POP: population of chromosomes

Output: C: offspring

1: C = POP[ f indpair(Pj)]

2: Cn = null

3: for each edge ex = (na, nb) ∈ Pj do

4: for each edge ey = (nu, nv) ∈ t1 do

5: if (na == nu) then

6: Cn = Cn ∪ na

7: end if

8: end for

9: end for

10: r= a randomly selected node from Cn

11: C = concatenate(C(nA..., r), Pj(r, ....nB))

12: return (C)

Fig. 7 Procedure to apply the crossover operation to chromosome Pj, i.e.,
C = Crossover(Pj).

Input: Pj = {e0, e1, ..., em−1}, nB: destination node

Output: C: offspring

1: r1: random integer between [1,K]

2: r2: random integer between [0,M − 1]

3: r3: random integer between [0, 1]

4: if r3 > 0.50 then

5: Im = (nu, nv)= arg max
ex∈P j

(ex.wr1 )

6: else

7: Im= er2 = (nu, nv)

8: end if

9: C= f orm path(nu, nB)

10: C= concatenate(Pj(e0, ..., ex),C) (s.t. ex = (nz, nu))

11: return (C)

Fig. 8 Mutation operation, i.e., C = mutation(Pj).

that a chromosome requires Δ units of memory and the proposed
algorithm stores the number of chromosomes equal to the pop-
ulation size (M). An additional chromosome C is used in the
crossover and mutation operations. Therefore, (M + 1)Δ units
of memory are required to store the chromosomes. NSGA-II
stores the number of chromosomes equal to twice the population
size [10] because it creates the same number of children as the
number of parents. The total memory requirement of NSGA-II
is equal to 2NΔ units. Therefore, the ratio between the memory
required by NSGA-II to that required by the proposed algorithm
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is equal to memNS GA−II

memProposed
= 2N

M+1 . SA preserves the current solution
and one neighboring solution and therefore requires maximally
2Δ units of memory.

5. Experimental Results and Discussion

The performance of the proposed algorithm is compared with
(i) SA, which works on a single solution, and (ii) NSGA-II, which
is one of the most successful multi-objective optimization algo-
rithms. The algorithms are implemented using C++ and executed
on an ARM-based embedded system and Intel-Celeron-M-based
PC. A Celeron-M processor is also used in the embedded system
owing to its power efficiency. The ARM-based embedded sys-
tem consists of a Techlogix TS-7800 embedded system [21] that
has a 500-MHz ARM9 processor and 128-MB DRAM. The PC
comprises a 1.5-GHz Celeron-M processor with 512-MB mem-
ory. This section presents the parameter values used in the im-
plementation, details of the experimental setup, and a discussion
about the performance of the algorithms.

5.1 Algorithms Parameters
The value of K was set to 3 because the multi-objective PO

problem in the experiments has three objective functions. The
multi-objective optimization problem can be represented as fol-
lows:
Minimize( f1(Pj), f2(Pj), f3(Pj)), where Pj is a chromosome in
the population.
The stopping criterion in all algorithms and test cases was set to
10 s. The proposed algorithm was implemented with the follow-
ing parameter values: population size (M) was set to 10 and 20,
Pb was set to 0.65, and Rz was set to 1. SA implementation has
the following parameters: initial temperature (T0) = 100, cooling
rate (α) = 0.8, and constant (β) = 0.85. SA and its metropolis
function, as described by Sait et al. [6], were used. The neigh-
boring element in SA was determined using the mutation opera-
tion [16]. The cost function in SA was equal to the square root of
the summation of the squares of the different objective functions.
NSGA-II implementation had population sizes (N) of 5 and 10.
When M = 10 and N = 5, the ratio memNS GA−II

memProposed
= 0.91. When M=

20 and N= 10, the ratio memNS GA−II

memProposed
= 0.95. Therefore, although the

proposed algorithm uses a larger population than NSGA-II, the
memory requirement of the two algorithms were approximately
equal. Thus, we can say that the tests performed with approx-
imately the same execution time and used the same amounts of
memory. The details of the NSGA-II implementation are as fol-
lows. It used tournament selection based on crowding distance
to select the parents for the crossover operation. The crossover
and mutation operations were used for the PO problem, as pro-
posed by Ahn et al. [16]. Crossover probability was set to 0.90
and mutation probability was set to 0.15. During each iteration,
the elements for the population in the next iteration were selected
from the population and children sets. The selection was made
based on the non-domination count and diversity of solutions.

5.2 Experimental Setup
The algorithms were developed on a PC and then compiled for

Table 1 Characteristics of the graphs.

Graph Number of nodes (Nv) Number of edges (Ne)

S G0 250 1,000
S G1 300 1,300
S G2 190 670
S G3 240 1,250
S G4 190 800
S G5 270 1,100
BG0 1,900 7,700
BG1 1,700 7,700
BG2 1,800 8,400
BG3 2,000 8,800
BG4 1,700 7,600
BG5 2,000 9,000

the ARM9 embedded system by using the C++ cross-compiler
for the ARM-based embedded system [21]. The executable file
was transferred from the PC to the embedded system through
a serial port. The implementations of the proposed algorithm,
NSGA-II and SA were represented as “proposed,” “NSGA-II,”
and “SA”, respectively. The undirected graphs were generated us-
ing a random graph generation tool [22]. Table 1 lists the number
of nodes and edges in the graphs. The graphs labeled S G0−S G5
were executed on the ARM-based embedded system and those
labeled BG0 − BG5 were executed on the Celeron-M PC. The
edges can have up to three weights and their values were as-
signed as random real numbers between 0 and 200. During any
test instance, the source and destination nodes were randomly se-
lected in the given graph. Then, the three algorithms (proposed,
NSGA-II, and SA) were executed to obtain their Pareto-optimal
solutions. The stopping criterion in the algorithms, as previously
mentioned, was set to 10 s. A test on any graph comprised up to
10 test instances. Tests were conducted on all graphs and repeated
for different values of M and N.

The hypervolumes of the Pareto-optimal sets were calculated
using the tool proposed by Fonseca et al. [23]. The tool uses an
improved version of the Hypervolume by Slicing Objectives al-
gorithm [24], which accurately computes the hypervolume. This
algorithm is among the fastest methods to compute hypervolume.
The hypervolume [19] indicator measures both quality and diver-
sity of solutions. In hypervolume calculations, the bounding point
was selected by the method employed by Knowles [25]. He se-
lected the bounding point as b j = max j +δ(max j −min j), where
b j is the bounding value of the jth coordinate and max j and min j

are the maximum and minimum values, respectively, of the jth co-
ordinate in the Pareto-optimal solutions. The value of δ is taken
as 0.01. The hypervolume distributions can be represented using
box-and-whisker charts. The Wilcoxon rank sum tests [26] were
used to compare the hypervolume distributions from two differ-
ent algorithms. The rank sum tests were applied at a significance
level of 5% (α = 0.05).

5.3 Results
Figure 9 shows the box plots on two graphs of the hypervol-

umes of the Pareto-optimal solutions that were found by the dif-
ferent algorithms. The box plots show that the hypervolumes of
the proposed algorithm and NSGA-II are closer to each other and
have higher values than the hypervolumes obtained from SA. The
box plots on the remaining graphs also show a similar trend. The
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Fig. 9 Box-and-whisker plots of the hypervolumes of the Pareto-optimal
sets.

Fig. 10 Wilcoxon rank sum test results when M = 10 and N = 5.

Wilcoxon rank sum tests were applied in all tests and the results
are shown in Figs. 10 and 11. Figure 10 shows the results when
M = 10 and N = 5 and Fig. 11 shows the results when M = 20
and N = 10. The results show that the statistical difference be-
tween the hypervolume distributions obtained from the proposed
algorithm and NSGA-II was insignificant. On the other hand,
the P-values of the rank sum tests on the proposed algorithm and
SA show that the two hypervolume distributions were statistically
different from each other. Therefore, based on the box-plots and
rank sum test results, we can conclude that the proposed algo-
rithm provides Pareto-optimal solutions that are equal in quality

Fig. 11 Wilcoxon rank sum test results when M = 20 and N = 10.

Fig. 12 Contribution of different algorithms in the overall Pareto-optimal
solutions.

to those of NSGA-II and are better than those of SA.
In addition, the performance of the algorithms was measured

by determining their share in the overall Pareto-optimal solutions.
The algorithms that have a higher share are better, and these
can be determined by the following method. During any test in-
stance, the results of the algorithms were combined and an overall
Pareto-optimal set was calculated. The number of solutions from
any algorithm that also exist in the overall Pareto-optimal set de-
termines its share in the overall Pareto-optimal set. The results
are shown using bar graphs in Fig. 12. The x-axis indicates the
network on which tests were performed, and the y-axis shows the
percentage of solutions in the overall Pareto-optimal set that are
contributed by different algorithms. When M = 10 and N = 5,
the proposed algorithm performs better than NSGA-II and SA in
most test cases. Similarly, when M = 20 and N = 10, the pro-
posed algorithm performs better than NSGA-II and SA in most
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Fig. 13 Average contribution of the algorithms to the overall Pareto-optimal
solutions.

test cases. The average test results are shown in Fig. 13, which
shows that the average performance of the proposed algorithm is
better than those of NSGA-II and SA. Comparison of the average
contribution to the overall Pareto-optimal solutions suggests that
when the execution time and memory usage of the proposed al-
gorithm and NSGA-II are approximately equal, the performance
of the proposed algorithm is better than that of NSGA-II. On the
other hand, SA consumes less memory, but its performance is not
competitive to that of the proposed algorithm and NSGA-II.

Therefore, based on the experimental results described in this
section, the performance of the proposed algorithm is 18.8% bet-
ter than that of NSGA-II when memNS GA−II

memProposed = 0.90. Moreover, the
performance of the proposed algorithm is 5.1% better than that of
NSGA-II when memNS GA−II

memProposed = 0.95.

6. Conclusions

This work proposed a memory-efficient GA-based algorithm
for solving the multi-objective PO problem. The proposed algo-
rithm has a memory requirement that is approximately equal to
the size of its population. In each iteration, all chromosomes (or
solutions) go through the crossover or mutation operation. The
crossover operation is preferred for a dominated chromosome in
the case that the other parent is a non-dominated chromosome.
Using the crossover operation, dominated chromosomes can ex-
change some genes with non-dominated chromosomes and in-
crease their probability of producing a better offspring. The mu-
tation operation is preferred for non-dominated chromosomes. In
this operation, a chromosome makes random changes in its genes
to produce a better offspring. The offspring replaces its parent
if it is not dominated by the parent. The chromosomes that are
marked as Pareto-optimal are only replaced by their offspring if
they dominate them.

The proposed algorithm was implemented on two different
platforms: an ARM-based embedded system with a 500-MHz
processor and 128-MB RAM and an Intel-Celeron-M based PC
with a 1.5-GHz processor and 512-MB RAM. In addition, the
proposed algorithm was compared with NSGA-II and SA. The

comparison results measured the quality of the Pareto-optimal
solutions obtained with the algorithms when their execution time
and memory usage were approximately equal. We found that SA
is the most memory-efficient, but its solution quality is not as
good as the other algorithms. The performance of the proposed
algorithm was 5% better than that of NSGA-II. The experimental
results show that the proposed algorithm is suitable to perform
multi-objective POs in embedded systems, which generally have
less powerful processors and limited memory. In the future, more
GA operations can be added to the set GAset, which can further
improve its performance.
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