
IPSJ SIG Technical Report

Privacy-preserving Publishing of a Pseudonym-based

Trajectory Location Data Set

(Extended Abstract)

KenMano1,a) KazuhiroMinami2,b) HiroshiMaruyam2,c)

Abstract: Anonymization is a common technique for publishing a location data set in a privacy-preserving way. How-
ever, such an anonymized data set lacks user trajectory information, which could be beneficial to many location-based
analytic services. In this paper, we present a dynamic pseudonym scheme for constructing alternate possible paths for
mobile users that protects their location privacy. We introduce a formal definition of location privacy for pseudonym-
based location data sets and develop a polynomial-time verification algorithm for determining whether each user in a
given location data set has a sufficient number of possible paths to disguise his/her true movements. We also provide
the correctness proof of the algorithm.

1. Introduction

Nowadays a huge number of people are using mobile devices
equipped with a GPS receiver, and so it has become feasible to
keep track of people’s movements over a wide area by collect-
ing GPS data from those mobile devices. Such a large volume
of location data gives us a precise global view of people’s mo-
bility patterns, and we can thus support analytic location-based
services, such as real-time traffic monitoring [6] and urban plan-
ning for future sustainable cities [16].

However, due to the significant concern about location pri-
vacy [1], the sharing of mobile users’ location traces has largely
been restricted to anonymized data sets where users’ identities
are removed. We usually need to follow the practice of ensuring
k-anonymity [7], which degrades the granularity of location data
to ensure that every location contains more than k people. Con-
sequently, k anonymized data sets provide little information on
users’ mobility patterns, which makes it difficult to link multiple
data points produced by the same user.

There are, however, many situations where we can improve our
analytic methods by considering users’ mobility patterns. For ex-
ample, Draffic [4] provides a statistical analysis of people’s move-
ments in sightseeing areas so that hotels and souvenir shops can
take effective measures to attract more visitors and provide them
with better services. Similarly, a shopping mall manager could
position various stores in the mall and thus conveniently match
customers’ shopping experience to their movement through the
mall.

1 NTT Corporation Kanagawa 243–0198, Japan
2 Institute of Statistical Mathematics Tokyo 190–8562, Japan
a) mano.ken@lab.ntt.co.jp
b) kminami@ism.ac.jp
c) hm2@ism.ac.jp

Fig. 1 Location trajectories through location hubs. Arrows with the same
color represent the movements of one person. Rectangles denote a
location hub where many people meet.

We, therefore, propose a new dynamic pseudonym scheme for
constructing a location data set that retains users’ path infor-
mation while preserving their location privacy. Our basic ap-
proach is to exchange multiple users’ pseudonyms only when
they meet at the same location to eliminate the linkability of their
pseudonyms before and after that exchange. We believe that such
a dynamic pseudonym approach is effective since many people
move through hub locations (e.g., a train station near sightseeing
spots) where many people meet [5], as shown in Figure 1. Our
privacy metrics requires that, at a given time t, every user has a
sufficient number of plausible paths heading towards K different
locations.

To make this dynamic pseudonym-based scheme practical, we
address the issue of multi-path inconsistencies among multiple
users. Assuming that users’ home locations are public knowledge
available to an adversary [12], we find that not all pseudonym
exchanges can be effective; the adversary can detect global in-
consistencies among multiple plausible paths taken by different

ⓒ 2013 Information Processing Society of Japan 1

Vol.2013-DPS-154 No.56
Vol.2013-CSEC-60 No.56

2013/3/15

IPSJ SIG Technical Report

users. It is thus not trivial to decide whether a given data set is
safely publishable. We, therefore develop a verification algorithm
for determining whether it is possible to convert a given location
data set into pseudonym-based data satisfying the (K, t)-privacy
metrics. We prove both the soundness and completeness of our
algorithm; the algorithm considers all the valid plausible paths of
users while excluding all their invalid paths.

Although the simplicity of the original verification algorithm
is convenient for proving its correctness, its running time is expo-
nential. Therefore, we develop a polynomial-time version of an
equivalent algorithm by reducing the user-pseudonym matching
problems to a complete bipartite matching problem, which can be
solved efficiently. We summarize our contributions in this paper
as follows:
(1) We develop a quantitative privacy metrics for pseudonym-

based location data sets founded on the notion of possible
paths.

(2) We develop a polynomial-time algorithm that allows us to
publish a pseudonym-based location data set in a privacy-
preserving way.

(3) We formally prove the correctness of the verification algo-
rithm in terms of its soundness and completeness.

The rest of the paper is organized as follows. We introduce our
system model for pseudonym-based location services in Section 2
and then define our privacy metrics in Section 3. Next, we present
a verification algorithm for a pseudonym-based location data set
and prove its correctness in Section 4, and develop an equivalent
algorithm running in polynomial time in Section 5. Section 6
discusses possible future work concerning the algorithms in Sec-
tions 4 and 5. We cover related work in Section 7 and finally
conclude the paper in Section 8.

2. System model

Figure 2 shows our system model for pseudonym-based loca-
tion systems. We assume that a mobile user ui carrying a GPS-
enabled mobile device periodically reports a triplet (ui, lk, tk),
which indicates that user ui is at location lk at time tk. The
pseudonym-based location server receives identifiable location
data from multiple users, replaces the users’ identities with
pseudonyms, and provides location-based content providers, such
as traffic monitoring applications, with location data that have
pseudonyms.

We first introduce the following four sets U, P, L, and T to
define our system model.
U: a set of m mobile users such that |U | = n.
P: a set of m pseudonyms such that |P| = n.
L: a set of symbolic locations.
T : a set of timestamps {0, 1, . . . , t∗} where t∗ is the last times-

tamp.
We next define the following four functions.
Definition 1 (User location function WU) The location

function WU : U × T → L returns the location l of user u at time
t.

Definition 2 (Pseudonym location function WP) The loca-
tion function WP : P×T → L returns the location l of pseudonym
p at time t.

(ui, lk, tk)

(pi, lk, tk)

(

Fig. 2 System model. The pseudonym-based location server replaces a
user’s identity ui with a pseudonym pi before releasing location data
to content providers.

Definition 3 (Pseudonym assignment function N) The
pseudonym assignment function N : U × T → P maps a user u at
time t to a pseudonym p. We say that a user u owns a pseudonym
p at time t if N(u, t) = p. For every time t ∈ T , the function
Nt(u) ≡ N(u, t) is a one-to-one function from U to P.
Note that N(u, t) = p implies that WU (u, t) = WP(p, t).

We next assume that each user ui ∈ U is associated with a home
location li with the following home location function.

Definition 4 (Home location function H) The home loca-
tion function H : U → L maps a user ui to his home location
li. Since we assume that each user has a different home location,
function H is one-to-one.

We now define a pseudonym-based data set PL parameterized
by the functions WU and N as the following set of triplets:

PL = {(p, l, t) | t ∈ T, u ∈ U, p = N(u, t), l = WU (u, t)}.

This data set represents the output from a pseudonym-based
location server in Figure 2. In this paper, we consider a malicious
content provider who legitimately obtains a data set from the
pseudonym-based location server and tries to violate the user’s
privacy corresponding to a certain pseudonym in the data set.

3. Pseudonym-based location privacy

To replace the user identity on a given moving path with the
static pseudonym does not necessarily protect the user’s location
privacy. We take an approach that involves changing each user’s
pseudonym dynamically to prevent inference attacks using exter-
nal knowledge about her home location.

3.1 Pseudonym exchanges

Each user ui typically starts his moving path from his home
H(ui) and finally returns there again. Therefore, if a user’s home
address is known to a malicious content provider, which is a com-
mon assumption in location privacy research [7], his moving path
with the same pseudonym does not protect his location privacy;

ⓒ 2013 Information Processing Society of Japan 2

Vol.2013-DPS-154 No.56
Vol.2013-CSEC-60 No.56

2013/3/15

IPSJ SIG Technical Report

pipi pi
pj pj

pjp

pj

pi

j

Fig. 3 Example pseudonym exchange. Two users exchange their
pseudonyms pi and p j at the intersection. The solid lines denote each
user’s actual path while the dotted lines denote an alternate possible
path.

it is trivial to infer that the whole path belongs to the same user
whose home address appears at both ends.

Therefore, it is necessary to change pseudonyms dynami-
cally to prevent the above attack. The basic idea is to divide a
whole path of the same user into multiple segments with different
pseudonyms so that it is infeasible to link any neighboring seg-
ments. However, when a user moves in an area where there are no
other nearby users, it is straightforward to link two pseudonyms
of the same user since we know that the user, who is subject to
the laws of physics, cannot quickly jump to a distant place.

To address this issue, we adopt an approach in which we ex-
change multiple users’ pseudonyms only when they meet at the
same location, which is similar to that of using fresh pseudonyms
in a mix zone [2]. Figure 3 shows an example of two users’ ex-
changing their pseudonyms. Two users who own pseudonyms pi

and p j, respectively, randomly exchange their pseudonyms when
meeting at the intersection. Although the user who previously
owned pseudonym pi actually turns right at the corner, we con-
sider that the alternate path turning left is also possible. The other
user similarly has the two possible paths after passing the inter-
section.

To consider only such valid pseudonym exchanges, we put the
following constraint on the pseudonym assignment function N.
For every pair of two different users u, u′ ∈ U and time t > 0, if
N(u, t− 1) = p and N(u′, t) = p, then WU (u, t− 1) = WU (u′, t− 1)
holds. Intuitively, this constraint implies that if a user u′ receives
another user u’s pseudonym p at time t, users u and u′ must have
met at the same location at the previous time t − 1.

3.2 Multi-path consistency

If we consider the possible paths of a single user, whenever
the user meets another user, we can add a new branch as a possi-
ble segment of the path. However, we assume in this paper that
every user starts from his home location and eventually returns
there. Thus, we need to eliminate some possible branches if tak-
ing that direction makes it impossible for the user to return to his
home location. Furthermore, even if one user ui is able to return
home along a possible path, another user u j who exchanged her
pseudonym with ui might lose her possible route home.

We elaborate this multi-path consistency issue with the ladder
model in Figure 4. The ladder model represents a pseudonym

Fig. 4 An example of time-changing pseudonym assignments based on the
ladder model.

assignment function N in a graphical way abstracting away each
user’s physical movements. Figure 4 shows an example ladder
model for three users u1, u2 and u3. The model denotes each
pseudonym pi by a vertical line, and represents an encounter of
multiple users associated with a different pseudonym by connect-
ing their pseudonyms with a horizontal line. *1 Assuming that
time passes vertically downward, we specify the sequential order
of users’ meetings by the positions of the horizontal lines.

Each pseudonym pi is associated with a particular user at any
given time t. In Figure 4, pseudonym p1, p2, and p3 are associ-
ated with users u1, u2, and u3, respectively, both at the start and
end times t0 and t3; that is,

N(ui, t0) = N(ui, t3) = pi for i = 1, 2, 3.

This implies that for each user ui,

WU (ui, t0) = WP(pi, t0) = H(ui) = WU (ui, t3) = WP(pi, t3).

If we construct user u1’s possible time-changing pseudonym as-
signments by exchanging pseudonyms, we obtain the following
sequences:
(1) p1 → p1 → p1 → p1

(2) p1 → p2 → p2 → p2

(3) p1 → p2 → p3 → p3

(4) p1 → p2 → p3 → p1

If we consider the requirements that user u1 owns pseudonym p1

at times t0 and t3, we must eliminate sequences (2) and (3) leav-
ing (1) and (4) as possible sequences of pseudonym assignments.
However, if we take the pseudonym sequence (4), users u2 and u3

are forced to take the pseudonym sequences p2 → p1 → p1 → p3

and p3 → p3 → p2 → p2, respectively, violating their endpoint
requirements. Thus, it turns out to be impossible for user u1 to
take the pseudonym sequence (4) above.

We should therefore consider possible pseudonym sequences

*1 Note that we can always convert an encounter of more than two users into
a corresponding sequence of two-user encounters in our ladder model as
we discuss in Section 5.2.

ⓒ 2013 Information Processing Society of Japan 3

Vol.2013-DPS-154 No.56
Vol.2013-CSEC-60 No.56

2013/3/15

IPSJ SIG Technical Report

Fig. 5 Concept of (K, t)-pseudonym location privacy. We assume that any
pseudonym sequence following the arrows from left to right can be
produced by a certain multi-path consistent pseudonym assignment
function N.

for multiple users simultaneously to ensure that the resulting
pseudonym assignment function N satisfies the following multi-
path consistency requirement.

Definition 5 (Multi-path consistent function N) We say
that, for a given user location function WU and a pseudonym
location function WP, a pseudonym assignment function N is
multi-path consistent if
(1) ∀u, u′ ∈ U,∀t ∈ T > 0 : N(u, t − 1) = p ∧ N(u′, t) = p ⇒

WU (u, t − 1) = WU (u′, t − 1),
(2) ∀u, u′ ∈ U,∀t ∈ T : N(u, t) � N(u′, t), and
(3) ∀u ∈ U : WP(p, t) = H(u)⇒ N(u, t) = p for t = 0, t∗.

Note that the second condition should always hold since the
pseudonym assignment function N in Definition 3 is one-to-one
when we fix time t ∈ T .

3.3 (K, t)-pseudonym location privacy

We argue that the number of possible pseudonym sequences is
not an appropriate privacy metrics for pseudonym-based location
services. Consider the situation where two users move together
taking the same moving path. If the two users possibly exchange
their pseudonyms at each time, the result is an exponential num-
ber of possible pseudonym sequences with respect to the length
of time. Therefore, we rather use the number of pseudonyms at
a given time t on possible pseudonym sequences satisfying the
multi-path consistency requirement as our location privacy met-
rics. Figure 5 shows such multiple pseudonym sequences of user
ui. There is only a single possible pseudonym at the initial time
t0 and the last time t∗. On the other hand, user ui can take multi-
ple pseudonyms in the middle of those sequences. If user ui can
take K or more pseudonyms at a given time t, we say that user ui

satisfies (K, t)-pseudonym location privacy.
We now formally define the notion of (K, t)-pseudonym loca-

tion privacy as follows.
Definition 6 ((K, t)-pseudonym location privacy) Given

a user ui, we say that a location function W satisfies (K, t)-
pseudonym location privacy if there exist K or more pseudonym
assignment functions N0,N1, . . . ,NK that are multi-path consis-
tent such that every Nl(ui, t) for l = 0 to K outputs a distinctive
pseudonym.

4. Verification of pseudonym-based location

data sets

In this section, we describe an algorithm for determining
whether a given data set satisfies the privacy metrics in Defini-
tion 6 and prove its correctness in terms of both soundness and
completeness.

4.1 Verification algorithm

We present a privacy evaluation algorithm for computing how
many possible pseudonyms each user ui could have at a given
time t. The algorithm takes two data structures A[t, i] and AM[t]
as inputs. The matrix A[t, i] contains a set of users who can
possibly take a pseudonym pi at time t. Initially, for all i, each
field A[t, i] contains the set of all users U except for A[0, i] and
A[t∗, i], which only contains a single user. A[0, i] and A[t∗, i] con-
tain users uk and ul respectively such that WP(pi, 0) = H(uk)
and WP(pi, t∗) = H(ul). Figure 6 shows an example of matrix
A where A[0, i] and A[t∗, i] contain a user ui for i = 1, 2, 3. The
list AM[t] contains a set of pseudonyms that can be exchanged by
their owner users at time t. The example AM in Figure 7 shows
that pseudonyms p1 and p2 can be exchanged at time t1.

Time p1 p2 p3

t0 {u1} {u2} {u3}
t1 {u1, u2, u3} {u1, u2, u3} {u1, u2, u3}
t2 {u1, u2, u3} {u1, u2, u3} {u1, u2, u3}
t3 (= t∗) {u1} {u2} {u3}

Fig. 6 Example matrix A.

Time Exchangeable pseudonyms
t0 {p1, p2}
t1 {p2, p3}
t2 {p1, p3}

Fig. 7 Example list AM.

Taking A and AM as inputs, the algorithm keeps updating the
content of A propagating the constraints at both ends and outputs
the final A, with which we can check how many pseudonyms a
given user ui takes at time t.

Algorithm 1 is the main program, which iteratively calls two
functions O and I until matrix A cannot be updated any more.
The function O sequentially narrows down the entries A[t, i] at
time t by computing all the possible mappings from pseudonyms
to users at time t using the mapping information at time t − 1.
Function I performs this task in the reverse order.

Algorithm 1 Main program.
1: while 1 do

2: prevA← A
3: A← O(A, AM)
4: A← I(A, AM)
5: if A = prevA then

6: break;

7: end if

8: end while

9: return A

Algorithm 2 shows how function O computes possible user-
pseudonym mappings sequentially. Function O takes A and AM
as inputs and updates A as follows.

ⓒ 2013 Information Processing Society of Japan 4

Vol.2013-DPS-154 No.56
Vol.2013-CSEC-60 No.56

2013/3/15

IPSJ SIG Technical Report

Algorithm 2 Function O for computing possible user-pseudonym
mappings sequentially.
1: for t = 1→ t∗ do

2: seq← ∅
3: for all pseq ∈ compPossibleMappings(A, t − 1) do

4: seq← seq ∪ compCurrentSeqs(A, AM, t − 1, t, pseq)
5: end for

6: A← replaceRow(A, t, seq)
7: end for

8: return A

The function compPossibleMappings in line 3 computes all the
possible pseudonym-user mappings at time t − 1 from A as fol-
lows:

compPossibleMappings(A, t)

= {(u1, . . . , un) | ∀i : ui ∈ A[t, i] ∧ ∀i, j : ui � u j}.
We represent such a mapping as a sequence of users. For
example, mapping (u1, u2, u3) means that u1, u2, and u3 own
pseudonyms p1, p2, and p3, respectively. Line 3 stores
such possible mapping in variable psec and computes all pos-
sible pseudonym-user mappings by applying all the possible
pseudonym exchanges specified in AM[t − 1]. The variable seq
on line 4 maintains all the user-pseudonym mappings at time t
while iterating the for loop on each pseudonym-user mapping at
time t − 1. The function compCurrentSeqs is formally defined as
follows:

compCurrentSeqs(A, AM, t1, t2, pseq)

= {seq | seq ∈ exchangeable(pseq, AM[t2]) ∧ ∀i : seq[i] ∈ A[t1, i]}
where the function exchangeable returns a list of possible
pseudonym-user mappings derived from pseq considering a list
of exchangeable pseudonyms in list AM[t2]. Finally, line 6 up-
dates matrix A by replacing the ith row with a new row com-
puted from the user-pseudonym mappings in seq using the func-
tion replaceRow. The outermost while loop iterates this operation
sequentially from time t = 1 to t∗.

Similarly, Algorithm 3 shows how function I computes possi-
ble user-pseudonym mappings in the reverse order.

Algorithm 3 Function I for computing possible user-pseudonym
mappings in the reverse order.
1: for t = t∗ → 1 do

2: seq← ∅
3: for all nseq ∈ compPossibleMappings(A, t) do

4: seq← seq ∪ compCurrentSeqs(A, AM, t − 1, t − 1, nseq)
5: end for

6: A← replaceRow(A, t − 1, seq)
7: end for

8: return A

Example: Consider the matrix A in Figure 6 again. At time
t0, only mapping (u1, u2, u3) → (p1, p2, p3) is possible. There-
fore, the function compPossibleMappings in line 3 returns the se-
quence (u1, u2, u3), and that sequence is stored in variable psec.
Next, the function compCurrentSeqs computes the possible map-
pings at time t1. If we look up AM[0] in Figure 7, we learn that
pseudonyms p1 and p2 are exchangeable at time t1. Thus, we ob-
tain two possible mappings (u1, u2, u3) and (u1, u3, u2). This im-
plies that A[1, 1] = {u1}, A[1, 2] = {u2, u3}, and A[1, 3] = {u2, u3},
and the function replaceRow takes care of this task.

4.2 Completeness and Soundness

We show that the verification algorithm in Section 4.1 is com-
plete in the sense that it does not to miss any valid assignment
function N; that is, it maintains all the necessary elements in ma-
trix A that are used to construct a possible path for some user
ui ∈ U

We also show that Algorithm 1 does not to produce any
pseudonym assignment function N that is not multi-path consis-
tent. We show that any element in matrix A produced by Algo-
rithm 1 is used as part of a possible path in a compatible list.

We first present formal definitions of notions such as possible
path and possible mapping, which have already appeared in the
previous sections. Then we establish the notion of a compatible
list of possible paths satisfying matrix A, which corresponds to
the multi-path consistent pseudonym assignment function N in
Definition 5.

Let PL be a a pseudonym-based location data set with a user lo-
cation function WU and a pseudonym assignment function N. In
the rest of this section we use a fixed user sequence u1, u2, . . . , un

and a fixed pseudonym sequence p1, p2, . . . , pn such that ui � u′i
and pi � p′i if i � i′. Also we use i(), i′(), j() and j′() to de-
note any mapping from T to {1, . . . , n}, and use k() to denote any
permutation of (1, . . . , n).

Definition 7 (Possible path) We say that a sequence of el-
ements (pi(0), l j(0), 0), (pi(1), l j(1), 1), . . . , (pi(t∗), l j(t∗), t∗) in PL is a
possible path if

∀t ∈ T > 0 : pi(t−1) = N(uk(t−1), t − 1)

∧ pi(t) = N(uk(t), t)

⇒WU (uk(t−1), t − 1) = WU (uk(t), t − 1).

That is, a possible path satisfies the first condition in Definition 5.
Definition 8 (A pair of compatible paths) We say that a

pair of paths (pi(0), l j(0), 0), (pi(1), l j(1), 1), . . . , (pi(t∗), l j(t∗), t∗) and
(pi′(0), l j′(0), 0), (pi′(1), l j′(1), 1), . . . , (pi′(t∗), l j′(t∗), t∗) is compatible if

∀t ∈ T : (pi(t), l j(t), t) � (pi(t), l j(t), t).

Definition 9 (User of possible path) We say that a possible
path r = (pi(0), l j(0), 0), (pi(1), l j(1), 1), . . . , (pi(t∗), l j(t∗), t∗) satisfies
A when there exists a user u such that u ∈ A[i(t), t] for any t ∈ T .
In such a case, we call u a possible user of r.

We are now ready to define the notion of a compatible list men-
tioned above.

Definition 10 (Compatible list) A compatible list of possi-
ble paths for PL satisfying A is a tuple (r1, r2, . . . , rn) for which
the following two conditions hold:
(1) Each ri is a possible path of PL satisfying A with possible

user ui.
(2) A pair of paths ri and r j is compatible if i � j.

In the rest of this section, we identify a permutation
(uk(1), uk(2), . . . , uk(n)) of the fixed user list (u1, u2, . . . , un) with the
mapping {pi → uk(i) | i = 1, . . . , n}, and we call such a permu-
tation simply a mapping. We define a mapping at time t for a
compatible list s = (r1, r2, . . . , rn) as follows.

Definition 11 (mapping for a compatible list) Let
c = (r1, r2, . . . , rn) be a compatible list of possible paths for PL

ⓒ 2013 Information Processing Society of Japan 5

Vol.2013-DPS-154 No.56
Vol.2013-CSEC-60 No.56

2013/3/15

IPSJ SIG Technical Report

satisfying A. We say that a mapping s = (uk(1), uk(2), . . . , uk(n)) is a
mapping for c at time t ∈ T when the following condition holds:

∃l ∈ L ∀i : the tth element of rk(i) is (pi, l, t).

Clearly, a mapping at t is uniquely determined for any compatible
list c, so we denote such a unique mapping by c(t).

Theorem 1 (Complete reduction of matrix A) If c is a
compatible list of possible paths satisfying an initial matrix A of
Algorithm 1, c remains to be a compatible list with respect to the
a modified A at any step of the while loop in Algorithm 1.

Theorem 2 (Sound reduction of matrix A) For every tuple
(u j, t, i) where uj ∈ A[t, i], there exists a compatible list c =
(r1, . . . , rn) where a possible path r j contains an element (pi, l, t)
for some location l.

5. Polynomial-time equivalent algorithms

The time complexity of Algorithm 1 in Section 4 is exponen-
tial in the worst case since both functions O and I perform iter-
ations over permutations of all users. Fortunately, we can con-
vert the original functions O and I into equivalent functions that
run in polynomial time, and thus the main algorithm (i.e., Algo-
rithm 1) also runs in polynomial time. In this section, we show an
polynomial-time equivalent algorithm. We develop alternate ver-
sions of functions O and I and conduct a time complexity analysis
of the new version of the algorithm.

5.1 Reduction to a bipartite matching problem

The main idea is to compute the current row of matrix A from
the previous row (e.g., updating a row at t − 1 row from row
at t for function I) in both functions O and I by performing
set intersection operations rather than examining every possible
permutation at a time in each iteration of the for loop. For
instance, consider example matrix A with the following two rows
at times t − 1 and t below.

T p1 p2 p3

t − 1 {u1, u2, u3} {u1, u2, u3} {u1, u3}
t {u1, u3} {u2} {u1, u3}

We assume that this is a snapshot before updating the row
at time t − 1 using function I and that {p2, p3} ∈ AM[t − 1]. We
update the row at time t − 1 as follows:

A[t − 1, 1]← A[t − 1, 1] ∩ A[t, 1],

A[t − 1, 2]← (A[t − 1, 2] ∩ (A[t, 2]) ∪ (A[t − 1, 2] ∩ A[t, 3]),

A[t − 1, 3]← (A[t − 1, 3] ∩ (A[t, 3]) ∪ (A[t − 1, 3] ∩ A[t, 2]).

Since there is no pseudonym exchange involving p1, the
same user should be associated with p1 at times t − 1 and t.
Therefore, the user with p1 should belong to the intersection
A[t − 1, 1] ∩ A[t, 1]. Since pseudonyms p2 and p3 can be
exchanged at time t − 1, the user associated with pseudonym p2

at time t could be associated either with p2 or p3 at time t − 1.
Therefore, the new A[t − 1, 2] should be the union of the two
intersections (A[t − 1, 2]∩ (A[t, 2])∪ (A[t − 1, 2]∩ A[t, 3]). These

u1

u2

u3 p3

p2

p1

U P

u11

p3

p2

p1

u33

u222

Fig. 8 Example matching graph between two sets U and P.

set operations update the row of matrix A at time t as follows:

T p1 p2 p3

t − 1 {u1, u3} {u1, u2, u3} {u1, u3}
t {u1, u3} {u2} {u1, u3}

However, performing such set operations is not guaranteed
to produce the same results as the algorithms in Section 4 and
could thus violate the soundness property in Section 4.2. Note
that if we perform the original function I on A instead, we obtain
the following row at time t − 1.

T p1 p2 p3

t − 1 {u1, u3} {u2} {u1, u3}
t {u1, u3} {u2} {u1, u3}

Note that A[t − 1, 2] only contains user u2 since neither
user u1 nor u3 in A[t − 1, 2] can be part of any possible mapping.
Therefore, we also need to eliminate elements that cannot be part
of possible mappings.

To eliminate garbage elements that are not part of any possible
mapping, we consider the problem of finding a complete pickup
from a sequence of subsets as follows:

Definition 12 (Complete pickup) Given a sequence of sets
< A1, . . . , An > where each Ai ⊆ U, we say that a sequence of
elements (i.e., users) < a1, . . . , an > is a complete pickup if
(1) ∀i : ai ∈ Ai, and
(2) ∀i, j such that i � j : ai � a j.

The problem of finding a complete pickup can be reduced to a
well-known bipartite matching problem as follows. We define a
bipartite graph G = (V, E) from a given a row of matrix A at time
t as follows:

Definition 13 ((A,t)-bipartite graph) Given a row of matrix
A at time t, we define a (A, t)-bipartite graph G = (V, E) such that
(1) V = U ∪ P, and
(2) E = {ei j | ui ∈ A[t, j]} where ei j is an edge between ui ∈ U

and p j ∈ P.
For example, if we consider the row at t − 1 below,

T p1 p2 p3

t − 1 {u1, u3} {u2} {u1, u3}
we obtain the bipartite graph shown in Figure 8. We now
claim the equivalence between the two problems.

Proposition 1 Given a row of matrix A at time t, there exists
a complete pickup in a sequence of sets < A[t, 1], . . . , A[t, n] >
where each A[t, i] ⊆ U, if and only if the (A, t)-bipartite graph G
in Definition 13 has a complete matching.

ⓒ 2013 Information Processing Society of Japan 6

Vol.2013-DPS-154 No.56
Vol.2013-CSEC-60 No.56

2013/3/15

IPSJ SIG Technical Report

Thus, garbage elements in a row of matrix A at time t correspond
to edges in the (A, t) bipartite graph that are not part of any com-
plete matching.

Corollary 1 We say that a user ui in A[t, j] is a garbage if
there is no complete matching with edge ei j in (A, t)-bipartite
graph G.

5.2 Revised functions O and I
We now describe an alternate algorithm of the function O,

which runs in polynomial time. We omit the description of func-
tion I since we can derive it in a similar way. To simplify our
description, we make the assumption that for every time t at most
two users meet at the same location. We can represent a meet-
ing of n users at the same location as a sequence of (n(n + 1)/2)
two-user meetings at slightly different times. Such conversions
include the number of times in T in the order of polynomial time.
In the rest of this section, we use t∗ to denote the last timestamp
after performing such a conversion.

Algorithm 4 shows a polynomial-time version of the algorithm
for function O. This function O considers two cases in the outer-
most for loop over every time t ∈ T . The first half between lines 4
and 11 covers the case where there is no pseudonym exchange at
time t − 1 whereas the second half between lines 12 and 19 cov-
ers the case where there is a pseudonym exchange at time t − 1.
Lines 2 and 3 extract rows at time t − 1 and t respectively. Line 4
performs a set intersection between A[t−1, i] and A[t, i] for each i
and stores those intersections in the list intSeq1. The for loop be-
tween lines 5 and 11 examines every element a in the ith set in set
sequence intSeq1 and checks whether a is a member of any pos-
sible mapping in intSeq1 by calling the function checkExtensible,
which computes the maximum number of mappings in a bipartite
graph. If a does not contribute to the construction of any possi-
ble mapping, line 8 removes it from the ith set intSeq1[1]. In the
second case, we repeat the same procedure after swapping two
sets in the row of A at t − 1 considering the possible pseudonym
exchange mentioned in AM[t − 1]. Line 20 updates the row of A
at time t with the union of two resulting sequences intSeq1 and
intSeq2.

Algorithm 4 Polynomial-time function O.
1: for t = 1→ t∗ do

2: prevSetSeq← extractSetRow(A, t − 1)
3: currentSetSeq← extractSetRow(A, t)
4: intSeq1← setSeqIntersection(prevSetSeq, currentSetSeq)
5: for i = 0→ length(intSeq1) − 1 do

6: for all a ∈ intSeq1[i] do

7: if ¬checkExtensible(intS eq1, (a, i)) then

8: intSeq1[i]← intSeq1[i] − {a}
9: end if

10: end for

11: end for

12: intSeq2 ←setSeqIntersection(exchange(prevSetSeq, AM, t −
1), currentSetSeq)

13: for i = 0→ length(intSeq2) − 1 do

14: for all a ∈ intSeq2[i] do

15: if ¬checkExtensible(intSeq2, (a, i)) then

16: intSeq2[i]← intSeq2[i] \ {a}
17: end if

18: end for

19: end for

20: A← replaceSetRow(A, t, setSeqUnion(intSeq1, intSeq2))
21: end for

22: return A

We next describe the function checkExtensible in Algorithm 5,
which verifies that an element a in the ith set in a set sequence
seq is a complete pickup using the maximum cardinality bipar-
tite matching algorithm (e.g., Dinic’s algorithm in [17]). Lines
1 to 5 remove element a from all the sets in seq except from
the ith set since we are only interested in maximum cardinality
matching where element a in the ith set is used. The function
maxBipartiteMatching in line 6 computes the maximum number
of matchings in the modified set sequence seq. If there exists a
maximum cardinality matching in seq, line 7 returns a True value;
otherwise, line 9 returns a False value.

Algorithm 5 Function checkExtensible. INPUT: seq: a sequence
of user sets; (a, i): an element a in the ith set.
1: for k = 0→ length(seq) − 1 do

2: if k � i then

3: seq[k]← seq[k] \ {a}
4: end if

5: end for

6: if maxBipartiteMatching(seq) = length(seq) then

7: return True
8: else

9: return False
10: end if

We finally claim that Algorithm 1 combined with the alternate
version of functions I and O runs in polynomial time.

Theorem 3 The time complexity of Algorithm 1 with the al-
ternate versions of functions I and O is Θ(n8 ∗ t∗2)

Proof The while loop in Algorithm 1 iterates at most n2 ∗ t∗

times, which is the maximum number of elements in matrix A.
Note that each field of A is a subset of all users U. Since ev-
ery iteration must remove some element from A, the maximum
number of iterations is bounded by the initial number of ele-
ments in A. The inner for loops in functions O and I iterate
over every element in the current row of A performing the bi-
partite matching algorithm whose running time is Θ(n4). Since
that inner loop is iterated t∗ times, the running time of O and I
is Θ(n2 ∗ n4 ∗ t∗) = Θ(n6 ∗ t∗). Thus, the total running time is
Θ(n8 ∗ t∗2). �

6. Discussion and Future work

There are a few possible extensions of the algorithm. First,
an adversary might know that some location in the middle of a
user’s path is associated with a particular user. For example, the
adversary might know a user’s daytime office location. We can
handle such additional external knowledge of an adversary with
a minor modification of the algorithm. We just need to define
an initial matrix A where some elements in A corresponding to
known intermediate locations contain a single user. Second, it is
desirable to keep longer path segments in a data set as long as that
set preserves given privacy metrics. We plan to extend the current
algorithm so that it determines the minimum number of items in
an array AM that are needed to achieve given privacy metrics.
Third, we would like to consider a realistic, weaker assumption,
namely that an adversary only obtains a partial data set, which
does not users’ all path information. We expect that there is a bet-
ter strategy for disguising the users’ actual paths while satisfying
the privacy metrics. Fourth, the problem setting in this paper is

ⓒ 2013 Information Processing Society of Japan 7

Vol.2013-DPS-154 No.56
Vol.2013-CSEC-60 No.56

2013/3/15

IPSJ SIG Technical Report

rather possibilistic, that is, we are interested in whether or not a
user can hold a pseudonym at a given time. We expect to extend
our results to more probabilistic settings, which will enable us
to compute, for example, the probability that a privacy violation
occurs.

7. Related work

Several researchers [8], [10], [11], [14], [15] have proposed
fine-grained access-control schemes based on rules for protecting
location privacy in pervasive environments. Here, their focus is to
provide a flexible policy language for protecting identifiable loca-
tion data of mobile users. Hengartner [8] supports access-control
policies considering the granularity of location information and
time intervals. Myles [14] provides an XML-based authoriza-
tion language for defining privacy policies that protect users’ lo-
cation information. Users must trust a set of validators that col-
lect context information and make authorization decisions. Those
schemes allow a user to define fine-grained access-control poli-
cies. Apu [11] provides users with an intuitive way of defining
access control policies, which represent physical boundaries sur-
rounding the users. However, no previous scheme has considered
the issue of inference based on the mobility patterns of users.

Location privacy has been throughly studied in the context of
the anonymization and obfuscation of location data (See [13] for
a comprehensive survey). The focus of research in this area is to
ensure that no anonymized and/or obfuscated data is associated
with an individual. For example, Gruteser [7] proposes a scheme
that changes the granularity of location information to ensure that
each location contains at least k users (i.e., k-anonymity).

Using pseudonyms is a promising way to make location data
unlinkable to a particular user. Beresford and Stajano [2] were
the first to discuss the idea of dynamically changing pseudonyms
in a mix zone where multiple people meet, in order to prevent an
adversary from linking two pseudonyms of the same user. How-
ever, they only consider the situation where an adversary has just
a local view of users’ movements and observes pseudonyms of
entering or leaving the same mix zone. Hoh and Gruteser [9]
present a path perturbation algorithm that adds noises to origi-
nal location data so that each user can construct alternate possi-
ble paths by exchanging his pseudonym with those of other users
when they meet at the same place. However, their scheme does
not consider an adversary’s external knowledge that can associate
each user with a particular home location, as we assume in this
paper. On the other hand, our scheme does not add noises to lo-
cation data to increase the number of points where multiple users
meet. Instead, our algorithm computes all the combinations of
users’ valid alternate routes that satisfy the home locution con-
straints.

Buttyán et al. [3] studied the effectiveness of changing
pseudonyms in the context of vehicular networks. They evalu-
ated the linkability of consecutive pseudonyms assuming an ad-
versary who can monitor the location traces of vehicles at a lim-
ited number of places. We are more concerned with the indis-
tinguishability of a user’s global paths rather the unlinkability of
pseudonyms in local areas. Moreover, their adversary model is
different from ours in that the adversary in our model can obtain

location data with pseudonyms at any place although the adver-
sary cannot physically see the movements of users in any limited
area.

8. Conclusions

In this paper, we presented a dynamic pseudonym scheme for
constructing confusing paths of mobile users to protect their lo-
cation privacy. We introduced a formal definition of location pri-
vacy based on pseudonyms and showed a polynomial-time veri-
fication algorithm for determining whether each user in a given
location data set has a sufficient number of possible paths to dis-
guise his/her true movements. We provided proofs for both the
soundness and completeness of the algorithm.

References

[1] D. Anthony, T. Henderson, and D. Kotz. Privacy in location-aware
computing environments. IEEE Pervasive Computing, 6(4):64–72,
2007.

[2] A. R. Beresford and F. Stajano. Location Privacy in Pervasive Com-
puting. IEEE Pervasive Computing, 2(1):46–55, January-March 2003.

[3] L. Buttyán, T. Holczer, and I. Vajda. On the effectiveness of changing
pseudonyms to provide location privacy in VANETS. In Proceedings
of the 4th European conference on Security and privacy in ad-hoc and
sensor networks, ESAS’07, pages 129–141, Berlin, Heidelberg, 2007.
Springer-Verlag.

[4] Dentsu draffic. http://itpro.nikkeibp.co.jp/article/JIREI/20121005/427881/.
[5] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding

individual human mobility patterns. Nature, 453(7196):779–782, June
2008.

[6] Google maps. http://maps.google.com/.
[7] M. Gruteser and D. Grunwald. Anonymous usage of location-based

services through spatial and temporal cloaking. In Proceedings of Mo-
bisys 2003: The First International Conference on Mobile Systems,
Applications, and Services, San Francisco, CA, May 2003. USENIX
Associations.

[8] U. Hengartner and P. Steenkiste. Access control to people location
information. ACM Transactions on Information and System Security
(TISSEC), 8(4):424–456, 2005.

[9] B. Hoh and M. Gruteser. Protecting location privacy through path
confusion. In Security and Privacy for Emerging Areas in Communi-
cations Networks, 2005. SecureComm 2005. First International Con-
ference on, pages 194 – 205, Sept. 2005.

[10] J. I. Hong and J. A. Landay. An architecture for privacy-sensitive ubiq-
uitous computing. In Proceedings of the 2nd international conference
on Mobile systems, applications, and services (MobiSys), pages 177–
189, New York, NY, USA, 2004. ACM.

[11] A. Kapadia, T. Henderson, J. J. Fielding, and D. Kotz. Virtual Walls:
Protecting Digital Privacy in Pervasive Environments. In Proceedings
of the Fifth International Conference on Pervasive Computing (Perva-
sive), volume 4480 of LNCS, pages 162–179. Springer-Verlag, May
2007.

[12] J. Krumm. Inference attacks on location tracks. In Proceedings of
the 5th international conference on Pervasive computing, PERVA-
SIVE’07, pages 127–143, Berlin, Heidelberg, 2007. Springer-Verlag.

[13] J. Krumm. A survey of computational location privacy. Personal
Ubiquitous Computing, 13(6):391–399, 2009.

[14] G. Myles, A. Friday, and N. Davies. Preserving privacy in environ-
ments with location-based applications. IEEE Pervasive Computing,
2(1):56–64, January-March 2003.

[15] V. Sacramento, M. Endler, and C. de Souza. A privacy service for
location-based collaboration among mobile users. Journal of the
Brazilian Computer Society, 14(4):41–57, 2008.

[16] T. Seike, H. Mimaki, Y. Hara, R. Odawara, T. Nagata, and M. Ter-
ada. Research on the applicability of “mobile spatial statistics” for
enhanced urban planning. Journal of the City Planning Institute of
Japan, 46(3):451–456, 2011.

[17] R. E. Tarjan. Data structures and network algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1983.

ⓒ 2013 Information Processing Society of Japan 8

Vol.2013-DPS-154 No.56
Vol.2013-CSEC-60 No.56

2013/3/15

