
Faster and Broader Associative Search for
Supporting Human’s Idea Association in Divergent

Thinking Support System

Kobkrit Viriyayudhakorn

1,a)
Susumu Kunifuji

1,b)

Abstract: Idea Association is a human thought process that leads to a new idea from an original idea that
associated by some principles. It was be supported by association search, which is an information retrieval
that dynamically computes similarity between a query and all indexed documents, converge to highly re-
lated information, and present them to users, as a module of divergent thinking support system. Supporting
divergent thinking does not require such highly specific information; Association search, which is very high
computational intensive, can be optimized for faster computation, which increase system’s responsiveness
without dropping its e↵ectiveness in supporting human’s idea association. In this paper, we proposed a
faster association search for divergent thinking support system. Evaluations for comparing its e↵ectiveness
with the original association search are performed. The evaluations, results, and discussions are described in
detail.

Keywords: Associative Information Search Engine, Idea Processor, Creativity Support System, Divergent
Thinking Support System

1. Introduction

2. GETAssoc

Generic Engine for Transpose Association (GETAs-

soc) is words-to-documents and words-to-words associative

search engine developed at National Institute of Informatics

(NII)[1]. GETAssoc provides associative search capability

on a textual database. It can accurately retrieve a set of rel-

evant documents and a set of associative words of an input

query sentence.

Due to its scalability, GETAssoc can handles a dynamic

association search for about twenty million documents with

in few seconds[2]. GETAssoc was used or applied in many

practical Web search engine applications, such as Webcat

Plus *1, Imagine [2] *2, Cultural Heritage Online [3] *3, and

Pictopic *4.

2.1 Dependencies

To perform associative searches, GETAssoc requires two

key dependencies as follows.

1 School of Knowledge Science, Japan Advanced Institute of Sci-
ence and Technology

a) kobkrit@jaist.ac.jp
b) kuni@jaist.ac.jp
*1

http://webcatplus.nii.ac.jp/

*2
http://imagine.bookmap.info/

*3
http://bunka.nii.ac.jp

*4
http://photobank.pictopic.info/

2.1.1 Word Article Matrix (WAM)

Word Article Matrix (WAM) is a huge sparse matrix stor-

ing each term frequency occurred in each document found

in the textual database. Given a textual database has N

unique terms (types) written in M documents, the size of

WAM is M ⇥ N . The rows of WAM are indexed by doc-

uments and the columns of WAM are indexed by unique

terms. The (i, j)th entry of WAM is the number of occur-

rence of a term j found in a document i. GETAssoc indexes

the textual database by constructing WAM. When WAM

is completely constructed, they are horizontally and verti-

cally compressed into two growable hash tables for saving

disk storage and faster computation[1]. The hash table that

yielded by horizontally compressed WAM maps a document

to the list of terms that found in that document. The hash

table that yielded by vertically compressed WAM maps a

term to the list of documents that contain that term. For

explanation in the future step of this paper, both hash ta-

bles are called as the “horizontal hash table” and the “ver-

tical hash table” respectively. With these two hash tables,

GETAssoc is ready for associative searches.

2.1.2 Similarity functions

Given D is a set of documents, and T is a set of terms

found in the textual database. GETAssoc provides pre-

defined similarity functions as follows.

(1) Smart measures [4]

(2) Okapi BM25 [5]

(3) Cosine [6]

c� 2013 Information Processing Society of Japan 1
1ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-GN-87 No.8
2013/3/18

(4) Dot Product [6]

They are defined as functions of type D⇥MS(T) ! R�0

in Fig. 1, where MS(X) is a multiset of X which is a set

that members of set X are allowed to appeared more than

once, document d 2 D, query q 2 MS(T), term t 2 T , and

• w
q,t

= log(N

ft+1)

• w
d,t

= log(f
d,t

+ 1)

• f
t

is the total number of documents that contain t.

• f
d

is the total number of terms in document d.

• f
x,t

is the total number of the occurrence of term t in

x.

• N is the total number of documents in D.

GETAssoc sets ✓ = 0.2, k = 0.2, and b = 0.75 as default.

2.2 Associative Searches Algorithm

The followings are procedures in associative searches of

GETAssoc.

Step-1: Counting term frequency in query Given

query q 2 MP (T) with length e, it is converted to be the

set of ordered pairs {(x, count(x)) : x 2 T} with length i

where count(x) is a function of type T ! N that returns

number of occurrence of unique term x in q or f
q,x

used in

computing similarity functions. The time complexity of this

step is O(e) for both average and worst cases.

Step-2: Ranking the most significant unique

terms in query Given a constant o as the number of most

significant unique terms that characterize (summarize) of

query q. sim1(q, x) is a similarity function that returns de-

gree of significant of term x in query q (treats the query q

as a document and x as a one-word query). The simplest

form of sim1(q, x) is f
q,x

. In GETAssoc, sim1(q, x) can be

customized as a preference. Smart similarity function in

Equation 1 is chosen by default. The top-o unique terms

in query q ranked with respect to the sim1(q, x) similarity

function are selected as the set G which is the summary of

query q.

We treat running time of sim1(q, x) to constant c, the run-

ning time for computing sim1(q, x) for every unique term x

in q is c · i. Searching a max value of sim1(q, x) for x in q

takes running time e and it searches for o times, the time

complexity of this step is O(c · i+o · e) for both average and

worst cases.

Step-3: Extracting the list of documents that

contain at least one term in the summary of query

We obtained the set G is the summary of query q, o =| G |
from the previous step. For each g 2 G, it is used as a key

for obtaining documents that contain term g at least one

time from the vertical hash table defined in Section 2.1.1.

The set of unique documents H that contain at least one

term in G are extracted by union all found documents of G.

Searching an element in a growable hash table takes about

O(1 + N

k

) in the average case and O(N) in the worst case

where k is a number of hash table’s buckets. Since the hash

table is growable, the value of k is depended on various pa-

rameter such as the amount of available memory, N , and so

on. Thus k is left as a constant.

Since found documents of each term g are unionized, the

average number of found unique documents in each g is un-

predictable, we leave it as constant b in the average case

and M in the worst case. We repeatedly searching an ele-

ment for o times, therefore the time complexity of this step

is O(o(b + 1 + N

k

)) and O(o(M + N)) for the average case

and the worst case respectively.

Step-4: Associative computation The set G, which

is a summary of query q (o =| G |), and the set H, which

is a set of documents that contain at least one term in G

are given. For each h 2 H, sim2(h,G), which is a similar-

ity function that returns degree of similarity between docu-

ment h and the set G (treats G as a query) are computed.

In GETAssoc, sim2(h,G) can be customized as a preference.

Smart similarity function in Equation 1 is chosen by default.

Given constant c time for computing sim2(h,G), the time

complexity of this step is O(o2 · b · c) and O(o ·M · c) for the
average case and the worst case respectively.

Step-5: Extracting the most associative docu-

ments The top-p documents in H ranked with respect to

the sim2(h,G) similarity function for h 2 H are selected

as the most associative documents to the query q. These

top-p most associative documents are the document result

set R with length p. The result set R are search results

of words-to-documents associative searches of GETAssoc.

Note that, for some circumstance, the top-y most associa-

tive documents where y < p, y 2 N are removed from the

search results since it is too close to the query q.

For searching a max value of sim2(h,G) for h 2 H takes

running time o · b and M for the average case and the worst

case respectively and it searches for p times, the time com-

plexity of this step is O(o · b · p) for the average case and

O(M · p) for the worst cases.

Step-6: Extracting the associative keywords For

each document in the top-s most associative document in

the document result set R where s < p, s 2 N, p =| R |, it
is used as a key for retrieving the set of terms that written

in that document from the horizontal hash table defined in

Section 2.1.1. The set of found unique terms are unionized

as the set of most associative keywords V .

Similar to Step-3, searching an element in a growable hash

table takes about O(1+M

k

) in the average case and O(M) in

the worst case where k is a number of hash table’s buckets.

Since all found unique terms of each document r in the top-

s of the result set R are unionized as the set of associative

keyword Y , the average number of found unique terms in

each r is unpredictable, we leave it as constant a in the av-

erage case and N in the worst case. We repeatedly searching

an element for s times, therefore the time complexity of this

step is O(s(a + 1 + M

k

)) and O(s(N +M)) for the average

case and the worst case respectively.

Step-7: Ranking the most significant associative

keywords Given the set of associative keyword V and a

constant l as the size of most significant associative keywords

to the query q. sim1(V, x) for x 2 V is a similarity function

that returns degree of significant of a keyword x in query

c� 2013 Information Processing Society of Japan 2
2ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-GN-87 No.8
2013/3/18

Smart [4] :

smart(d, q) =
1

avg(fd) + ✓(fd � avg(fd))

X

t2q\d

log(
N

ft
) ·

1 + log(fd,t)

1 + log(avg⇥2d(fd,⇥))
·

1 + log(fq,t)

1 + log(avg⇥2q(fq,⇥))
(1)

Okapi BM25 [5] :

okapibm25(d, q) =
X

t2q\d

log(
N � ft + 0.5

ft + 0.5
) ·

fd,t · (k + 1)

fd,t + k · (1� b+ b · fd

avg(fd)
)

(2)

Cosine similarity [6] :

cosine(d, q) =

P
t2q\d(wq,t · wd,t)

qP
t2q(w

2
q,t) ·

P
t2d(w

2
d,t)

(3)

Dot product [6] :

dotproduct(d, q) =
X

t2q\d

(wq,t · wd,t) (4)

Fig. 1 Four similarity measures and their equations

V (treats the query V as a document and x as a one-word

query). Similar to the Step-2, sim1(V, x) can be customized

as a preference. Smart similarity function in Equation 1 is

chosen by default. The top-l unique keywords in the set of

associative keyword V ranked with respect to the sim1(V, x)

similarity function are selected as the set of most associative

keywords, which is result sets of words-to-words associative

searches of GETAssoc.

We treat running time of sim1(V, x) to constant c, the

running time for computing sim1(V, x) for every associative

keyword x in V is c · s · a and is c · s ·N for the average case

and the worst case respectively. Searching a max value of

sim1(V, x) for x in V takes running time s · a and N for the

average and the worst case respectively, and it searches for

l times, the time complexity of this step is O((c + l)(s · a))
and O((c ·s+ l)N)) for the average case and the worst cases

respectively.

2.3 Total Time Complexity

The total time complexities of words-to-words associative

searches by GETAssoc is O(e+ c · i+ o · e)+ o(b+1+ N

k

)+

o2 · b · c)+o · b ·p+s(a+1+ M

k

)+(c+ l)(s ·a)) = O(N +M)

for the average case, and O(e + c · i + o · e) + o(M +N) +

o ·M · c +M · p + s(N +M) + (c · s + l)N) = O(N +M)

for the worst case.

3. Faster and Boarder Associative

Search for Supporting Divergent

Thinking

GETAssoc can obtain associative information with very

high accuracy and fast computation. But for some appli-

cation, such as in the divergent thinking support system,

it does not requires such deep accuracy, instead it requires

broader scope of associative information for helping idea as-

sociation process of human thinking. The proposed method

is intensively based on the GETAssoc.

3.1 Dependencies

The hash table Z mapped from each unique term t 2 T to

the list of associative keywords of term t and their similarity

score is the main dependency of this method. The hash ta-

ble Z is a words-to-words associative information mapping.

To construct this hash table, the following requirements are

needed.

(1) List of all unique terms t 2 T,N =| T | that found in

the textual database.

(2) GETAssoc associative search engine that already in-

dexed the textual database. Both horizontal and verti-

cal hash tables are constructed, see Section 2.1.1.

For each unique term t 2 T , it is sequentially queried

into the GETAssoc search engine for obtaining a list of two-

tuple of top-l most associative keywords of term t and their

similarity scores. Each unique term t 2 T and the list of

two-tuples are inserted as a key and value pair into the hash

table Z.

3.2 Associative Searches Algorithm

The followings are procedures in associative searches of

the proposed method.

Step-1: Extracting all unique terms in the input

query Give query q 2 MP (T) with length e, it is converted

to be the set of unique terms U with length i found in q.

The time complexity of this step is O(e) for both average

and worst cases.

Step-2: Extracting the associative keywords For

each unique terms u 2 U with length i, the list with length

j of the most associative keywords and its similarity score

pairs are retrieved from the hash table Z.

For each pair of each unique terms u, it is inserted into

another hash table called V which maps from an associative

keyword to its similarity score. If an associative keyword of

a pair have not yet been indexed in V , the pair is inserted

into hash table V . If an associative keyword of a pair have

been indexed in V , its similarity score is summed with the

total similarity score of that associative keyword stored in

the hash table V .

The time complexity for searching an element from hash

table is O(1 + N

k

) and O(N) for average and worst cases

respectively. The time complexity for inserting an element

into hash table is O(1) and O(N) for average and worst

cases. Since searching an element repeats for i times and

inserting an element repeats for i · j times, the time com-

plexity in this step is O(i(1 + N

k

+ j)) and O((i ·N)(1 + j))

for the average case and the worst case where k is the bucket

c� 2013 Information Processing Society of Japan 3
3ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-GN-87 No.8
2013/3/18

size of hash table Z.

Step-3: Ranking the associative keywords The

top-l most associative keyword are selected from the hash

table V with length o where o 2 N constructed from pre-

vious step. The top-l most associative keyword are search

results of a words-to-words associative search by using the

proposed method.

Searching the maximum value in hash table V takes run-

ning time o and N for the average and the worst case re-

spectively, and it searches for l times, the time complexity

of this step is O(l · o) and O(l ·N) for the average case and

the worst cases respectively.

3.3 Total Time Complexity

The total time complexity of words-to-words associative

searches by the proposed method isO(e+i(1+N

k

+j)+l·o) =
O(N), and O(e+(i·N)(1+j)+l·N) = O(N) for the average

case and the worst case respectively.

Since normally M >> N , the time complexity of the

proposed algorithm for an associative search is believed to

be much lesser than GETAssoc because the dynamical as-

sociative computation in GETAssoc is pre-computed and

prepared before a search operation is performed. The speed

of two algorithms will be experimented and compared in

Section 4 for proven the hypothesis.

3.4 Di↵erences from GETAssoc

The search results of words-to-words associative search

from the proposed method and from GETAssoc are quite

di↵erent. Associative keywords yielded from GETAssoc are

retrieved from the intersection of the sets of documents that

related with each term in query q. To be selected as the out-

put of GETAssoc, the associative keywords must be highly

related with all terms found in query q as much as possible.

It is di↵erent to associative keywords yields from the pro-

posed method, which retrieved from the union of the set of

documents that related with each term in query q. The as-

sociative keywords of the proposed method have just only

highly related to a term found in query q as a requirement

to be selected as a output.

Figure 2 visualizes the di↵erence of associative keywords

result in both algorithms when querying “Apple computer”.

Figure 2 splits into two space, the document space is lo-

cated at the left hand side, while the terms space is located

at the right hand side. Documents in red background color

and keywords in red color is the associative documents and

associative keywords yielded by GETAssoc. Documents in

green background color and keywords in green color is the

associative documents and associative keywords yielded by

the proposed method.

The associative keywords yielded by the proposed method

are broader than GETAssoc’s keywords, which believed to

be more suitable for supporting the human’s idea associ-

ation process for divergent thinking tasks. The output of

proposed method should yield better or equal e�ciency to

GETAssoc’s output on supporting human thinkings. The

Apple Fruit

Personal Computer

Machintosh
iPhone

iPod Touch

Macbook Pro

Apple Inc.

Fruits

Orange

Pine Apple Tree
Apple Trees

Apple Corps
Beatles

Mouse

Keyboard

Notebook

Memory

CPU

Windows 8
Google

Internet

Tablet

Smart Phone

Apple

Computer

Documents Space Terms Space

iPad

Mac OS X

Steve Job

iOS

Fig. 2 Di↵erent associative keywords yielded from GETAssoc
(red color) and the proposed method (green color) when
the query is “Apple computer.”

Fig. 3 Speed in response of GETAssoc and the proposed method

e�ciency of two algorithms will be experimented and eval-

uated in Section 5 for proven the hypothesis.

4. Speed Experiment

We setup a web server receiving request for associative

searches and respond back to users. The web server’s set-

tings for both GETAssoc and the proposed method are iden-

tical.

4.1 Experimental Settings

We uses apache benchmarking tool (ab) generating 10,000

queries with 10 parallel connection to the web server. Both

GETAssoc and the proposed method are tested.

4.2 Experimental Results

Figure 3 shows the speed in benchmark test of both algo-

rithms. The proposed algorithm is approximate twice faster

than GETAssoc.

5. Divergent Thinking Experiment

To test the e�ciency of two associative searches algo-

rithms in supporting human’s idea association process, we

c� 2013 Information Processing Society of Japan 4
4ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-GN-87 No.8
2013/3/18

setup a Web application for collecting ideas from partici-

pants on four creative questions, while showing associative

keywords yielded from an algorithm. An algorithm that can

generate associative keywords that can significantly increase

number of ideas that can be thought up by participants be-

cause of seeing these keywords are helpful in supporting idea

association process.

5.1 Experimental Settings

5.1.1 Web Interface

The single-user Web application’s interface is shown in

Figure 4, the header of the page shows a creative question

asked to a participant and the countdown timer. At the

center panel of the screen, yellow rectangle labels that con-

tains answers inputted by users are shown. The two types

of suggestions which are associative keywords are separately

shown on the screen as follows.

(1) Overall Suggestions are orange associative keywords

located at the bottom of the screen. Each time when a

user input a new idea, a creative question text, its de-

scription text, and the content of all idea labels are con-

catenated as a query submitted to an associative search

engine. Overall suggestions are updated according to

the output from such search.

(2) Individual Label Suggestions are blue associative

keywords located at the above of each idea label. It is

generated by using the content of that idea label only

as a query submitted to an associative search engine.

Suggestion of each labels are queried and shown when

the mouse pointer of a participant places on that label.

Participants are told to read associative keywords in both

types of suggestions and in the meanwhile think about the

creative question. If participants can think up a new idea

because associative keywords help in triggering it, partici-

pants click on that these associative keywords one-by-one, it

will be added as an item in the “inspire by” item-list located

at the bottom of the screen. Then, participants type down

their ideas into the “content” text box located above the

“inspire by” item-list, and press enter. A new idea labels

containing the input content are generated and add into the

center panel of the screen.

If participants click on an associative keyword by mistake,

it can be removed by clicking a “X” symbol next to it. If

participants can think up a new idea by solely using his/her

brain, the “inspire by” item-list is left blank. With the above

rules, we can separate the number of ideas that participants

can be think up supported by an associative search engine

from all input ideas.

For a creative question, a participant have 15 minutes to

think up new ideas and answer it as much as possible.

5.1.2 Associative Search Engines

The experiment conducts by using three associative search

engine as follows.

(1) GETAssoc (See Section 2)

(2) Proposed method (See Section 3)

(3) Random construct a suggestion list by randomly pick-

ing a term from all N terms appeared in a textual

database.

(4) Empty show no suggestion.

For GETAssoc and the proposed method (while in both

constructing the hash table V and performing associative

searches) use the following configurations.

(1) Dot product functions are used in sim1 and sim2 sim-

ilarity functions (see Section 2.1.2) since its associative

keywords are most readable compare to other three.

(2) o = 70.

(3) p = 0.

(4) s = 10.

(5) l = 15 for the individual label suggestions and l = 30

for the overall suggestions.

5.1.3 A textual database

Dump file of all English Wikipedia documents on January

2, 2013*5 is used as a textual database that be used in the

experiment. It was indexed by all three algorithms. It has

following characteristic as follows.

(1) M = 3, 445, 076 documents.

(2) N = 4, 234, 985 unique words (types).

Note that the number of unique words is unnaturally higher

than expect, since Wikipedia contain a lot of name entities,

and all words were intentionally not be converted into low-

ercase for helping participants to easily distinguish between

words and name entities. However, all nouns and verbs are

lemmatized back to its root form by using NLTK python

library*6 before being indexed by three testing algorithms.

5.1.4 Creative Questions

The following creative questions based on Guildford’s al-

ternative use of task [7] which is a popularly divergent think-

ing test are asked during the experiments.

(1) List the unusual use of eraser.

(2) List the unusual use of spoon.

(3) List the unusual use of CD-ROM.

(4) List the unusual use of wheel.

(5) List the unusual use of cup.

(6) List the unusual use of book.

Since the number of ideas are a↵ected by the di�culty

of creativity questions, We selected four out of six questions

above that have the smallest gap in their di�culty. We have

performed the preliminary experiment by asking 15 individ-

uals who are not participants of the divergent thinking ex-

periment to answer a question as much as possible in three

minutes each (eighteen minutes in total). The number of

ideas answered for these six questions are shown in Table 1.

Since the four first questions have the smallest gap on the

average number of ideas (1.267) compared with the other

combinations. They are used as the creative questions in

the divergent thinking experiment.

5.1.5 Participants

Participants are various nationality 32 students of the

Japan Advanced Institute of Science and Technology. They

are either Master degree or Doctoral degree students stud-

*5
http://dumps.wikimedia.org/enwiki/20130102/

*6 http://nltk.org/

c� 2013 Information Processing Society of Japan 5
5ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-GN-87 No.8
2013/3/18

Fig. 4 Web application used for collecting ideas and showing associative keyword in the
experiment

Table 1 Preliminary Experiment on the Di�culty of Creative
Questions

Question Avg. Number of Ideas
Eraser 3.200 ± 1.781
Spoon 3.800 ± 2.484

CD-ROM 3.867 ± 1.727
Wheel 4.467 ± 1.959
Cup 5.134 ± 3.137
Book 5.334 ± 2.526

Table 3 Descriptive Statistic of the number of ideas that partic-
ipants can be thought up by seeing suggestions

Algorithm Avg. number of ideas

Proposed Method 4.4375 ± 2.9065
GETAssoc 4.2813 ± 3.6477
Random 1.5938 ± 2.6744
Empty 0 ± 0

ied in the School of Knowledge Science, the School of In-

formation Science, and the School of Material Science. All

participants have good English language proficiency, which

is TOEIC score > 785 or TOEFL paper-based score > 590.

To avoid the e↵ects of tool experiences, The 32 students

are split into eight teams (four students each). Four ques-

tions and four associative search engine were assigned to four

students in a team in di↵erent orders as shown in Table 2.

5.2 Experimental Results

Table 3 and Figure 5 show the average number of ideas

that participants can be thought up by seeing suggestions

using four di↵erent associative search engines. The average

number of thought up idea supported by showing associa-

tive keywords are subjected to a two-way between-subject

ANOVA on the four creative questions and the four associa-

tive search algorithms, since the average number is highly

influenced by these two factors.

The influence of four creative question are not statisti-

cally significant on the number of ideas thought by see-

ing suggestions (F (3, 121) = 1.806, p = 0.150, ⌘2 = 0.029,

n.s., p > 0.05). The influence of four di↵erent associative

search engines who generates the associative keywords are

statiscally significant on the number of ideas thought by

seeing suggestions at 0.001 significant level (F (3, 121) =

21.029, p = 0.000, ⌘2 = 0.333).

A post hoc analysis using the Tukey test indicated on

the four di↵erent associative search engines show the sta-

tistically significant on the di↵erence among four di↵erent

algorithm as follows.

• The proposed method and GETAssoc have no signif-

icant di↵erence to each other. (p = 0.995, n.s., p >

0.05).

• The proposed method and GETAssoc both have signifi-

cant di↵erence over Random algorithm (both p = 0.000)

at 0.001 significant level.

• The proposed method and GETAssoc both have signif-

icant di↵erence over Empty algorithm (both p = 0.000)

at 0.001 significant level.

• Random and Empty algorithms have no significant dif-

ference to each other. (p = 0.083, n.s., p > 0.05).

6. Conclusion

The proposed associative search, which twice faster than

the original associative search algorithm (GETAssoc) used

in supporting divergent thinking, seems better than GETAs-

soc but it has no statistically significant di↵erence to

GETAssoc in e�ciency of supporting human’s idea associa-

tion process. The proposed method, which provides broader

associative keywords than GETAssoc, seems more suitable

c� 2013 Information Processing Society of Japan 6
6ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-GN-87 No.8
2013/3/18

Table 2 Algorithms and questions assignment.

Participant Question 1 Question 2 Question 3 Question 4

1 Proposed Method GETA Random Empty
2 GETA Random Empty Proposed Method
3 Random Empty Proposed Method GETA
4 Empty Proposed Method GETA Random

●

●

●●

●

●

Empty GETAssoc Proposed method Random

0

5

10

15

Algorithms

Av
er

ag
e

nu
m

be
r o

f i
de

as
 c

om
e

fro
m

 s
ee

in
g

su
gg

es
tio

ns

Fig. 5 Average number of ideas that participants can be thought
up by seeing suggestions

for divergent thinking application. Based on the number

of idea labels that can thought up by looking on sugges-

tion keywords, associative information yielded must higher

performance in support idea’s association process than the

random information.

Acknowledgments We thank to Pakorn Techaveer-

apong and Pakakorn Sitthisak for fruitful suggestions on

analyzing GETAssoc and the proposed algorithm. We also

thank to Siriwon Taewitjit for commenting on the experi-

mental design. Last but not least, we thank the anonymous

reviewers for careful reading.

References

[1] A. Takano. Association computation for information access.
In Discovery Science, pages 33–44. Springer, 2003.

[2] Masayuki Nakao, Kensuke Tsuchiya, Yoshiaki Harita, Kenji
Iino, Hiroshi Kinukawa, Satoshi Kawagoe, Yuji Koike, and
Akihiko Takano. Extracting failure knowledge with associative
search. New Frontiers in Artificial Intelligence, pages 269–
276, 2008.

[3] Noriko Kando and Jun Adachi. Cultural Heritage Online: In-
formation Access across Heterogeneous Cultural Heritage in
Japan. In Electronic Proceedings of International Symposium

on Digital Libraries and Knowledge Communities in Net-

worked Information Society (DLKC 2004), 2004.
[4] Amit Singhal, Chris Buckley, Mandar Mitra, and Ar Mitra.

Pivoted document length normalization. pages 21–29. ACM
Press, 1996.

[5] S.E. Robertson and S. Walker. Okapi/keenbow at trec-8. NIST

Special Publication SP, pages 151–162, 2000.
[6] Ross Wilkinson, Justin Zobel, and Ron Sacks-David. Similar-

ity measures for short queries. NIST Special Publication SP,
pages 277–286, 1996.

[7] Joy Paul Guilford. The nature of human intelligence. 1967.

Kobkrit Viriyayudhakorn was

born in 1986. He received B.Sc. and

M.S. degrees from the Sirindhorn

International Institute of Science and

Technology, Thammasat University in

2008, and 2010 respectively and Ph.D.

degree from the Japan Advanced

Institute of Science and Technology

in 2013. His research interest includes Creativity support

system, Information retrieval, Natural language processing,

Data mining, and Machine learning.

Susumu Kunifuji was born in 1947.

He recieved B.E., M.E., and D.E. de-

grees from Tokyo Institue of Technol-

ogy in 1871, 1974, and 1994, respec-

tively. He worked as a researcher at the

International Institute for Advanced

Study of Social Information Science,

FUJITSU Ltd.(1974-1982), Chief re-

searcher at the Institute for New Generation Computer

Technology(1982-1986), Manager of the International In-

stitute for Advanced Study of Social Information Science,

FUJITSU Ltd.(1986-1992), Professor of School of Informa-

tion Science at JAIST(1992-1998). He is currently Pro-

fessor of School of Knowledge Science(1998-) and Vice

President(2011-) at JAIST. He is a member of IPSJ, IEICE,

JSAI, and JCS among others.

c� 2013 Information Processing Society of Japan 7
7ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-GN-87 No.8
2013/3/18

