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Abstract: Defining appropriate pricing strategy for smart environment is important and complicated at the same time.
In our work, we device an incentive based smart dynamic pricing scheme for consumers facilitating a hierarchical scor-
ing mechanism. This mechanism is applied between consumer agents (CA) to electricity provider agent (EP) and EP
to Generation Company (GENCO). Based on the Continuous Ranked Probability Score (CRPS), a hierarchical scoring
system is formed among these entities, CA-EP-GENCO. As CA receives the dynamic day-ahead pricing signal from
EP, it will schedule the household devices to lower price period and report the prediction in a form of a probability
distribution function to EP. EP, in similar way reports the aggregated demand prediction to GENCO. Finally, GENCO
computes the base discount after running a cost-optimization problem. GENCO will reward EP with a fraction of
discount based on their prediction accuracy. EP will do the same to CA based on how truthful they were reporting their
intentions on device scheduling. The method is tested on real data provided by Ontario Power Company and we show
that this scheme is capable to reduce energy consumption and consumers’ payment.
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1. Introduction
With the growing needs of environmental sustainability and

continuing changes in electric power deregulation, smart grid be-
comes an inevitable choice for the society. While such grid in-
frastructure in mind, houses started to adopt devices which can
be controlled, maintained, monitored and even scheduled as ne-
cessity calls. Smart house technology used to make all elec-
tronic devices around a house act “smart” or more autonomous.
Nearly all major appliances in the future will take advantage of
this technology through home networks and the Internet. Such
feature of smart grid is a way for ordinary electronics and ap-
pliances to communicate with each other, consumers and even
energy provider (EP). Recently, smart pricing has attracted much
attention as one of the most important demand-side management
(DSM) strategies to encourage users to consume electricity more
wisely and efficiently [1].

On different note, in order to numerically measure up the actual
realization of a probabilistic event which was forecasted ahead,
scoring rule was defined [2], [3]. Moreover, it binds the asses-
sor to make a careful prediction and hence truthfully elicit his/her
private preferences. Which is why, scoring rule has been applied
successfully while truthful incentive designing in diverse appli-
cations such as voting rules [4] and [5]. Strictly proper scoring
rules can be employed by a mechanism designer to ascertain that
agents accurately declare their privately calculated distributions,
reflecting their confidence in their own forecast. The applicabil-
ity of scoring rule is being investigated in field of smart-grid. For
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instance, [6] presented a methodology for predicting aggregated
demand in smart-grid.

Household devices such as Roomba vacuum cleaners, LG
Thinq smart oven [7] are some commercially available smart de-
vices that can be controlled and monitored via smart-meter. Us-
ing such devices, consumers (actually a consumer agent, refer-
eed as CA hereafter, will be responsible to take such decision
in conjunction with smart-meter) can respond to day-ahead dy-
namic pricing signal by effectively and intelligently managing
and scheduling devices, thereby flattening out peak demand and
achieving better resource utilization.

This paper presents a hierarchical scoring rule based payment
mechanism for CA provided by the EP and GENCO in response
to the dynamic day-ahead time dependent pricing. The con-
sumers will be rewarded a discount on the price to measure up
how well they predict the shifting the devices/loads towards the
lower demand (lower price as well) periods. These rewards are
again a fraction of the discount which were provided by GENCO
to the corresponding EP depending on EP’s prediction of required
energy demand. The reward mechanism is based on a strictly
proper scoring rule. The scoring rule is chosen to reflect to work
with continuous variable (the normal distribution, as in the pro-
posed method) and measure up how accurate the prediction could
be. The Continuous Ranked Probability Score [8] possess such
characteristics. EP will formulate an optimization problem to-
tal energy demand for its consumers and reports to GENCO.
GENCO then run an optimization algorithm that will minimize
the cost of providing rewards to EPs while satisfying EPs energy
demand. Therefore, the reward is actually dependent on both the
consumers prediction and EP’s optimization problem.

The rest of the paper is organized as follows. Section 2 intro-
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duces the system model architecture while Section 3 describes the
applied scoring rule function and associated key points. The cost
optimization formulation and discount distributions are detailed
in Section 4. Section 5 presents agent simulation based on On-
tario Power System data [9]. Related work are elucited in Section
6. Finally, Section 7 concludes the paper with followup research
goals.

2. Incentive Based Dynamic Pricing: System
Model

GENCOs and EPs are responsible to determine electricity pric-
ing. GENCOs make revenue by selling energy to the distributers
(in our context, EP) based on their demand while distributers pro-
vide that energy to consumers.*1 A supply-demand chain is thus
formed among these entities. Figure 1 shows the model outline
architecture depicting the such major components. However, con-
sidering such model, it is critically important to have a sophisti-
cated smart pricing scheme that will take advantage of the DSM
technique as well as incentivise the CAs to schedule smart de-
vices in order to reduce the total demand.

Fig. 1 GPC Model Architecture

As a mechanism deign to incentivize agents (both the CAs and
EPs) for providing private probabilistic information accurately
(truthfully) and to the best of their forecasting ability, scoring
rule is being applied in this model. Interestingly, such scenario
coincides with DSM strategy where consumer responses to de-
mand by shifting their device to lower price periods. Therefore,
EP incentivises consumers not only based on their prediction ac-
curacy but also on the question of whether they shifted such loads
to lower priced periods. Strictly proper scoring rules can be em-
ployed by a mechanism designer to ascertain that agents accu-
rately declare their privately calculated distributions, reflecting
their confidence in their own forecast. The details flow of infor-
mation and task assignments are pointed in Figure 2. As we can
see, GENCO will send the price information as a signal to EP.
The price signal is typically determined based on the generation
costs of electricity.*2 Although this model does not include the
price determination mechanism, we assume that in dynamic pric-
ing environment, the signal follows the demand. Which is, the
price is higher when the demand is higher and its lower when de-
mand is lower. The price signals are then conveyed to CAs via
EPs. One thing can be noted that, one EP can provide energy to

*1 Since, the scenario takes place in smart-grid infrastructure, we assume
that all the consumers participating are equipped with smart devices.

*2 In our model, we assume that GENCOs operate on multiple plants of
different types, such as coal, hydro and nuclear. Therefore, pricing sig-
nal could be a function of statistical forecast of historical price and the
amount the EP pay to buy the energy from generation companies.

Fig. 2 Information Flow of the GPC Model

one or more consumers while one GENCO can also serve one or
more EPs. Since, this model assumes a dynamic day-ahead pric-
ing signal, CAs receive their prices one day in advance. There-
fore, CAs can schedule their device usages for the upcoming day
into the lower price periods. Lets say, the demand in each period
i is Di. The demand Di in each period is assumed to be roughly
the same each day due to repeated daily patterns in electricity de-
mands (e.g. period 1 has the same demand on Monday, Tuesday,
etc.). So, the aggregate demand over each day is usually constant.
This assumption is verified using real traces from an Ontario op-
erator of hourly demand data over seven years [9].

3. Continuous Ranked Probability Score
(CRPS)

In order to rightfully incentivise the consumers on their predic-
tion of device shifting; the continuous ranked probability score
(CRPS) is applied [2]. CRPS is a strictly proper scoring rule
that is used for continuous variable since, the traditional forms of
proper and strictly proper scoring rules are usually not work with
continuous variables. In the proposed method, Gaussian Distri-
bution is used to model the consumers device shifting prediction
and associated confidence. The usage of CRPS is investigated
before in distributed power system operation to rightfully score
the distributed energy resource(s) [10]. CRPS is able to measure
the closeness of the prediction. Since, every device has differ-
ent priority level of usage, we impose some weights over devices
and calculate the actual weighted average of cumulative error as
presented in Eq. (1)

δu =

∑DVu
d=1

(
Wd

∣∣∣∣ Pa
d−Pp

d

Pp
d

∣∣∣∣)∑Du
d=1

(1)

where Pa
d and Pp

d describe the prices of energy when the devices
are operated at hours a (actual) and p (predicted). DVu is the set
of devices for CA, u. Lets assume, each CA, u reports its relative
prediction error in a form of uncertainty over it, represented by
Gaussian Distribution Function N(µ = 0, σ2

u). The reward score
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is therefore, generated by CRPS for that particular u is defined as
Eq. (2)

CRPS (N(µ = 0, σ2
u), δu)

= σu

[
1
√
π
− 2ϕ

(
δu
σu

)
−

δu
σu

(
2Φ

(
δu
σu

)
− 1

)] (2)

where the probability density function and cumulative distribu-
tion function for Gaussian Distribution Function are denoted as
ϕ and Φ, respectively. The notation CRPS (N(µ = 0, σ2

u), δu) can
be simplified using CRPS (σ2

u, δu).

3.1 Truthfulness of Agents: CA and EP
However, predicting correctly about the device shifting sched-

ule will not necessarily incentivize the CA to truthfully report its
intentions regarding device shifting. For instance, a CA can mis-
report about shifting period of a particular device (or group of
devices) to a higher priced period while in actual it shifts the de-
vice in a lower priced time. Therefore, although the CA will lose
the some discount by incorrect prediction, it will gain benefit by
shifting device(s) in lower priced period. In order to incorporate
such scenario and strictly incentive the CA for reporting its true
prediction, the scoring rule needs to be revised. Assuming the
price curve follows the demand curve, the scoring rule (SR) is
defined as following

S R =

 CRPS i f (Pa
d − Pp

d ) ≥ 0 ∀d ∈ DVu

0 Otherwise
(3)

This above function ensures that any misreporting by CA will
generate a 0 score. For example, consider a case where a CA
wants to use a device at period 1 and misreports that s/he will
use it at period 2 (which is a higher priced period than period
1). Therefore, although s/he gets a less score for misreporting,
it would appear that s/he will be compensated by lower price in
period 1. But according to Eq. (3), it will get 0 discount. Hence,
any CA who misreports of its true intention about shifting any
device, will get no discount. CRPS is a strictly proper scoring
rule that also ensures the truthfulness of the reporting [2]. The
proposed scoring rule (Eq.(3)) also possesses the strictness prop-
erty of CRPS since its internal mechanism also based on CRPS.
Therefore, the proposed scoring rule is also truthful. Figure 3
shows the realization of scoring factors for different errors and
confidence level. As pointed out before, the CAs will report their
predictions of device usage in the mean of relative error (Eq. (1))
aggregated over all devices. Since, the CAs are aware of the scor-
ing system used by the EPs, they have the liberty to choose as-
sociated confidence level (i.e. the sigma; σ). From the graph
presented in Figure 3, it is important to notice that,

a. when a CA is highly confident about its prediction (i.e.
σu = 0); highest score is rewarded only when the realized
absolute error is zero

b. when the realized error is relatively higher, the CA will be
benefitted to report lower confidence (i.e. higher values of
σ)

c. most importantly, CAs do not know the exact shape of the
function when it declares the prediction, since the actual er-
ror only realized when the event occur

Fig. 3 CRPS scoring mechanism for different errors

However, the CA has ideas how it will be scored. For instance, if
it is likely to make a larger error, it implicitly chooses the func-
tion that will penalize it lower by reporting larger σ. On the other
hand, if it is confident of its prediction accuracy, it will report a
higher σ. By this way, we ensure CAs to report truthfully about
their prediction intentions. Moreover, our model assume no collu-
sion between the participating agent devices (CA and EP). As we
mentioned (and will show in later section), the prediction that EP
makes regarding the aggregated energy requirement for its CAs,
does not involve any imposition or disturbance towards CAs’ de-
vice prediction. Rather, EP uses CAs’ intentions as a base to
report its prediction. Therefore, EP also exhibits the truthfulness
property. So, the agent devices (CA and EP) used in this model
are truthful and non-collusive.

4. GENCO and EP: Cost Optimization
Based on the device shifting prediction of CAs, EP will try to

produce a potential reward (pr) which is actually based on the
shifting probability of a particular device by the amount of shift-
ing. In ideal case, where CA’s device commitment prediction co-
incides with the actual one, there will be no shifting. Taking such
scenario in mind, the shifting probability (S P) function is chosen
to be concave and assumed to be increasing in pr and decreasing
in shifting time t. Thus S P is defined as,

S P(pr, t) =
pr

(1 + t)2 (4)

Given the rewards pri (i = 1 . . .N) in each period, the amount
of demand shifted out of each period i into each period k , i is
calculated first. Then take the amount of electricity required by
each device originally in period i, multiply by the S P, and sum
over all users and their devices to obtain the following

U∑
u=1

∑
j∈DVu

i

e jS P j(prk, |k − i|) (5)

where e j is the amount of energy required by device j. DVu
i is the

set of the devices to be committed to u at period i. The total cost
of offering potential reward by summing up the demand shifted
into period i is calculated as,

Xep =

N∑
i=1

pri

U∑
u=1

∑
k,i

∑
j∈DVk

u

e jS P j(pri, |k − i|) (6)

EP’s cost minimization function for providing potential rewards
based on the CA’s device shifting probablities
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min
pr

Xep

s.t. pr ≥ 0
(7)

The potential reward (pr) is actually given in every hour. There-
fore, the reward will be distributed on the consumers who owns
those devices at which are committed at that particular hour.

4.1 EP’s Report of demand to GENCO
EP will be incentivized by GENCO using CRPS function.

Which is why, they will report regarding their energy demand
(which is in fact the predicted demand summing over all CA) in a
form of Gaussian Distribution. Total predicted demand for user
u is shown in Eq. (8)

Dp
u =

N∑
i=1

U∑
u=1

∑
j∈DVk

u

e j pri (8)

Therefore, the estimated demand for a particular EP, Dp
u is the

summation of individual prediction of all CA. Taking account of
this prediction, the EP will report the aggregated relative error to
GENCO as

σ2
EP =

∑
u∈EP(Dp

u ∗ σu)2

(
∑

u∈EP Dp
u )2

(9)

Since Eq. (9) is an affine transformation of aggregated weighted
cumulative relative error (earlier reported by CA; which are
truth f ul), EP is also truthful in reporting the prediction provided
that CAs are truthful.

4.2 GENCOs cost minimization formulations
Upon receiving the EPs’ prediction on demand, GENCO will

try to minimize its production cost while satisfying EPs’ demand.
The GENCOs usually operate multiple plants of different types,
e.g. gas, hydroelectric (hydro), renewables and coal [11]. These
plants may be categorized as base, intermediate, and peak-load.
The base-load plants generally have a higher capital cost but low
operating cost, and thus run all of the time (e.g., hydro, nuclear).
Intermediate load plants (e.g., coal) have a higher operating cost,
and peak load plants (e.g., gas turbines) have the highest operat-
ing cost. In any given period, if EPs’ demand exceeds the base-
load capacity, the generator turns to the intermediate-load plants
and then finally, to peak-load plants to generate additional elec-
tricity. Under such consideration, ci1 denotes the marginal ad-
ditional cost of using intermediate- rather than base-load plants
in period i, and ci2 denotes the marginal additional cost of us-
ing peak- rather than intermediate-load plants in period i. These
marginal costs are instances of the random variables; assuming
that their actual values are exogenously determined for use in the
EPs optimization problem. Figure 4 shows the piecewise-linear
cost structure for these load plants; ci0 denotes the slope of base-
load electricity generation costs. Ci1 and Ci2 denote the base- and
intermediate-load capacities respectively for period i. These ca-
pacities are instances of random variables drawn from exogenous
(i.e., price-independent) distributions. Time-series prediction al-
gorithms such as triple-exponential smoothing or auto-regression
can be used to estimate the base- and intermediate-load capaci-
ties from historical data and exogenous factors. The amount of

Fig. 4 Piecewise linear cost model for base-, intermediate- and peak- load
demand

demand in each period i is

Y = Di −
∑

EP∈EPS

pr
∑
u∈EP

Dp
u (10)

Recall that, Di is the total demand at period i. EPS is the set
of EP registered to buy energy from that GENCO. The cost of
meeting consumers demand at period i, therefore, is

Xgenco =
∑

m=1,2

cim [Y −Cim]+ (11)

Where [Z]+ signifies maximum between 0 and Z. Therefore, the
cost minimization problem becomes

min
pr

Xgenco

s.t. pr ≥ 0
(12)

We see that, the optimization problems depicted in Eqs.
(7) and (12) have the same control variables (which is the
potential reward). Therefore, they can be combined as a single
optimization problem. Recall that, the shifting probability func-
tion is a concave one which is increasing in pr and decreasing in
time. Therefore, it can be proved that, the formulated optimiza-
tion problem is a convex one. So, the final optimization problem
is defined as

min
pr

[
Xep + Xgenco

]
s.t. pr ≥ 0

(13)

The above equation ensures that, GENCO and EPs are able to
minimize the cost of satisfying EPs’ demand (which is actually
aggregated demand from the registered CAs) and the generation
cost, respectively. Now, the discount will be distributed among
EPs. First, the contribution of each EPs is determined by the
fraction of their CRPS score by normalizing the total potential
reward. We recall that, EP provides its relative error as σ2

EP and
upon realizing actual demand, its actual relative prediction error,
say δEP. Therefore, the discount EP will receive for their truthful
prediction is

DiscountEP =
(
∑N

i=1 pri) ∗CRPS (σ2
EP, δEP)∑

EP∈EPS CRPS (σ2
EP, δEP)

(14)

Now EP’s discount should be distributed among the consumers.
This discount will be shared based on the scoring rule defined as
Eq. (3). Note that, at the time of realization, EP already knows
whether that CA is true to her device scheduling prediction. Thus,
CRPS is determined according to Eq. (2) where actual weighted
average of cumulative error, δu. However, as we pointed out,

4ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-ICS-171 No.14
2013/3/19



CRPS itself is not good enough to prevent CA to misreport about
its true intention, the scoring rule for CA is, therefore, further
modified by using Eq. (3). The scoring factor for u at period i is
therefore, defined as

s f i
u =

revenue(discountEP) ∗ S R(σ2
u, δu)∑

u∈EP S R(σ2
u, δu)

× pri (15)

Note that, the EP does not necessarily always distribute the dis-
count as a whole. Instead, it may choose (in most likely cases)
to provide some fraction of it. In this way, EP generates some
revenue. Such function is defined as revenue(discount). In this
model, we reduce the discount by 40% to keep the rest as revenue
for EP. Finally, the consumer will be rewarded using s f i

u. s f i
u is

scaled between 0 to 30 % since [9] set the maximum allowable
discount is 30%.

5. Agent Simulation
In this section, some data analysis and preliminary simulation

results are presented in order to verify the feasibility of the hi-
erarchical scoring rule based pricing mechanism as well as to
demonstrate the ability to reduce GENCO’s cost of electric gen-
eration and flatten electric usage over some periods. For scala-
bility we assume 1 GENCO entity which supplies energy to 10
electricity providers (EP). Which in turn serves 100 consumers
each. However, the initial simulation is limited to 1-GENCO,
1-EP and 1-consumer model to elaborate the models’ validity.
The real parameters are based on Ontario Independent Electric
Operator ( [9]). The base-load plant in Ontario is hydroelectric;
(assume 60% are base-load plants). The production capacity of
each plant is taken as constant across different periods of a day
for the purposes of simulation. The intermediate-load consists
of coal (operating at 20% efficiency, as is consistent with IESO)
and the remaining hydroelectric plants. Finally, the peak plants
are gas turbines, which are the most expensive to operate. The
slopes of the cost functions for base-, intermediate- and peak-load
plants (refer to Figure 4) are taken from the production estimates
in [12]. The marginal costs of moving from intermediate- to
peak load and base- to intermediate-load plants are calculated to
be $62.46/MWh and $18.54/MWh respectively. Since its a GW
based power system, the system data is effectively scaled down to
provide simpler simulation conditions. The prices are also equiv-
alently scaled into kWh level.

Fig. 5 Hourly active devices for a single consumer in a 24-hours period
after running smart pricing scheme

Assuming the electricity usage of a single consumer, Figure 5
presents the periodically expected device scheduling after apply-
ing the smart pricing scheme. While the quantitative results of

Fig. 6 Discount provided to a single consumer for 96 hours. Total energy
consumed 142.1 kWh.

these simulations will vary from market to market, the qualitative
results suggest that smart pricing can indeed help GENCOs and
EPs to even out consumption over the day and reduce the energy
requirements from peak-load plants. Scrutinizing the cyclic elec-
tricity consumption pattern, it can be shown that for four consecu-
tive days of energy consumption of 1 consumer reported is 142.1
kWh. However, before using the reward based pricing scheme,
the total consumption recorded for a single consumer was 170.35
kWh (based on the single household consumption determined ac-
cording to the data presented in [9]). Therefore, for a single
consumer, the proposed scoring rule based reward scheme can
reduce energy consumption down to 20%.

Figure 6 shows the rewards corresponding to the same energy
consumption pattern as discussed in previous paragraph. It is
noted that the rewards (discounts) are roughly cyclical, as might
be expected. If we check the pattern, it is clearly seen that, in
case of peak demand hour, the reward is minimum which states
the fact that, it becomes difficult to make an accurate prediction
in peak hour. Figure 7 depicts the effect of smart pricing scheme
on pricing. We can see that, a CA can effectively reduce payment
towards EP if it truthfully reports about its device scheduling on
the basis of the day-ahead price signal and shifts them in lower
priced period. To provide the scalability of the proposed method,
Figure 8 is presented. It shows effect aggregated over 1000 con-
sumers (1-GENCO, 10-EPs and 1000-consumers). It is noted that
the peak-to-average (P2A) ratio of the consumption pattern be-
fore using scoring rule based smart pricing is 2.55 while it comes
down to 1.91 when using the proposed pricing scheme. Quali-
tatively speaking, the P2A ratio is down by approximately 25%.
Therefore, the proposed scheme works better when the number of
consumers is higher. So, it can be said the method is practically
viable and scalable. Moreover, such measure reflects the fact that
the strictly proper scoring rule based reward mechanism is able
to flatten the load demand.

6. Related Works
The earlier works that explored the potentials of such pric-

ing schemes are mostly from the perspective of consumers on
the light of scheduling devices according to the prediction of fu-
ture prices. As for an instance, [13] proposes a mechanism for
predicting prices one or two days in advance. The household de-
vices/loads can be scheduled as to balance impatience with the
will to save money. Here several users share a power source and
simultaneously scheduling energy consumption in a distributed
manner. EP’s problem of determining prices based on the con-
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Fig. 7 The price curve Vs. the payment which occurred before and after
applying smart pricing scheme. This price signal is taken from 1st
March, 2010.

Fig. 8 Energy usage before and after using of scoring rule based smart pric-
ing; aggregated over 1000 consumers

sumer response has been studied in several literature. For ex-
ample, [14] uses real data to quantitatively forecast consumers’
scheduling of energy consumption. Although the other works do
deal with aggregated demand across the consumers at different
times, none of these ever take heterogeneity at the device level
into account.

Additionally (and importantly), none of these works ever
considered properly incentivizing the consumers for accurately
scheduling their devices for future periods as well as making
quality estimation of device scheduling for coming periods. Con-
sumers reactions on dynamic pricing effect the scheduling of the
household devices. Since there is no standard device commitment
mechanism exists, the consumer may misreport their scheduling
preferences which leads to an inefficient system design where the
pricing is tend to be biased and manipulative. Again, EPs are
also responsible for reporting GENCO about the total amount of
energy they require for next day. In such case, correct and truth-
ful prediction also provide them a way of being benefitted from
GENCO in form of discount over buying price.

7. Conclusion
This paper introduces a new smart pricing scheme considering

a model consists of generators, provider and consumers. The for-
mulations are carried by devising a truthful mechanism for both
consumer and provider entities where they will report their true
intentions regarding device scheduling and energy demand, re-
spectively. The scoring system (facilitating Continuous Ranked
Probability Score) is designed such a way that, it will force con-
sumer agents to report their true beliefs towards providers. On the
other hand, provider agents themselves are incentivised to report
the energy demand to generation companies (GENCO) truthfully
to get a discount over price. The conducted simulation results
show that, the proposed smart pricing scheme is able to reduce

the total energy consumption as well as consumers payment to-
wards providers. Therefore, consumers are benefitted since they
paid less than the actual price and we have a cleaner environment
with reduced energy production. As a future study, we will try
to model the device sensitiveness towards scheduling and apply
such mechanism for higher scaled smart power system.
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