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近傍携帯端末群によるばねモデルを用いた

協調的屋内位置推定手法の提案

劉　暁鵬1,a) 前川 卓也1,b)

概要：近年，Wi-Fiモジュールを搭載した高性能携帯端末の普及に伴い，Wi-Fi電波を用いた屋内位置推

定に関する研究が多く行われている．多くの既存研究では，屋内の各座標において予め計測したWi-Fi信

号強度の分布情報を用いるフィンガープリンティングと呼ばれる手法により，携帯端末の屋内位置を推定

する．本研究では，既存手法を基に，近傍に存在する端末群が協調しながら，より高精度に屋内位置を推

定する方法を提案する．具体的には，携帯端末に搭載されたWi-Fiと Bluetoothセンサを用いて推定され

たそれぞれの端末の位置と距離関係の辻褄が合うように、ばねモデルを用いて推定位置を修正する．また，

実環境での実験を行い，提案手法の有効性を検証した．

キーワード：屋内位置推定, Wi-Fi信号強度, フィンガープリンティング, 近傍携帯端末, ばねモデル, 協調
的位置推定

Spring Model based Collaborative Indoor Position Estimation with
Neighbor Mobile Terminals

Liu Xiaopeng1,a) Maekawa Takuya1,b)

Abstract: Nowadays, as the widespread of smart-phones that equipped with Wi-Fi modules, many re-
searches have studied Wi-Fi based indoor positioning techniques. The existing method makes use of the
Wi-Fi received signal strength (RSS) information that collected from several places indoors in advance to
estimate the position of mobile device by referring to a fingerprinting algorithm. Base on the existing method
above, this paper addresses a high-precision indoor positioning method by coordinating the neighbor mobile
terminals. we estimate the position coordinates and distance information of the mobile terminals by using
the Wi-Fi and Bluetooth sensors on them. Then, referred to these position and distance information, we
utilize the spring model to adjust the estimated positions. In addition, we also performed the evaluation
experiment in the real indoor environment, and the feasibility of our proposed method was well proved.

Keywords: Indoor Positioning, RSS, Fingerprinting, Neighbor mobile terminal, Spring model, Collabora-
tive positioning

1. Introduction

Indoor positioning systems (IPSs) have become very

popular in recent years. These systems provide a service

called automatic object location detection and there are
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many real-world applications that employ the techniques.

For example, product management can consider the loca-

tions of products stored in a warehouse, visitors can re-

ceive background information about the exhibit they are

viewing in a museum, the firemen can know their loca-

tion in a building on fire to save the people quickly, and

emergency medical personnels can locate critical patients

or equipments. Given accurate and reliable location infor-

mation can help people know their positions and where to
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go next.

The widespread proliferation of 802.11x wireless LAN

(WLAN) as a common network infrastructure enables Wi-

Fi based localization with few additional hardware costs,

and has generated commercial and research interest in

statistical methods to track people and things. Inside

warehouse, museum and hospital, where Global Position-

ing System devices generally cannot work, IPSs aim to

provide location estimates for wireless devices such as

smart-phones, laptop computers and handheld digital de-

vices. TheWi-Fi Internet access in stores, hotels, airports,

schools, and homes generates Wi-Fi signals which can be

used to locate mobile terminals in IPSs.

The existing Wi-Fi based IPSs perform position estima-

tion by using Wi-Fi received signal strength (RSS). There

are two main categories of Wi-Fi RSS based techniques

for indoor position estimation in WLAN environment [1].

One way called trilateration approach is to use a signal

propagation model of Wi-Fi signal and the information of

the geometry of the building to convert RSS to a distance

measurement. However, this method may be affected by

the penetration losses through obstacles, and the multi-

path propagation, reflection easily in the condition of an

indoor environment. The other way is called fingerprint-

ing, which estimates the position of mobile device with the

preset database of position fingerprints that formed by the

Wi-Fi RSS features at several reference positions [2].

In general, the IPSs based on fingerprinting techniques

can be divided into two phases: training phase and posi-

tioning phase [3]. In the training phase, the system builds

a location fingerprint database which consists of RSS pat-

terns collected in several reference points (RPs) from mul-

tiple Wi-Fi access points (APs) indoors. Then, in the po-

sitioning phase, a mobile device measures the RSS sample

at target place and sends it to system. The system uses

an appropriate matching method (such as nearest neigh-

bor algorithm, Bayesian classifier [4] or other methods)

to estimate the position of the mobile device referring to

the location fingerprint database of the reference points

mentioned above and reports the estimated result back to

the mobile device.

However, Wi-Fi RSS based IPSs are much reliant on

the condition of the indoor environment. The change of

layout, people’s movement and electromagnetic interfer-

ence may affect the final positioning accuracy. Importing

some high precision sensor such like ultrasonic tag may

be able to solve the problem above, but the deployment

cost is too much [5]. Here, [6] brings us some inspira-

tions. That research provides a cooperative position es-

timation, which is to leverage the variance in positioning

accuracies among nodes within a people cluster. The key

issue of that method is to identify neighbor nodes with

high positioning accuracy, and use their estimated posi-

tion information to help localize the target nodes with

lower positioning accuracy. It consists of 3 major mod-

ules: 1) Neighborhood Detection identifies nearby mobile

nodes as possible candidates for collaborative position-

ing; 2) Confidence Estimation computes the confidence

score of the position estimation given by the existing Wi-

Fi based IPSs; 3) Collaborative Error Correction adjusts

the estimated position of the target node by using the

neighbor nodes with higher confidence scores in the same

cluster. The neighbor nodes with high positioning confi-

dence perform like a magnet with strong magnetic charge

and pull the target node which acting as a nail from its

original position toward their positions.

Then, based on the related method mentioned above,

we intend to address a collaborative positioning method

by using not only the estimated positions of the neigh-

bor mobile devices, but also their distance relationship

between each other. With our proposed method, we are

able to correct the estimated position with low confidence

and improve the location accuracy without considering

the factors of indoor layout changes and people’s affec-

tion.

2. Design and Implementation of Pro-

posed Method

2.1 Outline of proposed system

Fig. 1 shows the design of our system structure. In

this research, there are some Wi-Fi access points installed

indoor in advance. The client is mobile device (MD) such

as smart-phone currently, and it continuously obtain the

received signal strength (RSS) data from each Wi-Fi ac-

cess point (AP) at the current place. The Bluetooth sen-

sor on the MD also collects the signal strength (SS) of

Bluetooth from the other MDs real-time. All of the in-

formation mentioned above will be sent to the server or

the master of MDs, which deals with this information in

2 different processes.

One process is shown in the left side of Fig. 1. Referred

to the existing Wi-Fi based indoor positioning algorithm,

the system estimates the current position of each MD with

its RSS data that collected just recently. We estimate how

much accurate the estimated position is, i.e., how the es-

timated position is close to the actual position, and then
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図 1 提案システムの概要

Fig. 1 Outline of proposed method

we determine which MD’s position should be corrected

with this information. However, as the system does not

know the actual position in advance, it shall evaluate the

confidence of every estimated position. The confidence

evaluation measures the probability of the estimated po-

sition whether it being close to its true position. In other

words, a high / low confidence score implies that the esti-

mated position has a high / low probability of being the

actual position. The output of the left side process is a

set of pairs of estimated position of the xth MD and its

confidence score (< Pos(x), ConfP (x) >) for every MD.

The other process shown in the right side of Fig. 1 is to

estimate the distances between a target MD and the other

ones. This time, the system utilizes the characteristic of

Bluetooth signal attenuation to estimate the probable dis-

tance between two MDs. Then, as the Bluetooth signal

propagation will be affected by the blocks such as walls,

furniture, and the effect of multi-path propagation, or re-

flection problems, the estimated distance may have a big

error. So, after the distance estimation, we evaluate the

confidence of the estimated distance. Just like the left

side process, the right side process will also output a set

of pair of the estimated distance between 2 MDs and its

confidence score (< Dis(x, y), ConfD(x, y) >).

Finally, the data pairs of the position, distance and their

confidence score will be input into the spring model, which

will be discussed in the Section 3.5. The spring model

synthesizes all the information related to the position, dis-

tance and their confidence, and then adjusts every mobile

node’s position in order to improve the positioning accu-

racy. When the spring model achieves the balanced state,

the system outputs the adjusted position as the final es-

timated position of each mobile node.

In the following sections, we will introduce the position

estimation process, distance estimation process and the

final collaborative error correction process in detail.

2.2 Wi-Fi based position estimation

2.2.1 Position estimation with existing method

The existing Wi-Fi based indoor positioning method is

based on the deployment of location fingerprinting tech-

niques and it utilizes Wi-Fi received signal strength (RSS)

information to estimate the position of a target mobile ter-

minal in 2 phases. They are the off-line training phase and

the on-line estimation phase.

In the off-line training phase, we should obtain the lay-

out map of the indoor environment and install some Wi-Fi

access points (APs) in the appropriate place as to coverage

all the rooms. Then, a large number of reference points

(RPs) should be set up, where we will collect the Wi-

Fi RSS information from APs. The number of the RPs

affects the positioning accuracy [7]. This is easy to under-

stand. If there are only few RPs set indoors, the system

does not have enough reference information to estimate

the position. However, too many RPs will also cause a

lot of time to prepare the preset training process. So, in

general we set a reference point at every 1 ∼ 2 meter in-

tervals. After installing the Wi-Fi APs and some RPs,

we employ the collected RSS data of all the RPs to train

a classifier that determines which RP (location) a MD is

at. The classifier has many different types, such as de-

cision tree, Naive Bayes, support vector machine (SVM)

or k nearest neighbor (KNN) search [8]. In our research,

we choose Gaussian mixture model (GMM) based KNN

search as the classifier. Based on the GMM algorithm,

the system builds the model for each RP by using its RSS

characteristics, and save this model data in the database

of reference position information, including the position

coordinates of the RP itself.

Then, in the second phase, which is called as on-line

estimation phase, we collect new RSS information in the

test point (TP), and send the data to a server or the mas-

ter MD. The system in the server will compare the RSS

characteristics of TP with the models in database, and

calculate the log density (LD) value of the reference point

model for each TP. After that, the system will sort the ref-

erence point models in the database in descending order

of their corresponding LD value with TP.
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Pos(x) =

∑k
i=1 LDi × Pos(x)

i∑k
i=1 LDi

(1)

Here, we set a constant k and take the first k RPs with

larger LD value to calculate the position coordinate of

TP. Then, the coordinate of the first k RPs will be multi-

plied its corresponding LD as the weight according to the

Formula 1.

2.2.2 Positioning confidence calculation

Confidence calculation measures the probability of the

estimated position that obtained from the existing method

mentioned above, being close to its true location. In gen-

eral, a high / low confidence score implies that the loca-

tion estimation has high / low probability of being the

true location.

In our research, we make use of Wi-Fi scan series data

that contain the RSS information from the Wi-Fi APs

to calculate an estimated position by the existing Wi-Fi

based positioning method. Every TP (the position that

needs to be estimated) has its Wi-Fi scan series data which

consists of some Wi-Fi scan data taken in seconds. Each

Wi-Fi scan is used to calculate position coordinates and

the average of this position coordinates will be set as the

final estimated position of the TP. The difference between

the final estimated position and actual one is considered

as an estimation error.

Generally, the confidence of estimated position is mainly

affected by the stability of Wi-Fi signal strength. When

Wi-Fi signal strength is stable, each Wi-Fi scan data that

obtained at a test point is likely to be the same, and the

each estimated position coordinates tend to be central-

ized, which means the standard deviation of these posi-

tion coordinates will be small. Conversely, when Wi-Fi

signal strength is unstable, we will get the diverse results.

So, we may speculate that the estimation error has a re-

lationship with the standard deviation of the estimated

position coordinates.

Then, referring to the speculation above, the confidence

of an estimated position can be defined and its calculation

method is shown in the following formula.

ConfP (x) = e−|σx|, (2)

where the σx means the standard deviation of estimated

position coordinates of the xth MD.

2.3 Bluetooth based distance estimation

2.3.1 Distance estimation

Bluetooth is a short-range, wireless, cable-replacement

protocol operating in the license-free 2.4GHz spectrum.

It is characterized by its low power requirements and low-

cost transceiver chips. There are millions of Bluetooth

devices on mobile phones (currently smartphones), laptop

computers and PDAs, providing a ubiquitous mechanism

for wireless transfer of relatively small amounts of data.

Because the Bluetooth devices also use a radio (broad-

cast) communication system, they do not have to be in vi-

sual line of sight of each other. The effective range varies

due to propagation conditions, material coverage and bat-

tery conditions. In general, the Bluetooth device we use

in daily life has the maximum permitted power of 2.5mW

and the detectable range is around 10 meters [9].

As the Bluetooth signal wave is a type of electromag-

netic waves, whose frequency is 2.4GHz, we can make

use of the traditional electromagnetic wave attenuation

to consider the attenuation of Bluetooth signal [10]. In

the ideal space (air temperature is 25◦C, 1 standard at-

mospheric pressure, no object exists), the energy loss of

the electromagnetic wave is calculated according to the

following formula.

A(d) = 20× log
4πd

λ
(3)

In Formula 3, d is the transmission distance (meter)

and λ is the length of the electromagnetic wave. The Blue-

tooth signal frequency is 2.4GHz, so λ here is 0.125 meter.

After transforming, we can get the calculation method of

Bluetooth signal attenuation and are able to estimate the

probable Bluetooth signal strength (SS) of a place accord-

ing to its transmission distance from Bluetooth devices.

After getting the relationship between Bluetooth SS and

transmission distance in the ideal space, we collect the

Bluetooth SS data at several places where there is no ob-

stacle existing in the real indoor environment, and cal-

culate the average value of SS data by different distance.

Then, based on this preset collected data and Formula

3 above, we can estimate distance between 2 mobile ter-

minals in the real indoor environment with the detected

Bluetooth SS as the following modified formula.

d = 10−BS(x,y)−40.35/28.53 (4)

BS(x, y) in the Formula 4 represents the Bluetooth SS

between two MDs (x and y)

2.3.2 Distance confidence calculation

After obtaining the distance between 2 terminals, we

are going to discuss the confidence of the result. As we

know that, the Bluetooth signal is not so much stable in
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the indoor environment. When a barrier such like cabi-

net, wall or moving people exists, the signal strength may

drop sharply, and the electromagnetic interference may

also decrease the Bluetooth SS.

However, it is difficult for us to judge whether the long

distance, obstacles or electromagnetic interference results

in the low detected Bluetooth SS. We just know that the

stronger signal strength may lead to the more accurate dis-

tance result with high confidence, while the weaker signal

strength may cause a result with large deviation and low

confidence. Referred to the relationship mentioned above,

we can address the calculation method of the confidence

of the distance between 2 mobile terminals as follows.

ConfD(x, y) = e−|BS(x,y)/Cdis| (5)

In the Formula 5, BS(x, y) means the detected Blue-

tooth signal strength between 2 mobile terminals (x and

y), and the constant Cdis is always set to be -100 which

is the minimum of detectable Bluetooth SS.

2.4 Collaborative position error correction with

spring model

2.4.1 Spring model

Spring model is often used for force-directed graph

drawing in an aesthetically pleasing way. The most well-

known spring algorithm is the Eades spring model [11],

and it is a very successful layout creation algorithm for

drawing an undirected graph by treating a graph as a

mechanical system. In this model, nodes are assumed as

ideal objects with the same weight 1 but no volume. The

edges linked with 2 nodes are made by springs. All the

springs have the same natural length l, and each spring

has a current length d. Given a pair of nodes connected by

a spring, if l > d, the spring attracts the nodes; if l < d,

then the spring repulses the nodes; if l = d, then the nodes

are stable. The spring forces will attract or repulse the

nodes until the system reaches the minimum energy as the

existence of friction. This is called the balanced state.

However, if in an ideal space, as there is no friction, the

nodes will keep moving forever. In order to avoid that

situation, the string model imports friction to stop these

nodes. The direction of friction is opposite to the cur-

rent moving direction of the node. When all the nodes

stop and turn to the balance state, the spring model will

output their final positions.

2.4.2 Collaborative positioning error correction

In the last collaborative positioning error correction

図 2 ばねモデルによる位置の推定

Fig. 2 Position estimation by spring model

process, we make use of the spring model mentioned above

to adjust the positions of the mobile devices. However,

there are still some different places between traditional

Eades spring model and the one we used.

Here, we give the setup of our spring model which is

shown in Fig. 2. In that model, all the mobile devices are

assumed to be nodes. There are 2 types of nodes in the

model. As Fig. 2 below shows, the red node shows the

estimated position provided by the existing Wi-Fi based

indoor positioning system, and the green node is the one

that adjusted by the spring model. The former red node

is fixed in advance, the green one can be moved freely.

Moreover, there are also 2 types of springs connected

with these nodes. The one between red node and green

node is zero-length spring, which means the natural length

of this spring is 0 and it generates attraction force only. Its

spring constant corresponds to the confidence score of the

estimated position (red node) of the mobile device. The

other spring between 2 green nodes is a common type. It

can be compressed or stretched. The natural length of

this spring is equal to the estimated distance between the

2 green nodes linked with it, and its spring constant cor-

responds to the confidence score of the former estimated

distance.

When all parameters are set, the spring model releases

all the green nodes, and these nodes will be pulled or

pushed by the spring force they suffered. After the spring

model achieves to the balance state finally, we consider

the current positions of the greens nodes as the adjusted

estimated positions of the mobile devices.

3. Evaluation experiment

In order to testify the feasibility of our proposed

method, we perform the evaluation experiment as follows.

In this section, we introduce the experimental environ-

ment and scenario in advance. Then, we give the final

results that provided by our method and discuss about

them. Lastly, we present a way to optimize parameters
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used in our method to improve the position accuracy fur-

ther.

3.1 Experimental environment and data

In our experiment, we use five Nexus One (a common

smart-phone presented by HTC) as the clients to collect

the experimental data. Nexus One is equipped with Wi-

Fi and Bluetooth sensors and the operation system (OS)

installed in is the well-known Android system, which is

very convenient for us to develop other required programs

(such as signal strength detection program) on it. Before

experiment, we set up 15 Wi-Fi access points (APs) in

total in our research lab, and in the experiment area, at

least half of them can be detected.

The experimental area contains the meeting room, cor-

ridor, and the rest room of our research lab. Fig. 3 shows

the layout of the experimental area. In this area, we set

15 reference points (RPs) in different places. The detailed

positions of the RPs are shown in Fig. 3. At the RPs, we

use Nexus One to collect enough Wi-Fi RSS data from all

the APs located in this area, and at least 20 sets of Wi-Fi

RSS data at a reference points (RP) is collected (Nexus

One scans the Wi-Fi RSS received from the neighbor APs

in every 2 seconds). Then, we employ the Wi-Fi RSS data

of the 15 RPs to train models for them based on Gaussian

Mixture Model (GMM) that mentioned above.

After installing the RPs in the experimental area, we

also set 11 test points in Fig. 3 as to simulate the posi-

tions of the users with Nexus One in real life. The way

to collect Wi-Fi RSS data is just the same as that at the

RPs. However, in order to estimate the position of users

more quickly, we only take 5 sets of the Wi-Fi RSS data

at a test point (TP). In this time, Nexus One scans the

Wi-Fi RSS received from the neighbor APs in every 1 sec-

onds and the duration is reduced to 5 seconds. 5 seconds

for data collection may be still a little long, but that is

the limitation of the mobile device that we used. Besides,

the Bluetooth sensor on Nexus One is also used to collect

the Bluetooth SS data from the neighbor ones by using

the Formula 4 that mentioned in the section 3.4.

We make 6 experimental scenarios for test according to

the different experiment areas and the number of MDs in

used. They are One-Room with 3 MDs (One-Room-3), 4

MDs (One-Room-4), and 5 MDs (One-Room-5), and the

Multi-Room with 3 MDs (Multi-Room -3), 4 MDs (Multi-

Room -4), and 5 MDs (Multi-Room 5). Each experimental

scenario consists of 10 patterns with the MDs at different

places.

図 3 実験環境と実験シナリオの設定

Fig. 3 Experimental environment and scenarios

表 1 一つの実験パターンの位置推定の結果

Table 1 Positioning results of one experimental pattern

調整前誤差 (m) 調整後誤差 (m) 変化 (m)

ポイント E 2.21 1.48 -0.73

ポイント G 2.08 1.42 -0.66

ポイント H 2.09 1.36 -0.73

ポイント I 0.23 0.48 0.25

ポイント J 1.48 1.08 -0.4

With the 6 experimental scenarios above, we testify the

feasibility of our proposed method in different situations.

3.2 Experimental process and results

In the beginning of the experiment, we make use of the

existing Wi-Fi based indoor positioning method to esti-

mate the positions of the MDs in every experimental pat-

tern. Then we estimates the probable distance between

2 MDs when Bluetooth signal can be detected with the

Formula 1 above, and calculates the confidence scores of

the estimated position and distance referring to the For-

mula 2 and Formula 5, respectively. After that, all of this

data are imported into the spring model and the spring

model estimates the final position for each MD. In our ex-

periment, the spring constants of 2 kinds of springs used

in model are set as the confidence scores of the estimated

position and distance.

Now, let us see the adjustment results provided by our

spring model. Firstly, we give the final position result of

one experimental pattern in the scenario of Multi-Room-5

when the MDs are placed in Points E, G, H, I and J that

shown in Table 1.

Table 1 shows the comparison between the positioning

error of the 5 MDs before and after adjustment. We can
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表 2 同室の場合推定位置誤差の比較

Table 2 Comparison of positioning errors in One-Room sce-

narios

端末 調整前 　 調整後 　 変化 　 向上

数 平均誤差 (m) 平均誤差 (m) (m) 精度 (%)

3 2.14 1.99 -0.15 7.0

4 2.25 1.88 -0.37 16.4

5 2.13 1.84 -0.29 13.6

表 3 複数部屋の場合推定位置誤差の比較

Table 3 Comparison of positioning errors in Multi-Room sce-

narios

端末 調整前 　 調整後 　 変化 　 向上

数 平均誤差 (m) 平均誤差 (m) (m) 精度 (%)

3 1.4 1.36 -0.04 2.9

4 1.57 1.39 -0.18 11.5

5 1.67 1.41 -0.26 15.6

see that almost all of the MDs had higher positioning ac-

curacies after the adjustment by the spring model, expect

the MD in Point I which had much little positioning er-

ror (0.23 meter) already before adjusting. On the other

side, the positioning accuracies of the MDs with larger

positioning errors before improved greatly.

Next, we present the comparison of the average posi-

tioning error for the 6 experimental scenarios after collab-

orative adjustment. Table 2 and Table 3 below show the

comparison result of them.

In Table 2 and Table 3, we find that after adjustment by

the spring model, the average positioning error of MDs in

all experimental scenarios is improved, especially the ones

of 4 MDs in one-room and 5 MDs in multi-rooms, whose

average positioning accuracy has increased by nearly 15%.

The average positioning accuracy of the scenarios with 3

MDs has not improved so obviously. Too little informa-

tion for adjusting by the spring model is one of the pos-

sible reasons. Because, more MDs give more position and

distance information for adjustment of the spring model,

which may lead to a better improvement. In the next sec-

tion, we will present a parameter optimizing method to

improve the current positioning accuracy further.

Here, we also provide the cumulative distribution func-

tion (CDF) graphs of the positioning error related to the

experimental scenarios with 5 mobile terminals. The CDF

shows the positioning precision which considers how con-

sistently the system works. Fig. 4 shows the comparison

of the positioning precision of the scenarios with 5 MDs

before and after adjustment. We can see that in each

scenario, the position precision after adjustment reaches

図 4 5 台端末の場合の位置推定誤差の CDF グラフ

Fig. 4 CDFs of positioning error in the scenarios with 5 MDs

high percentile value faster than the one before adjust-

ment, which means the number of the mobile nodes with

small positioning error is larger than before and the posi-

tioning accuracy in average is well improved.

3.3 Optimization of experimental parameters

As the confidence of the estimated position and dis-

tance is the spring constant of the 2 kinds of springs in

the model, either of them is too large will break the final

balance state. So, we assume that a better balance state

generates when 2 confidence scores is at the same level.

Besides, the Bluetooth signal is not so stable when obsta-

cle (such as door, wall, or large furniture) exists. When

the average distance between mobile devices is far, the

confidence of the Bluetooth signal strength becomes low

and we should increase the affection of the spring force

that is generated by positioning confidence. But, setting

adjusting parameter in each confidence estimation process

of position is too difficult. We intend to multiply the con-

fidence of the estimated positions with another parameter

k to fine-tune the spring constant of the spring associated

with the confidence score of the estimated position.

According to the analysis above, we give the calculation

method of the parameter k as the following formula.

k =
ConfP

ConfD
× α

DisBT

(6)

In Formula 6, ConfP is the average confidence value of

the estimated position in an experiment pattern. DisBT

means the average estimated distances , and ConfD

means the confidence score of them. Besides, α is a con-

stant (we set it 4.5 in this experiment), over which the

confidence of the estimated distance becomes low and we

should strengthen the spring constant of the spring that

directly proportioned to the position confidence.

Table 4 and Table 5 above show the positioning accu-

racy after optimizing parameter. It is obvious that the av-

erage of position error got further improved after setting a
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表 4 バネ係数最適化後の同室の場合推定位置誤差の比較

Table 4 Comparison of positioning errors in One-Room sce-

narios after parameter optimization

端末 調整前 　 調整後 　 変化 　 向上

数 平均誤差 (m) 平均誤差 (m) (m) 精度 (%)

3 2.14 1.62 -0.52 24.3

4 2.25 1.74 -0.51 22.7

5 2.13 1.54 -0.59 27.7

表 5 バネ係数最適化後の複数部屋の場合推定位置誤差の比較

Table 5 Comparison of positioning errors in Multi-Room sce-

narios after parameter optimization

端末 調整前 　 調整後 　 変化 　 向上

数 平均誤差 (m) 平均誤差 (m) (m) 精度 (%)

3 1.4 1.27 -0.13 9.3

4 1.57 1.13 -0.44 28.0

5 1.67 1.23 -0.44 26.3

more appropriate parameter to adjust the spring constant

of the spring associated with the confidence score of the

estimated position. And the optimization of experimental

parameters is quite required in the following experiment.

Finally, based on the experimental result presented

above, the positioning accuracy of our proposal is much

better than the one proved by the existing Wi-Fi based

indoor positioning method, and get 9.3% ∼ 28.0% im-

proved according to the different experimental scenarios.

Therefore, the feasibility of our proposed method is well

proved.

4. Conclusion and future work

This paper addresses an enhanced Wi-Fi based indoor

positioning method by using the neighbor mobile devices

and a spring model. The positioning accuracy of the exist-

ing method is easy to be affected by the layout change or

human action, and is not suitable for precise positioning

requirements.

In order to solve that issue without using any additional

beacons, we have designed and implemented a collabora-

tive positioning estimation system, which intends to im-

prove the positioning accuracy of the mobile nodes with

lower confidence by referring to the position information

and their distance relationships of the neighbor nodes that

have higher confidence of accuracy. The proposed method

consists of three phases: (1) estimating the position and

the distance between mobile nodes with Wi-Fi and Blue-

tooth signal strengths respectively, (2) measuring the ac-

curacy confidence of the estimated position and distance,

and (3) collaborative adjusting the estimated positions by

a spring model as to reduce possible positioning errors.

We also testify the feasibility of our system by evalu-

ation experiment. The experimental results have shown

that our proposed method provides 9.3% ∼ 28.0% accu-

racy improvement in several scenarios with different num-

ber of rooms and mobile nodes.

As a part of our future work, we plan to improve the ac-

curacy of confidence estimation by using better algorithm

or importing some other model such as motion model.

And, we also like to fix some anchor nodes in the indoor

environment to estimate the position for a target mobile

node when there is no neighbor nodes can be detected.
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