
IPSJ SIG Technical Report

ⓒ2013 Information Processing Society of Japan 1

An Evaluation for RAM Usage of TCP/IP Protocol Stack on
Embedded Systems

NOBUHITO MIYAUCHI†1

It is quite common to connect to IP network for embedded systems such as consumer electronics appliances, automobile
electronics devices, security communication devices, etc. in recent years. These systems need a single-chip microcomputer with
internal RAM and don’t have usually external RAM to reduce hardware cost. Quite a few TCP/IP protocol stacks including open
source software have been developed for usage of a small size RAM.

We investigated the RAM usage in detail by using “lwIP” named for a lightweight TCP/IP protocol stack, an embedded real
time ITRON-based OS, and evaluation boards for a 32-bit ARM® CortexTM M3 microprocessor. We recognized that their RAM
usage has a very large proportion of storing buffer for packet data and the buffer space increases more than a twofold by
congested network. And we are researching buffer management mechanism among an IP network interface and other interfaces,
based on the evaluation data of IP network congestion and stagnant data among such interfaces.

1. Introduction

 Internet technology allows a lot of electronic devices in

offices, homes, and factories to exchange data and work in close

cooperation with each other nowadays. Although many kinds of

interfaces such as RS-232C serial, parallel, USB and so on

have been already utilized for network communication among

devices since the 1980s, Ethernet plays a leading role for high

performance, versatility, availability, and interoperability.

These devices are usually manufactured by embedding a

single-chip microcomputer with internal RAM. The cost

reduction of hardware for mass production demands limitation

of available RAM, which size is smaller than a hundred of

kilobytes, but traditional implementations of a TCP/IP protocol

stack required several hundreds of kilobytes of RAM.

Therefore, for almost a decade, not a few TCP/IP protocol

stacks for embedded systems have been designed to execute

application programs using a small size RAM. One of such

TCP/IP protocol stacks is “lwIP” named for a lightweight

TCP/IP protocol stack originally designed by Adam Dunkels at

the Swedish Institute of Computer Science and used by a lot of

manufacturers of embedded systems [10][11][12]. lwIP is

available for an embedded system with tens of kilobytes of free

RAM. He also designed another implementation named

“uIP.”[13]

We investigated basic situation of RAM usage for TCP/IP

communication devices to establish implementation techniques

of application programs. Assuming development of embedded

systems in our manufacturing fields, we prepared an

experimental system consisting of an evaluation board for a

32-bit ARM® CortexTM M3 microprocessor[16], an embedded

real time ITRON-based OS “Cros”, and OS porting lwIP. Cros

(Configurable Real－time Operating System) was developed

originally by Mitsubishi Electric corporation [17].

2. Related Work

2.1 BSD-based TCP/IP protocol stack

 Most of current widespread implementations of TCP/IP

protocol stacks are based on some stacks of Berkeley Software

 †1 Information Technology R&D Center, Mitsubishi Electric Corporation

Distribution (BSD)[1][2][3], which support full specification of

internet protocol and are approved of for its reliability. These are

not oriented toward embedded devices but personal computers,

workstations, office computers and server systems. For example,

these have a function of virtual memory. However, some

BSD-based TCP/IP protocol stacks have been ported to

embedded systems, and a porting case reported that

FreeBSD-based stack used 580 kilobytes of RAM[4].

2.2 TCP/IP protocol stack for embedded systems

 There are some design policies for a TCP/IP protocol stack

with less memory consumption, for example, cutbacks in

various functions such as flow control, improvement of memory

management, imposing resource requirements on application

programs, and so on.

 Some stacks with minimum function and resource limitation

were developed and reported [4][5][6][15].

 TINET[7][8] is a FreeBSD-based stack developed as a part of

TOPPERS project (Toyohashi OPen Platform for Embedded

Real-time Systems)[9], which is a Japanese open source

software project.

 Other stacks as well as TINET were designed not to copy

received data in data buffers [10][11][12][13]. TINET adopted

mainly ITRON TCP/IP API to avoid dynamic memory

allocation in handling protocol process of packet data except

initial network buffer allocation. In case of lwIP, BSD socket

API was minimized and new API was designed for similar

purposes.

2.3 lwIP protocol stack

 lwIP supports congestion control, IP fragment reassembly and

multiple simultaneous connection, while a lot of porting cases to

various microprocessors and embedded real time OS were

reported [14].

 In memory management, uIP uses a single global buffer for

holding network packets with repetition of overwriting and a

secondary buffer for application process. On the other hand,

lwIP uses a dynamic memory allocation mechanism to be able to

store by splitting an incoming larger packet than one allocated

buffer. Furthermore, in outgoing case, lwIP copies application

data to the buffer with queuing mechanism for retransmission.

Vol.2013-SLDM-160 No.32
Vol.2013-EMB-28 No.32

2013/3/14

IPSJ SIG Technical Report

ⓒ2013 Information Processing Society of Japan 2

On the other hand, uIP uses the same buffer as a receiving buffer

without queuing.

 lwIP avoids copying of memories by sharing buffer memories

between applications and the internal stack process as well as

other protocol stacks [4]. Therefore, such shared buffer

memories are allocated and released by management of

reference counters for garbage collection.

 The memory management mechanism allocates various types

of memory cells from a large memory pool (heap), as shown in

table 1.

Table 1 Types of memory cells in lwIP

Index Type Description

1 RAW_PCB Protocol Control Block for RAW connection

2 UDP_PCB Protocol Control Block for UDP connection

3 TCP_PCB Protocol Control Block for simultaneously
active TCP connection

4 TCP_PCB_LIS
TEN

Protocol Control Block for listening TCP
connection

5 TCP_SEG Simultaneously queued TCP segments on the
unsent and unacked queues

6 REASSDATA Used for simultaneously IP packets queued
for reassembly

7 NETBUF Linkage information for network buffer cells
(only needed if you use the sequential API)

8 NETCONN Network connection information (only
needed if you use the sequential API)

9 TCPIP_MSG_A
PI

TCP/IP message information for
callback/timeout API communication

10 TCPIP_MSG_I
NPKT

TCP/IP message information for incoming
packets

11 ARP_QUEUE Used for simultaneously queued outgoing
packets that are waiting for an ARP request
(to resolve their destination address) to finish

12 IGMP_GROUP Used for multicast groups whose network
interfaces can be members et the same time

13 SYS_TIMEOU
T

Used for simultaneously active timeouts (for
porting of OS)

14 PBUF_POOL Used for buffers in the memory pool

3. Implementation

3.1 System overview
 We prepared the evaluation system consists of evaluation

boards for a 32-bit ARM® CortexTM -M3 microprocessor, an

embedded real time OS (ITRON-based “Cros”), a lwIP protocol

stack, and evaluation application programs, as shown in fig. 1.

 The CortexTM-M is a group of 32-bit RISC ARM® processor

cores developed by ARM limited. Processing including OS and

interrupt can be executed mostly by 16-bit operations, because

the CortexTM-M3 supports Thumb2 instructions that was

extended from Thumb ones, which were adopted to ARM7T®

core. The CortexTM-M can attain a compact program size by

minimizing the number of embedded functions. It is expected to

be the direct descent of ARM7TDMI core which came into wide

use as a low-cost embedded microprocessor.

 We chose one of Stellaris® ARM® CortexTM-M3

Microcontrollers (LM3S9U90: table 2) [20] manufactured by

Texas Instruments Incorporated considering a mass production.

 We experimented and collected memory consumption data

using the evaluation board connected to a personal computer

(PC) by a 100BASE-TX Ethernet cable and a USB cable to

control an In-Circuit-Emulator (ICE).

Device
Driver

Application software

Hardware

Real-time OS

TCP/IP
protocol stack

HAL (Hardware Abstraction Layer)

MiddlewareUtility

Ethernet
Serial

interface
Sensor Actuator

Evaluation board
of Cortex-M3

E
th

e
rn

e
t

S
e

ria
l I/F

ActuatorSensor

PC for emulation, debug,
console,evaluation software

Fig. 1 Hardware and software structure of evaluation system

Table 2 Microprocessor Primary Specification (LM3S9U90)

Index Item Value

1 Flash 384KB

2 SRAM 96KB

3 DMA 32-channel configurable controller

4 Max Speed 80MHz

5 Ethernet 10/100 MAC+PHY

3.2 lwIP porting onto Cros (ITRON)
 We adopted lwIP version 1.3.2, because it was included in the

evaluation kit of evaluation boards. However any OS was not

attached and we had to port lwIP onto Cros. A technical

document on lwIP web site describes how to port for a

multi-task OS[18]. The primary porting issues are definition of

data types, preemption protection, semaphores, mailboxes,

timeout mechanism, and threads, which correspond the

supported functions by ITRON ver. 4.0, as follows in table 3.

Table 3 lwIP Porting Functions

Index lwIP Requirement ITRON Function

1 Definition of data types Depend on CPU Architecture.

2 Preemption Protection Hardware Abstraction Layer

supports.

3 Semaphores Supported.

4 Mailboxes Supported.

5 Timeout Mechanism Supported as Timer Handler.

6 Threads Supported as Tasks.

 Moreover, we added some codes for mutual exclusion of

memory buffers to execute application programs on multiple

tasks. Finally, we were able to implement a sample application

of TCP/IP communication by using 58KB RAM including a

small margin.

Vol.2013-SLDM-160 No.32
Vol.2013-EMB-28 No.32

2013/3/14

IPSJ SIG Technical Report

ⓒ2013 Information Processing Society of Japan 3

3.3 Another trial for poring of KAME

 KAME protocol stack is very famous for the implementation

of BSD-based IPv6 and there are actual achievements in the

development of various systems. Although BSD-based protocol

stacks consume a lot of RAM, we tried to port KAME [21] onto

the same hardware and OS before porting of lwIP.

 We designed an original dynamic memory allocation

mechanism for malloc and free functions by excluding virtual

memory functions. In evaluation, such RAM size enabled the

implementation only to initialize KAME protocol stack but not

to allocate memory to handle the first received ARP packet.

Therefore, we suspended evaluation of KAME on the board.

4. Evaluation and consideration

 We investigated the details of RAM usage for basic TCP/IP

programs and the influence of congested network. In addition,

we considered the influence of stagnant data among an IP

network interface and other interface processes.

4.1 Performance of CPU and network
Generally speaking, it is difficult to compare microprocessor

throughput only with the standard of MIPS simply, because total

performance for IP network can be decided by two primary

factors as follows.

(1) CPU MIPS performance (including RAM access

performance)

(2) Network interface hardware and driver performance

 Current hardware technology of microprocessors and Ethernet

interfaces provides enough high network throughput for

practical communications, unless a high cost process such as

voice codec is executed.

 lwIP Wiki Site [19] reported that TCP on some

implementations with device drivers saturates a 100 Mbit/s link,

for example, on a Blackfin® BF536 processor @ 300 MHz (300

MIPS) and a TMS320 C6743 processor @ 200 MHz (1600

MIPS). Both of them are DSP.

 A TI ARM® 32-bit CortexTM-M3 in case of 50MHz can attain

processor speeds of over 60 MIPS [16]. The CPU frequency on

our board is 16MHz. Therefore, the CPU performance of

LM3S9U90 can afford 6.4 Mbit/s by simple calculating from

MIPS.

 On the other hand, our evaluation programs execute

intermittent transmission of at most several tens of kilobytes

considering RAM size. Therefore, we assumed that the data

throughput of the board is high enough for our evaluation.

4.2 RAM usage on basic protocol sequence

4.2.1 A TCP client

 We counted RAM usage in a simple TCP/IP client sample

program (IPv4). RAM cells used in the TCP client process are

shown in table 4 and fig.2 by classifying types defined in table 1.

In this sequence, a client process transmits a request packet

(several tens of bytes) and receives a response packet (383B)

through a TCP connection to a web server process on a PC.

Timings to count RAM usage are shown as follows.

Table 4 RAＭ usage in a TCP client process

Type Timing (1) (2) (3) (4) (5) (6)

(A)TCP_PCB(cells) 0 1 1 1 1 1

(B)TCP_SEG(cells) 0 0 0 1 0 1

(C)NETBUF(cells) 0 0 0 0 1 1

(D)NETCONN(cells) 0 1 1 1 1 0

(E)TCPIP_MSG_INPKT(cells) 1 1 1 1 2 2

(F)SYS_TIMEOUT(cells) 6 6 7 7 7 7

(G)PBUF_POOL(cells) 0 0 0 0 5 5

(H)MEM HEAP(bytes) 92 92 92 200 92 172

(1) Before TCP client process start

(2) After TCP socket creation

(3) After TCP connection creation

(4) After TCP request packet transmission

(5) After some TCP response packets reception

(6) After TCP connection close

 The followings are the memory size and allocation behavior

of each type((A)～(H)), which are observed in the evaluation

programs. The number in parenthesis indicates byte size of each

cell.

(A) TCP_PCB (156B): When TCP socket is created, a

TCP_PCB cell is allocated for TCP connection and

preserved continuously until closing timing.

(B) TCP_SEG (20B): A TCP_SEG cell is allocated in

transmitting and a cell is allocated in receiving. This cell is

preserved for a while after send and receive commands.

(C) NETBUF (20B): A NETBUF cell is allocated in

receiving and released after closing TCP connection.

(D) NETCONN (52B): A NETCONN cell is allocated in

creating TCP socket and released after closing of TCP

connection.

(E) TCPIP_MSG_INPKT (20B): At first a TCPIP_MSG_

INPKT cell is allocated initially. A TCPIP_MSG_ INPKT

cell is allocated in receiving and preserved for a while after

close command. These cells increase or decrease a little

according to the circumstances.

(F) SYS_TIMEOUT (16B): A SYS_TIMEOUT cell is

allocated in connecting additionally and preserved until

closing TCP connection perfectly, because the TCP

connection needs management for timeout functions.

(G) PBUF_POOL (256B): When receiving packets, some

PBUF_POOL cells are allocated to store received packets

and will be released after TCP connection closed.

PBUF_POOL cell plays a key role in RAM usage

especially in case of large size packets receiving.

(H) MEM HEAP: MEM HEAP is used for miscellaneous

purposes to manage data linkage, size information, and so

on. Consumed memory heap increases 108 (= 200 – 92)

bytes for PBUF_POOL management cells that link

PBUF_POOL cells by just receiving.

Vol.2013-SLDM-160 No.32
Vol.2013-EMB-28 No.32

2013/3/14

IPSJ SIG Technical Report

ⓒ2013 Information Processing Society of Japan 4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(1) (2) (3) (4) (5) (6)

TCP_PCB

TCP_SEG

NETBUF

NETCONN

TCPIP_MSG_INPK
T

SYS_TIMEOUT

PBUF_POOL

MEM_HEAP

Fig. 2 Total RAM usage in a TCP client process

4.2.2 A TCP server

 We also counted RAM usage in a simple TCP/IP server

sample program (IPv4). RAM cells used in the TCP server

process are classified by the previously mentioned types, as

shown in table 5 and fig.3. In this sequence, a server process

receives a request packet (several tens of bytes) and transmits a

response packet (383B) through a TCP connection to a client

process (a web browser) on a PC. Timings to count RAM usage

are shown from (1) to (8).

 The memory size and allocation behavior of each type((A)～

(H)) in the case of a server evaluation program is similar to the

case of a client. The large difference is that MEM_HEAP is

consumed so much for transmission on the timing (8). Therefore

we must consider that point for memory allocation estimation of

a TCP server process on lwIP.

Table 5 RAＭ usage in a TCP server process
Type Timing (1) (2) (3) (4) (5) (6) (7) (8)

(A)TCP_PCB(cells) 0 1 1 0 1 1 1 1

(B)TCP_SEG(cells) 0 0 0 0 1 1 1 1

(C)NETBUF(cells) 0 0 0 0 0 0 1 0

(D)NETCONN(cells) 0 1 1 1 2 1 1 1

(E)TCPIP_MSG_INPKT(cells) 0 0 0 0 2 2 2 2

(F)SYS_TIMEOUT(cells) 6 6 6 6 7 7 7 7

(G)PBUF_POOL(cells) 0 0 0 0 2 2 4 4

(H)MEM HEAP(bytes) 92 92 92 92 92 92 92 556

(1) Before TCP server process start

(2) After TCP socket creation

(3) After TCP socket bind execution

(4) After TCP socket listen execution

(5) After TCP connection accept

(6) After source TCP connection close

(7) After TCP request packet reception

(8) After TCP response packet transmission

4.3 Network traffic

 Basic protocol sequences of TCP includes retransmission

processes unlike that of UDP.

 Generally speaking, embedded systems with a simple

application are supposed to be unused in crowded IP network,

because congested IP network influences RAM usage for

network buffers of network devices drastically [22]. In such

cases an overflow phenomenon occurs very easily because of a

small size RAM to store packet data. If an application program

continues to create packets to be transmitted, a TCP/IP protocol

stack needs to preserve quite a few packets for re-transmission

under congested network. Then we tried to exemplify that in this

evaluation.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

(1) (2) (3) (4) (5) (6) (7) (8)

TCP_PCB

TCP_SEG

NETBUF

NETCONN

TCPIP_MSG_INPK
T

SYS_TIMEOUT

PBUF_POOL

MEM_HEAP

Fig. 3 Total RAM usage in a TCP server process

 We measured RAM usage by the almost same TCP client

program as previously evaluated. This downloads lots of data

(5,954B) from a TCP server for continuous transmision,

simulating a case of a congestion by delaying of TCP

acknowledgements on a client. The both cases of without and

with a congestion are shown in table 5 and 6.

 The both of results show that TCPIP_MSG_INPKT and

PBUF_POOL have more than doubled in numbers since a

congestion occurs, because retransmitted packets from the TCP

server increase by retransmission. Although actually some of

those packets might not be received at the embedded system,

enough buffer spaces should be reserved only for frequent-

retransmission.

Table 6 RAＭ usage in a TCP client process (without

congestion)

Type Timing (1) (2) (3) (4) (5)

(A)TCP_PCB(cells) 0 1 1 1 1

(B)TCP_SEG(cells) 0 0 0 1 0

(C)NETBUF(cells) 0 0 0 0 1

(D)NETCONN(cells) 0 1 1 1 1

(E)TCPIP_MSG_INPKT(cells) 0 0 0 0 0

(F)SYS_TIMEOUT(cells) 6 6 7 7 7

(G)PBUF_POOL(cells) 0 0 0 0 0

(H)MEM HEAP(bytes) 92 92 92 204 92

(6) (7) (8) (9) (10) (11) (12) (13)

1 1 1 1 1 1 1 1

1 2 0 0 0 0 0 1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0

2 2 3 4 5 5 5 5

7 7 7 7 7 7 7 7

9 9 9 12 15 15 15 15

92 92 92 92 92 92 92 172

Bytes

Bytes

Vol.2013-SLDM-160 No.32
Vol.2013-EMB-28 No.32

2013/3/14

IPSJ SIG Technical Report

ⓒ2013 Information Processing Society of Japan 5

(1) Before TCP client process start

(2) After TCP socket creation

(3) After TCP connection creation

(4) After TCP request packet transmission

(5) After TCP response packet [267B] reception

(6) After TCP response packet [536B] reception

(7) After TCP response packet [1072B] reception

(8) After TCP response packet [1072B] reception

(9) After TCP response packet [1072B] reception

(10) After TCP response packet [1072B] reception

(11) After TCP response packet [1072B] reception

(12) After TCP response packet [58B] reception

(13) After TCP connection close

Table 7 RAＭ usage in a TCP client process (with congestion)

Type Timing (1) (2) (3) (4) (5) (6)

(A)TCP_PCB(cells) 0 1 1 1 1 1

(B)TCP_SEG(cells) 0 0 0 1 0 1

(C)NETBUF(cells) 0 0 0 0 1 0

(D)NETCONN(cells) 0 1 1 1 1 0

(E)TCPIP_MSG_INPKT(cells) 0 0 0 0 0 2

(F)SYS_TIMEOUT(cells) 6 6 7 7 7 7

(G)PBUF_POOL(cells) 0 0 0 0 0 9

(H)MEM HEAP(bytes) 92 92 92 204 92 92

(7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0

4 5 7 9 10 12 14 14 14 14

7 7 7 7 7 7 7 7 7 7

12 15 21 27 30 34 38 38 38 38

92 92 92 92 92 92 92 92 92 172

(1) Before TCP client process start

(2) After TCP socket creation

(3) After TCP connection creation

(4) After TCP request packet transmission

(5) After TCP response packet [267B] reception

(6) After TCP response packet [536B] reception

(7) After TCP response packet [1072B] reception

(8) After TCP response packet [1072B] reception

(9) After TCP response packet [536B] reception

(10) After TCP response packet [536B] reception

(11) After TCP response packet [536B] reception

(12) After TCP response packet [536B] reception

(13) After TCP response packet [536B] reception

(14) After TCP response packet [536B] reception

(15) After TCP response packet [58B] reception

(16) After TCP connection close

4.4 Consideration for application program implementation

 There are various kinds of IP communication application for

an embedded device whose basic structure is drawn in fig.4.

One chip
Micro-
processor

(1)IP network
interface

(2)Sensor interface

(3)Actuator interface

(4)Other network
interface

Buffer
RAM

Buffer
RAM

Buffer
RAM

Buffer
RAM

Work
RAM

Manag
ement
RAM

Fig. 4 Basic structure of a target embedded device with a

one-chip microprocessor

(1) IP network interface: Ethernet with TCP/IP stack.

(2) Sensor interface: Measurement for temperature, humidity,

illumination, magnetic field, motion, and so on.

(3) Actuator interface: DC motor, stepping motor, relay, etc.

(4) Other network interface: Serial communication such as

RS-232C/422/485, USB, SATA, FireWire, GPIO, I2C and

so on.

 Each interface processing program uses RAM for buffer,

work, and management. As mentioned above, a TCP/IP protocol

stack consumes RAM mostly for network buffers, which are

designed as PBUF_POOL in lwIP.

We can estimate RAM usage for buffer handling of other

interfaces similarly, but data conversion processes such as a

voice codec and a video codec need a lot more work RAM than

buffer RAM exceptionally. In such cases, a DSP is usually used.

 This allows us to design a buffer sharing mechanism among

those interfaces for the efficient use of RAM. That mechanism

realizes reduction of memory copy between a TCP/IP protocol

stack and other interface-processing programs. The buffer copy

process needs a control mechanism to reduce stagnant data,

because these communication interfaces have different speeds

(fig. 5). The more different speeds they have, the larger buffer

size is demanded.

One simplified computation model for buffer size is described

as follows. The model assumes that data burst transmission

occurs intermittently and massively computing is not executed

among interfaces. Thus, necessary buffer size can be calculated

by the size of concentrated data chunk.

MaxBPipout : Maximum bit rate performance of outgoing IP

data

MaxBPotherout : Maximum bit rate performance of outgoing

other interface data

MaxBSipout : Maximum buffer size for outgoing IP data

MaxBSipin : Maximum buffer size for incoming IP data

MaxBDipin : Maximum burst duration of incoming IP data

MaxBDotherin : Maximum burst duration of incoming other

interface data

Vol.2013-SLDM-160 No.32
Vol.2013-EMB-28 No.32

2013/3/14

IPSJ SIG Technical Report

ⓒ2013 Information Processing Society of Japan 6

MaxBRipin : Maximum burst bit rate of incoming IP data

MaxBRotherin : Maximum burst bit rate of incoming other

interface data

MaxBSipout = (MaxBRotherin - MaxBPipout) * MaxBDotherin

MaxBSipin = (MaxBRipin – MaxBPotherout) * MaxBDipin

Incoming fast I/F

Outgoing fast I/F

Outgoing IP network

Incoming IP network

Incoming slow I/F

Outgoing slow I/Fdatadatadata

data

datadatadata

data

MaxBRotherin

MaxBDotherin
time

MaxBRipin

MaxBDipin
time

bits

bits

Fig. 5 Buffering control of stagnant data for communication

If MaxBSipout and MaxBSipin are lower than 0, we don’t

have to consider stagnant data among communication interfaces.

From the results of the experiment by an IP network interface

and a RS-232C serial interface, we could recognize the tendency

that the stagnant data cause consumption of PBUF_POOL to

increase by making the communication of RS-232C busy.

We plan to measure the above-mentioned data in detail by

changing burst duration, burst bit rate, and interface throughput.

In addition, the buffer size should be estimated actually by

considering a congestion of IP network, which influences the

stagnant data closely.

5. Conclusion

 We implemented a typical embedded system with a

microprocessor to investigate the details of RAM usage in a

TCP/IP protocol stack for an embedded system.

 We recognized the most important factor for dynamic

memory allocation of TCP connection management is storing

areas (PBUF_POOL, TCPIP_MSG_INPKT, MEM_HEAP) for

packet data in lwIP. Those areas make up most of RAM usage,

and RAM usage of other than the three types is relatively small.

And a server process uses more MEM_HEAP than a client

process, which cannot be ignored. MEM_HEAP is used mainly

to manage buffer structures.

On the other hand, the PBUF_POOL usage increases more

than a twofold by congested network. In addition it also

increases by stagnant data among communication interfaces.

 As a conclusion, it is important for application to avoid buffer

copy among some interfaces including an IP network interface.

For example, some API might be designed to construct packet

data for the capability of sharing from an IP network interface

and another one. To do so, we need to design unified formats of

protocol data units to be shared among such interfaces.

 We plan to investigate these situations in more detail, design a

general buffer access mechanism among some interfaces, and

establish the estimation method for RAM usage.

Reference
1) W. Richard Stevens: TCP/IP Illustrated, Volume 1: The Protocols,
ISBN 0-201-63346-9, (1994)
2) W. Richard Stevens, Gary R. Wright: TCP/IP Illustrated, Volume 2:
The Implementation, ISBN 0-201-63354-X, (1995)
3) W. Richard Stevens: TCP/IP Illustrated, Volume 3: TCP for
Transactions, HTTP, NNTP, and the UNIX Domain Protocols, ISBN

0-201-63495-3, (1996)
4) Kei Asai, Tsuyoshi Sato, Naoshi Sakamoto: Development Case of
TCP/IP Protocol Stack (in Japanese), Design Wave Magazine 2004
September & October , CQ Publishing Co., Ltd., (Tech Village Web
Site , http://www.kumikomi.net/archives/2004/12/21tcpip1.php?

page=1), (2004)
5) Akihiro Shiozu, Koki Abe: Design and Implementation of Low Cost
TCP/IP Protocol Stack and Its Performance Evaluation, TECHNICAL

REPORT OF IEICE, IN, 106(358), pp.55-60, (Nov 9th, 2006)
6) Compact Internet Protocol Suite, http://cipsuite.sourceforge.net/
7) Tsukasa Abe, Hitoshi Yoshimura and Hiroshi Kubo: Implementation
and Evaluation of TCP/IP protocol stack for embedded system, IPSJ

Journal, Vol.44 No.6, pp.1583-1592 (June 2003)
8) TINET, http://www.toppers.jp/en/tinet.html
9) TOPPERS, http://www.toppers.jp/en/
10) Adam Dunkels: Full TCP/IP for 8 Bit Architectures, the First

ACM/Usenix International Conference on Mobile Systems,

Applications and Services (MobiSys 2003), San Francisco, (May 2003)
11) lwIP, http://savannah.nongnu.org/projects/lwip/
12) lwIP & uIP, http://dunkels.com/adam/
13) Otsuka Yuzo, Namiki Mitaro: A development and evaluation of
TCP/IP protocol stack for embedded systems, IPSJ SIG Technical

Report, 2003-OS-93, pp.75-82 (2003)
14) Jian Xu: The Research and Implementation of Embedded TCP/IP
Protocol Stack,The 2nd International Conference on Computer
Application and System Modeling, Published by Atlantis Press, Paris,

France, pp.584-587 (2012)
15) R.Manikandan: MINI TCP/IP FOR 8-BIT CONTROLLERS,
Journal of Theoretical and Applied Information Technology, 30th
September 2011. Vol. 31 No.2, JATIT & LLS., pp.109-112 (2011)
16) ARM Information Center, ARM Limited., http://infocenter.arm.

com/help/index.jsp?topic=/com.arm.doc.home/index.html
17) Yoshiaki Katayama, Hisayoshi Kurosawa, Kazuho Uemura: Basic
software of W-CDMA cellular phone (in Japanese), Mitsubishi Electric

Corporation Technical Report 77(2), pp. 154-157 (Feb 2003)
18) lwIP Wiki : Porting for an OS,

http://lwip.wikia.com/wiki/Porting_for_an_OS
19) lwIP Wiki : Available device drivers,

http://lwip.wikia.com/wiki/Available_device_drivers
20) Stellaris® ARM® CortexTM-M3 Microcontrollers, Texas

Instruments Incorporated.,

http://www.ti.com/lsds/ti/arm/arm_cortex_m_microcontrollers/arm_c

ortex_m3/stellaris_arm_cortex_m3/overview.page
21) The KAME project, http://www.kame.net/
22) Christian E. Legare, Micrium: Achieving TCP/IP performance in
embedded systems, http://www.iar.com/Global/Resources/

Developers_Toolbox/RTOS_and_Middleware/Achieving%20TCPIP%20p

erformance%20in%20embedded%20systems.pdf

Acknowledgments Many thanks for the members’ effort to

develop the embedded hardware, OS, application software, and

network systems in Information Technology R & D Center of

Mitsubishi Electric Corporation.

Vol.2013-SLDM-160 No.32
Vol.2013-EMB-28 No.32

2013/3/14

