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An Evaluation for RAM Usage of TCP/IP Protocol Stack on 
Embedded Systems  

 

NOBUHITO MIYAUCHI†1   
 

It is quite common to connect to IP network for embedded systems such as consumer electronics appliances, automobile 
electronics devices, security communication devices, etc. in recent years. These systems need a single-chip microcomputer with 
internal RAM and don’t have usually external RAM to reduce hardware cost. Quite a few TCP/IP protocol stacks including open 
source software have been developed for usage of a small size RAM.  

We investigated the RAM usage in detail by using “lwIP” named for a lightweight TCP/IP protocol stack, an embedded real 
time ITRON-based OS, and evaluation boards for a 32-bit ARM® CortexTM M3 microprocessor. We recognized that their RAM 
usage has a very large proportion of storing buffer for packet data and the buffer space increases more than a twofold by 
congested network. And we are researching buffer management mechanism among an IP network interface and other interfaces, 
based on the evaluation data of IP network congestion and stagnant data among such interfaces. 

 
 

1. Introduction 

  Internet technology allows a lot of electronic devices in 

offices, homes, and factories to exchange data and work in close 

cooperation with each other nowadays. Although many kinds of 

interfaces such as RS-232C serial, parallel, USB and so on  

have been already utilized for network communication among 

devices since the 1980s, Ethernet plays a leading role for high 

performance, versatility, availability, and interoperability. 

These devices are usually manufactured by embedding a 

single-chip microcomputer with internal RAM. The cost 

reduction of hardware for mass production demands limitation 

of available RAM, which size is smaller than a hundred of 

kilobytes, but traditional implementations of a TCP/IP protocol 

stack required several hundreds of kilobytes of RAM. 

Therefore, for almost a decade, not a few TCP/IP protocol 

stacks for embedded systems have been designed to execute 

application programs using a small size RAM. One of such 

TCP/IP protocol stacks is “lwIP” named for a lightweight 

TCP/IP protocol stack originally designed by Adam Dunkels at 

the Swedish Institute of Computer Science and used by a lot of 

manufacturers of embedded systems [10][11][12]. lwIP is 

available for an embedded system with tens of kilobytes of free 

RAM. He also designed another implementation named 

“uIP.”[13] 

We investigated basic situation of RAM usage for TCP/IP 

communication devices to establish implementation techniques 

of application programs. Assuming development of embedded 

systems in our manufacturing fields, we prepared an 

experimental system consisting of an evaluation board for a 

32-bit ARM® CortexTM M3 microprocessor[16], an embedded 

real time ITRON-based OS “Cros”, and OS porting lwIP. Cros 

(Configurable Real－time Operating System) was developed 

originally by Mitsubishi Electric corporation [17]. 

2. Related Work 

2.1 BSD-based TCP/IP protocol stack 

  Most of current widespread implementations of TCP/IP 

protocol stacks are based on some stacks of Berkeley Software 
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Distribution (BSD)[1][2][3], which support full specification of 

internet protocol and are approved of for its reliability. These are 

not oriented toward embedded devices but personal computers, 

workstations, office computers and server systems. For example, 

these have a function of virtual memory. However, some 

BSD-based TCP/IP protocol stacks have been ported to 

embedded systems, and a porting case reported that 

FreeBSD-based stack used 580 kilobytes of RAM[4]. 

2.2 TCP/IP protocol stack for embedded systems 

  There are some design policies for a TCP/IP protocol stack 

with less memory consumption, for example, cutbacks in 

various functions such as flow control, improvement of memory 

management, imposing resource requirements on application 

programs, and so on. 

  Some stacks with minimum function and resource limitation 

were developed and reported [4][5][6][15]. 

  TINET[7][8] is a FreeBSD-based stack developed as a part of 

TOPPERS project (Toyohashi OPen Platform for Embedded 

Real-time Systems)[9], which is a Japanese open source 

software project. 

  Other stacks as well as TINET were designed not to copy 

received data in data buffers [10][11][12][13]. TINET adopted 

mainly ITRON TCP/IP API to avoid dynamic memory 

allocation in handling protocol process of packet data except 

initial network buffer allocation. In case of lwIP, BSD socket 

API was minimized and new API was designed for similar 

purposes. 

2.3 lwIP protocol stack 

  lwIP supports congestion control, IP fragment reassembly and 

multiple simultaneous connection, while a lot of porting cases to 

various microprocessors and embedded real time OS were 

reported [14]. 

  In memory management, uIP uses a single global buffer for 

holding network packets with repetition of overwriting and a 

secondary buffer for application process. On the other hand, 

lwIP uses a dynamic memory allocation mechanism to be able to 

store by splitting an incoming larger packet than one allocated 

buffer. Furthermore, in outgoing case, lwIP copies application 

data to the buffer with queuing mechanism for retransmission. 
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On the other hand, uIP uses the same buffer as a receiving buffer 

without queuing. 

  lwIP avoids copying of memories by sharing buffer memories 

between applications and the internal stack process as well as 

other protocol stacks [4]. Therefore, such shared buffer 

memories are allocated and released by management of 

reference counters for garbage collection. 

  The memory management mechanism allocates various types 

of memory cells from a large memory pool (heap), as shown in 

table 1. 

 

Table 1 Types of memory cells in lwIP 

Index Type Description 

1 RAW_PCB Protocol Control Block for RAW connection 

2 UDP_PCB Protocol Control Block for UDP connection 

3 TCP_PCB Protocol Control Block for simultaneously 
active TCP connection 

4 TCP_PCB_LIS
TEN 

Protocol Control Block for listening TCP 
connection 

5 TCP_SEG Simultaneously queued TCP segments on the 
unsent and unacked queues 

6 REASSDATA Used for simultaneously IP packets queued 
for reassembly 

7 NETBUF Linkage information for network buffer cells 
(only needed if you use the sequential API) 

8 NETCONN Network connection information (only 
needed if you use the sequential API) 

9 TCPIP_MSG_A
PI 

TCP/IP message information for 
callback/timeout API communication 

10 TCPIP_MSG_I
NPKT 

TCP/IP message information for incoming 
packets 

11 ARP_QUEUE Used for simultaneously queued outgoing 
packets that are waiting for an ARP request 
(to resolve their destination address) to finish

12 IGMP_GROUP Used for multicast groups whose network 
interfaces can be members et the same time 

13 SYS_TIMEOU
T 

Used for simultaneously active timeouts (for 
porting of OS) 

14 PBUF_POOL Used for buffers in the memory pool 

 

3. Implementation 

3.1 System overview 
  We prepared the evaluation system consists of evaluation 

boards for a 32-bit ARM® CortexTM -M3 microprocessor, an 

embedded real time OS (ITRON-based “Cros”), a lwIP protocol 

stack, and evaluation application programs, as shown in fig. 1.  

  The CortexTM-M is a group of 32-bit RISC ARM® processor 

cores developed by ARM limited. Processing including OS and 

interrupt can be executed mostly by 16-bit operations, because 

the CortexTM-M3 supports Thumb2 instructions that was 

extended from Thumb ones, which were adopted to ARM7T® 

core. The CortexTM-M can attain a compact program size by 

minimizing the number of embedded functions. It is expected to 

be the direct descent of ARM7TDMI core which came into wide 

use as a low-cost embedded microprocessor. 

  We chose one of Stellaris® ARM® CortexTM-M3 

Microcontrollers (LM3S9U90: table 2) [20] manufactured by 

Texas Instruments Incorporated considering a mass production. 

  We experimented and collected memory consumption data 

using the evaluation board connected to a personal computer 

(PC) by a 100BASE-TX Ethernet cable and a USB cable to 

control an In-Circuit-Emulator (ICE). 
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Fig. 1 Hardware and software structure of evaluation system 

 

Table 2 Microprocessor Primary Specification (LM3S9U90) 

Index Item Value 

1 Flash 384KB 

2 SRAM 96KB 

3 DMA 32-channel configurable controller 

4 Max Speed 80MHz 

5 Ethernet 10/100 MAC+PHY 

 

3.2 lwIP porting onto Cros (ITRON) 
  We adopted lwIP version 1.3.2, because it was included in the 

evaluation kit of evaluation boards. However any OS was not 

attached and we had to port lwIP onto Cros. A technical 

document on lwIP web site describes how to port for a 

multi-task OS[18]. The primary porting issues are definition of 

data types, preemption protection, semaphores, mailboxes, 

timeout mechanism, and threads, which correspond the 

supported functions by ITRON ver. 4.0, as follows in table 3. 

 

Table 3 lwIP Porting Functions 

Index lwIP Requirement ITRON Function 

1 Definition of data types Depend on CPU Architecture. 

2 Preemption Protection Hardware Abstraction Layer 

supports. 

3 Semaphores Supported. 

4 Mailboxes Supported. 

5 Timeout Mechanism Supported as Timer Handler. 

6 Threads Supported as Tasks. 

 

  Moreover, we added some codes for mutual exclusion of 

memory buffers to execute application programs on multiple 

tasks. Finally, we were able to implement a sample application 

of TCP/IP communication by using 58KB RAM including a 

small margin.  
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3.3 Another trial for poring of KAME 

  KAME protocol stack is very famous for the implementation 

of BSD-based IPv6 and there are actual achievements in the 

development of various systems. Although BSD-based protocol 

stacks consume a lot of RAM, we tried to port KAME [21] onto 

the same hardware and OS before porting of lwIP.  

  We designed an original dynamic memory allocation 

mechanism for malloc and free functions by excluding virtual 

memory functions. In evaluation, such RAM size enabled the 

implementation only to initialize KAME protocol stack but not 

to allocate memory to handle the first received ARP packet. 

Therefore, we suspended evaluation of KAME on the board. 

 

4. Evaluation and consideration 

  We investigated the details of RAM usage for basic TCP/IP 

programs and the influence of congested network. In addition, 

we considered the influence of stagnant data among an IP 

network interface and other interface processes. 

4.1 Performance of CPU and network 
Generally speaking, it is difficult to compare microprocessor 

throughput only with the standard of MIPS simply, because total 

performance for IP network can be decided by two primary 

factors as follows. 

(1) CPU MIPS performance (including RAM access 

performance) 

(2) Network interface hardware and driver performance 

  Current hardware technology of microprocessors and Ethernet 

interfaces provides enough high network throughput for 

practical communications, unless a high cost process such as 

voice codec is executed. 

  lwIP Wiki Site [19] reported that TCP on some 

implementations with device drivers saturates a 100 Mbit/s link, 

for example, on a Blackfin® BF536 processor @ 300 MHz (300 

MIPS) and a TMS320 C6743 processor @ 200 MHz (1600 

MIPS). Both of them are DSP. 

  A TI ARM® 32-bit CortexTM-M3 in case of 50MHz can attain 

processor speeds of over 60 MIPS [16]. The CPU frequency on 

our board is 16MHz. Therefore, the CPU performance of 

LM3S9U90 can afford 6.4 Mbit/s by simple calculating from 

MIPS. 

 On the other hand, our evaluation programs execute 

intermittent transmission of at most several tens of kilobytes 

considering RAM size. Therefore, we assumed that the data 

throughput of the board is high enough for our evaluation. 

4.2 RAM usage on basic protocol sequence 

4.2.1 A TCP client 

  We counted RAM usage in a simple TCP/IP client sample 

program (IPv4). RAM cells used in the TCP client process are 

shown in table 4 and fig.2 by classifying types defined in table 1. 

In this sequence, a client process transmits a request packet 

(several tens of bytes) and receives a response packet (383B) 

through a TCP connection to a web server process on a PC. 

Timings to count RAM usage are shown as follows. 

 

Table 4 RAＭ usage in a TCP client process 

Type               Timing (1) (2) (3) (4) (5) (6) 

(A)TCP_PCB(cells) 0 1 1 1 1 1 

(B)TCP_SEG(cells) 0 0 0 1 0 1 

(C)NETBUF(cells) 0 0 0 0 1 1 

(D)NETCONN(cells) 0 1 1 1 1 0 

(E)TCPIP_MSG_INPKT(cells) 1 1 1 1 2 2 

(F)SYS_TIMEOUT(cells) 6 6 7 7 7 7 

(G)PBUF_POOL(cells) 0 0 0 0 5 5 

(H)MEM HEAP(bytes) 92 92 92 200 92 172

 

(1) Before TCP client process start 

(2) After TCP socket creation 

(3) After TCP connection creation 

(4) After TCP request packet transmission 

(5) After some TCP response packets reception 

(6) After TCP connection close 

 

  The followings are the memory size and allocation behavior 

of each type((A)～(H)), which are observed in the evaluation 

programs. The number in parenthesis indicates byte size of each 

cell. 

 

(A) TCP_PCB (156B): When TCP socket is created,  a 

TCP_PCB cell is allocated for TCP connection and  

preserved continuously until closing timing. 

(B) TCP_SEG (20B): A TCP_SEG cell is allocated in 

transmitting and a cell is allocated in receiving. This cell is 

preserved for a while after send and  receive commands. 

(C) NETBUF (20B): A NETBUF cell is allocated in 

receiving and released after closing TCP connection. 

(D) NETCONN (52B): A NETCONN cell is allocated in 

creating TCP socket and released after closing of TCP 

connection. 

(E) TCPIP_MSG_INPKT (20B): At first a TCPIP_MSG_ 

INPKT cell is allocated initially. A TCPIP_MSG_ INPKT 

cell is allocated in receiving and preserved for a while after 

close command. These cells increase or decrease a little 

according to the circumstances. 

(F) SYS_TIMEOUT (16B): A SYS_TIMEOUT cell is 

allocated in connecting additionally and preserved until 

closing TCP connection perfectly, because the TCP 

connection needs management for timeout functions. 

(G) PBUF_POOL (256B): When receiving packets, some 

PBUF_POOL cells are allocated to store received packets 

and will be released after TCP connection closed. 

PBUF_POOL cell plays a key role in RAM usage 

especially in case of large size packets receiving. 

(H) MEM HEAP: MEM HEAP is used for miscellaneous 

purposes to manage data linkage, size information, and so 

on. Consumed memory heap increases 108 (= 200 – 92) 

bytes for PBUF_POOL management cells that link 

PBUF_POOL cells by just receiving. 
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Fig. 2 Total RAM usage in a TCP client process 

4.2.2 A TCP server 

  We also counted RAM usage in a simple TCP/IP server 

sample program (IPv4). RAM cells used in the TCP server 

process are classified by the previously mentioned types, as 

shown in table 5 and fig.3. In this sequence, a server process 

receives a request packet (several tens of bytes) and transmits a 

response packet (383B) through a TCP connection to a client 

process (a web browser) on a PC. Timings to count RAM usage 

are shown from (1) to (8). 

  The memory size and allocation behavior of each type((A)～

(H)) in the case of a server evaluation program is similar to the 

case of a client. The large difference is that MEM_HEAP is 

consumed so much for transmission on the timing (8). Therefore 

we must consider that point for memory allocation estimation of 

a TCP server process on lwIP. 

Table 5 RAＭ usage in a TCP server process 
Type               Timing (1) (2) (3) (4) (5) (6) (7) (8)

(A)TCP_PCB(cells) 0 1 1 0 1 1 1 1

(B)TCP_SEG(cells) 0 0 0 0 1 1 1 1

(C)NETBUF(cells) 0 0 0 0 0 0 1 0

(D)NETCONN(cells) 0 1 1 1 2 1 1 1

(E)TCPIP_MSG_INPKT(cells) 0 0 0 0 2 2 2 2

(F)SYS_TIMEOUT(cells) 6 6 6 6 7 7 7 7

(G)PBUF_POOL(cells) 0 0 0 0 2 2 4 4

(H)MEM HEAP(bytes) 92 92 92 92 92 92 92 556

(1) Before TCP server process start 

(2) After TCP socket creation 

(3) After TCP socket bind execution 

(4) After TCP socket listen execution 

(5) After TCP connection accept 

(6) After source TCP connection close 

(7) After TCP request packet reception 

(8) After TCP response packet transmission 

4.3 Network traffic 

  Basic protocol sequences of TCP includes retransmission 

processes unlike that of UDP.  

  Generally speaking, embedded systems with a simple 

application are supposed to be unused in crowded IP network, 

because congested IP network influences RAM usage for 

network buffers of network devices drastically [22]. In such 

cases an overflow phenomenon occurs very easily because of a 

small size RAM to store packet data. If an application program 

continues to create packets to be transmitted, a TCP/IP protocol 

stack needs to preserve quite a few packets for re-transmission 

under congested network. Then we tried to exemplify that in this 

evaluation. 
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Fig. 3 Total RAM usage in a TCP server process 

 

  We measured RAM usage by the almost same TCP client 

program as previously evaluated. This downloads lots of data 

(5,954B) from a TCP server for continuous transmision, 

simulating a case of a congestion by delaying of TCP 

acknowledgements on a client. The both cases of without and 

with a congestion are shown in table 5 and 6. 

  The both of results show that TCPIP_MSG_INPKT and 

PBUF_POOL have more than doubled in numbers since a 

congestion occurs, because retransmitted packets from the TCP 

server increase by retransmission. Although actually some of 

those packets might not be received at the embedded system, 

enough buffer spaces should be reserved only for frequent- 

retransmission. 

Table 6 RAＭ usage in a TCP client process (without 

congestion) 

Type               Timing (1) (2) (3) (4) (5) 

(A)TCP_PCB(cells) 0 1 1 1 1 

(B)TCP_SEG(cells) 0 0 0 1 0 

(C)NETBUF(cells) 0 0 0 0 1 

(D)NETCONN(cells) 0 1 1 1 1 

(E)TCPIP_MSG_INPKT(cells) 0 0 0 0 0 

(F)SYS_TIMEOUT(cells) 6 6 7 7 7 

(G)PBUF_POOL(cells) 0 0 0 0 0 

(H)MEM HEAP(bytes) 92 92 92 204 92 

 

(6) (7) (8) (9) (10) (11) (12) (13) 

1 1 1 1 1 1 1 1 

1 2 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 0 

2 2 3 4 5 5 5 5 

7 7 7 7 7 7 7 7 

9 9 9 12 15 15 15 15 

92 92 92 92 92 92 92 172 

Bytes 

Bytes
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(1) Before TCP client process start 

(2) After TCP socket creation 

(3) After TCP connection creation 

(4) After TCP request packet transmission 

(5) After TCP response packet [267B] reception 

(6) After TCP response packet [536B] reception 

(7) After TCP response packet [1072B] reception 

(8) After TCP response packet [1072B] reception 

(9) After TCP response packet [1072B] reception 

(10) After TCP response packet [1072B] reception 

(11) After TCP response packet [1072B] reception 

(12) After TCP response packet [58B] reception 

(13) After TCP connection close 

 

Table 7 RAＭ usage in a TCP client process (with congestion) 

Type            Timing (1) (2) (3) (4) (5) (6)

(A)TCP_PCB(cells) 0 1 1 1 1 1 

(B)TCP_SEG(cells) 0 0 0 1 0 1 

(C)NETBUF(cells) 0 0 0 0 1 0 

(D)NETCONN(cells) 0 1 1 1 1 0 

(E)TCPIP_MSG_INPKT(cells) 0 0 0 0 0 2 

(F)SYS_TIMEOUT(cells) 6 6 7 7 7 7 

(G)PBUF_POOL(cells) 0 0 0 0 0 9 

(H)MEM HEAP(bytes) 92 92 92 204 92 92 

 

(7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 0 

4 5 7 9 10 12 14 14 14 14 

7 7 7 7 7 7 7 7 7 7 

12 15 21 27 30 34 38 38 38 38 

92 92 92 92 92 92 92 92 92 172 

 

(1) Before TCP client process start 

(2) After TCP socket creation 

(3) After TCP connection creation 

(4) After TCP request packet transmission 

(5) After TCP response packet [267B] reception 

(6) After TCP response packet [536B] reception 

(7) After TCP response packet [1072B] reception 

(8) After TCP response packet [1072B] reception 

(9) After TCP response packet [536B] reception 

(10) After TCP response packet [536B] reception 

(11) After TCP response packet [536B] reception 

(12) After TCP response packet [536B] reception 

(13) After TCP response packet [536B] reception 

(14) After TCP response packet [536B] reception 

(15) After TCP response packet [58B] reception 

(16) After TCP connection close 

4.4 Consideration for application program implementation 

  There are various kinds of IP communication application for 

an embedded device whose basic structure is drawn in fig.4. 
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(1)IP network 
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(4)Other network 
interface

Buffer 
RAM

Buffer 
RAM

Buffer 
RAM

Buffer 
RAM

Work 
RAM

Manag
ement 
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Fig. 4 Basic structure of a target embedded device with a 

one-chip microprocessor 

 

(1) IP network interface: Ethernet with TCP/IP stack. 

(2) Sensor interface: Measurement for temperature, humidity, 

illumination, magnetic field, motion, and so on. 

(3) Actuator interface: DC motor, stepping motor, relay, etc. 

(4) Other network interface: Serial communication such as 

RS-232C/422/485, USB, SATA, FireWire, GPIO, I2C and 

so on. 

 

  Each interface processing program uses RAM for buffer, 

work, and management. As mentioned above, a TCP/IP protocol 

stack consumes RAM mostly for network buffers, which are 

designed as PBUF_POOL in lwIP.  

We can estimate RAM usage for buffer handling of other 

interfaces similarly, but data conversion processes such as a 

voice codec and a video codec need a lot more work RAM than 

buffer RAM exceptionally. In such cases, a DSP is usually used. 

  This allows us to design a buffer sharing mechanism among 

those interfaces for the efficient use of RAM. That mechanism 

realizes reduction of memory copy between a TCP/IP protocol 

stack and other interface-processing programs. The buffer copy 

process needs a control mechanism to reduce stagnant data, 

because these communication interfaces have different speeds 

(fig. 5). The more different speeds they have, the larger buffer 

size is demanded. 

One simplified computation model for buffer size is described 

as follows. The model assumes that data burst transmission 

occurs intermittently and massively computing is not executed 

among interfaces. Thus, necessary buffer size can be calculated 

by the size of concentrated data chunk. 

 

MaxBPipout : Maximum bit rate performance of outgoing IP 

data 

MaxBPotherout : Maximum bit rate performance of outgoing 

other interface data 

MaxBSipout : Maximum buffer size for outgoing IP data 

MaxBSipin : Maximum buffer size for incoming IP data 

MaxBDipin : Maximum burst duration of incoming IP data 

MaxBDotherin : Maximum burst duration of incoming other 

interface data 
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MaxBRipin : Maximum burst bit rate of incoming IP data 

MaxBRotherin : Maximum burst bit rate of incoming other 

interface data 

 

MaxBSipout = (MaxBRotherin - MaxBPipout) * MaxBDotherin 

MaxBSipin = (MaxBRipin – MaxBPotherout) * MaxBDipin 

Incoming fast I/F
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Outgoing IP network

Incoming IP network

Incoming slow I/F

Outgoing slow I/Fdatadatadata

data

datadatadata

data

MaxBRotherin

MaxBDotherin
time

MaxBRipin
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time

bits

bits

 

Fig. 5 Buffering control of stagnant data for communication 

 

If MaxBSipout and MaxBSipin are lower than 0, we don’t 

have to consider stagnant data among communication interfaces. 

From the results of the experiment by an IP network interface 

and a RS-232C serial interface, we could recognize the tendency 

that the stagnant data cause consumption of PBUF_POOL to 

increase by making the communication of RS-232C busy. 

We plan to measure the above-mentioned data in detail by 

changing burst duration, burst bit rate, and interface throughput. 

In addition, the buffer size should be estimated actually by 

considering a congestion of IP network, which influences the 

stagnant data closely. 

5. Conclusion 

  We implemented a typical embedded system with a 

microprocessor to investigate the details of RAM usage in a 

TCP/IP protocol stack for an embedded system. 

  We recognized the most important factor for dynamic 

memory allocation of TCP connection management is storing 

areas (PBUF_POOL, TCPIP_MSG_INPKT, MEM_HEAP) for 

packet data in lwIP. Those areas make up most of RAM usage, 

and RAM usage of other than the three types is relatively small. 

And a server process uses more MEM_HEAP than a client 

process, which cannot be ignored. MEM_HEAP is used mainly 

to manage buffer structures.  

On the other hand, the PBUF_POOL usage increases more 

than a twofold by congested network. In addition it also 

increases by  stagnant data among communication interfaces. 

  As a conclusion, it is important for application to avoid buffer 

copy among some interfaces including an IP network interface. 

For example, some API might be designed to construct packet 

data for the capability of sharing from an IP network interface 

and another one. To do so, we need to design unified formats of 

protocol data units to be shared among such interfaces. 

  We plan to investigate these situations in more detail, design a 

general buffer access mechanism among some interfaces, and 

establish the estimation method for RAM usage. 
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