
IPSJ Transactions on System LSI Design Methodology Vol.6 71–75 (Feb. 2013)

[DOI: 10.2197/ipsjtsldm.6.71]

Short Paper

Loop Fusion with Outer Loop Shifting
for High-level Synthesis

Yuta Kato1,†1 Kenshu Seto1,a)

Received: May 28, 2012, Revised: August 28, 2012,
Accepted: October 30, 2012, Released: February 15, 2013

Abstract: Loop fusion is often necessary before successful application of high-level synthesis (HLS). Although
promising loop optimization tools based on the polyhedral model such as Pluto have been proposed, they sometimes
cannot fuse loops into fully nested loops. This paper proposes an effective loop transformation called Outer Loop
Shifting (OLS) that facilitates successful loop fusion. With HLS, we found that the OLS generates hardware with 25%
less execution cycles on average than that only by Pluto for four benchmark programs.

Keywords: loop fusion, polyhedral model, high-level synthesis

1. Introduction

High-level synthesis (HLS) [1] offers significant benefits on
improving design productivity of VLSIs. Current HLS tools,
however, cannot generate efficient hardware from a sequence of
nested loops, because they lack the ability to schedule operations
from different loops in parallel. Loop fusion is one of the ef-
fective loop optimizations that address the problem. By fusing
loops, operations from different loops can be scheduled in paral-
lel. Classical loop fusion algorithms such as Refs. [2], [3] typi-
cally study loop fusion independently of other loop transforma-
tions. Since loop fusion often requires other loop transformations
such as loop shifting and loop permutation, the applicability of
these algorithms is limited.

The polyhedral model is a flexible and powerful representation
of loops, in which a sequence of various loop transformations
can be represented by matrices, so loop optimizations based on
the polyhedral model are promising approach not only in compil-
ers for parallel processors [4], [5], [6], [7] but also in optimizers
for hardware synthesis [8], [9]. Schedule is a key concept in the
polyhedral model and it is classified into two kinds; one is one-
dimensional schedule and the other is multi-dimensional sched-
ule. Multi-dimensional schedule [5] is more general and can rep-
resent a wider range of input code than one-dimensional one [4].
The pioneering work Refs. [4], [5] proposed methods to generate
minimum latency schedules and minimum delay schedules, how-
ever, they do not take locality optimization into consideration, so
large buffer memories are required. Subsequent work [6] success-
fully finds outer parallelism, however, it does not optimize local-
ity when finding the parallelism, so large buffer memories may be
required. In addition, the algorithm processes each loop one by

1 Tokyo City University, Setagaya, Tokyo 158–8557, Japan
†1 Presently with Mitsubishi Electric
a) kseto@tcu.ac.jp

one when it cannot find outer parallel loops, so maximally fused
loops may not be obtained by it. MMAlpha [8] constructs the
polyhedral model from the input declarative code called ALPHA
and directly generates VHDL for hardware accelerators. Cur-
rently multi-dimensional schedules are not supported in MMAl-
pha, so the range of input code is limited. Recent work [9] pro-
poses a loop optimization method for hardware accelerators based
on branch-and-bound approach that minimizes on-chip memory
size (or buffer memory size) under the constraints on the number
of off-chip memory accesses. Our work is more closely related
to Ref. [9] than Ref. [8] in that both our work and Ref. [9] pro-
pose loop optimizers that are effective before HLS, while Ref. [8]
proposes a HLS tool itself from the polyhedral model. The work
Ref. [9] does not include loop shifting in the formulation and does
not consider the performance optimization by loop fusion, how-
ever, it can be combined by our work.

Pluto [7] is yet another loop optimization tool based on the
polyhedral model. Although our basic idea can be combined
with other loop optimization frameworks such as Ref. [9], our
work is based on Pluto [7], because of the following three ad-
vantages of Pluto: (1) simultaneous optimization of outer paral-
lelism (which leads to speedups by coarse-grained parallelism)
and locality (which leads to small buffer memories), (2) support
for multi-dimensional schedules and (3) support for a loop trans-
formation called loop shifting which is often necessary for loop
fusion. As far as we know, none of the related work has these
advantages. Although Pluto successfully fuses loops, it fails to
fuse loops in some important cases. In this paper, we analyze the
problem and propose a post-processing after Pluto called Outer
Loop Shifting. The idea of OLS itself can be incorporated in
other optimizers based on the polyhedral model. We show that
the proposed procedure successfully fuses loops for which Pluto
fails, and provides significant performance improvements of the
synthesized hardware.

c© 2013 Information Processing Society of Japan 71

IPSJ Transactions on System LSI Design Methodology Vol.6 71–75 (Feb. 2013)

2. Loop Fusion Algorithm in Pluto and Its
Problem

2.1 Polyhedral Model and Loop Fusion Algorithm in Pluto
We briefly review the polyhedral model and the loop fusion

algorithm in Pluto [7]. Polyhedral model consists of iteration do-
mains, multi-dimensional schedules and dependence polyhedra.
The iteration vector of a statement S is defined by −→iS = (i1, ..., imS)
where i1, ..., imS is the sequence of loop index variables of the
loops surrounding S from the outermost loop (i1) to the inner-
most loop (imS). The iteration domainDS of a statement S is the
set of vectors of which −→iS can take the values. A one-dimensional
schedule of a statement S is:

φS (−→iS) = cS ,1 · i1 + cS ,2 · i2 + ... + cS ,mS · imS + cS ,0 (1)

where cS ,1, ..., cS ,mS , cS ,0 ∈ Z and −→iS ∈ ZmS . A multi-dimensional
schedule of a statement S is a vector of the one-dimensional
schedules given by:

TS (−→iS) = (φ1
S (−→iS), φ2

S (−→iS), ..., φd
S (−→iS))T (2)

A multi-dimensional schedule of a statement S specifies the
execution order of S in lexicographic order. If φk

S (−→iS) in Eq. (2) is
(ck

S ,1, ck
S ,2, ..., ck

S ,mS
) =
−→
0 for all statements S , the k-th dimension

(or the k-th level) of TS(−→iS) is called scalar dimension, otherwise,
it is called loop dimension. The statements S with the same value
for cS ,0 are fused at the loop dimension below the scalar dimen-
sion, and unfused statements are placed in the increase order of
the coefficients cS ,0. Data dependences between statements are
represented by a data dependence graph (DDG) G = (V, E). Each
vertex v ∈ V represents a statement and each edge eS i→S j ∈ E

represents a data dependence that means statement S j must be
executed after statement S i. Each edge eS i→S j ∈ E has the depen-
dence polyhedron PeS i→S j = {(−→iS i ,

−→iS j) |
−→iS i ∈ DS i ,

−→iS j ∈ DS j , S j at
−→iS j is dependent on S i at −→iS i }.

Finding the best multi-dimensional schedule
ck

S ,0, ck
S ,1, ..., ck

S ,mS
, (k = 1, ..., d) for each statement S

while observing the data dependence constraints is the key
step in Pluto. Pluto heuristically does this and optimizes
both locality and outer parallelism. The dependence vector
−→
δ eS i→S j (

−→iS i ,
−→iS j) ∈ Zd is defined by:

−→
δ eS i→S j (

−→iS i ,
−→iS j) = (δ1

eS i→S j
(−→iS i ,
−→iS j), ..., δ

d
eS i→S j

(−→iS i ,
−→iS j)) (3)

where δk
eS i→S j

(−→iS i ,
−→iS j) is the k-th element of the dependence vector

defined by:

φk
S j

(−→iS j) − φk
S i

(−→iS i) ∀(−→iS i ,
−→iS j) ∈ PeS i→S j , ∀eS i→S j ∈ E (4)

Pluto lexicographically minimizes −→δ eS i→S j in order to place S i and
S j closer in the common iteration space. Thus, the locality is im-
proved and loops are fused. Code generation tool [10] is used to
generate C code from the polyhedral model.

2.2 Problem of Loop Fusion Algorithm in Pluto
We describe the problem of Pluto with an example shown in

Fig. 1 where the original code and the original schedules TS 0 (−→iS 0)
and TS 1 (−→iS 1) of the statements S 0 and S 1 are shown. Since a

for (i=0; i < N; i++)
for (j=0; j < N; j++)

B[i] = B[i] + A[i][j]; // S 0 TS 0 (i, j) = (0, i, j)T

for (i=0; i < N; i++)
for (j=0; j < N; j++)

D[i] = D[i] + C[i][j] + B[i]; // S 1 TS 1 (i, j) = (1, i, j)T

Fig. 1 Motivational example: Original code.

for (φ1=0; φ1 < =N-1; φ1++){
for (φ3=0; φ3 < =N-1; φ3++)

B[φ1] = B[φ1] + A[φ1][φ3]; // S 0 TS 0 (i, j) = (i, 0, j)T

for (φ3=0; φ3 < =N-1; φ3++)
D[φ1] = D[φ1] + C[φ1][φ3] + B[φ1]; } // S 1 TS 1 (i, j) = (i, 1, j)T

Fig. 2 Partially fused loop after loop fusion by Pluto.

(a) Original (b) Pluto

(c) Outer Loop Shifting

Fig. 3 Schedules and data dependences of Original, Pluto and OLS code
when N = 3.

scalar dimension appears in the outermost dimension (0 and 1),
S 0 and S 1 share no common loop as shown in the code of Fig. 1.

Figure 2 shows the schedules and the code generated by Pluto.
Since the schedules corresponding to the outermost dimension
are φ1

S 0
(−→iS 0) = i and φ1

S 1
(−→iS 1) = i, the dimension is not a scalar

dimension. Therefore, the outermost dimension becomes a fused
loop as shown in the code of Fig. 2. The inner loops in Fig. 2,
however, are not fused, because of the second dimension φ2 be-
ing a scalar dimension: φ2

S 0
(−→iS 0) = 0 and φ2

S 1
(−→iS 1) = 1. Since

current HLS tools cannot schedule S 0 and S 1 that belong to dif-
ferent loops in parallel, the performance of hardware generated
from the code in Fig. 2 is suboptimal.

To explain the reason why Pluto cannot fuse the loops to a
fully nested form in an intuitive manner, we illustrate the multi-
dimensional schedules of the original code and the code gener-
ated by Pluto in Fig. 3 (a) and (b) where the filed circles and open
circles represent the execution of S 0 and S 1, respectively, and
the arrows represent the data dependencies where dependencies
that can be inferred are removed from Fig. 3 for simplicity. All
schedules are three dimensional: φ1, φ2, φ3, and the statements
are executed in the lexicographic order of (φ1, φ2, φ3). In the fol-
lowing, we focus on the data dependence between S 0 and S 1 by
the array B.

In the case of original code (Fig. 3 (a)), the dependence dis-
tance for eS 0→S 1 ∈ E is −→δ eS 0→S 1 = (1, 0,−2). Since the outermost
element δ1

eS 0→S 1
= 1, the different iterations of the outermost level

c© 2013 Information Processing Society of Japan 72

IPSJ Transactions on System LSI Design Methodology Vol.6 71–75 (Feb. 2013)

are dependent. Therefore, the parallel execution at the outermost
level requires synchronization to satisfy the dependence.

Pluto preferentially minimizes the dependence distances in
outer dimensions and as a result obtains the dependence distance
−→
δ eS 0→S 1 = (0, 1,−2) in Fig. 3 (b) where the outermost element
δ1

eS 0→S 1
is reduced to zero which means the outermost φ1 loop

can be executed in parallel without synchronization by multicore
processors. Besides, the dependence distance is reduced from
(1, 0,−2) to (0, 1,−2), so that locality of the array B accesses is
optimized. The innermost loops, however, are not fused, because
Pluto cannot find any one-dimensional schedule at the φ2 level
and a scalar dimension is inserted in the level. As mentioned
above, S 0 and S 1 in each unfused loops are not executed in par-
allel, which is addressed in Section 3.

3. Loop Fusion with Outer Loop Shifting

In this section, we propose the loop transformation called
Outer Loop Shifting (OLS) to enable loop fusion. The result of
the loop fusion with OLS for the example in Fig. 1 is shown in
Fig. 4. Fusion of inner loops in Fig. 2 is prevented because all it-
erations of the first inner loop must finish before the second inner
loop. This sequential execution is caused by the data dependence
from the write access to array B at S 0 to the read access from ar-
ray B at S 1. By shifting the outer loop of the second loop by one
in Fig. 1, the data dependence is satisfied by the outer loop, so the
inner loops can be fused as explained below.

Loop fusion with OLS is represented by the schedules shown
in Fig. 4. With OLS, the schedules produced by Pluto: TS 0 (i, j) =
(i, 0, j)T , TS 1 (i, j) = (i, 1, j)T in Fig. 2 are changed to the new

for (φ1=0; φ1 < =N; φ1++)
for (φ3=0; φ3 < =N-1; φ3++){

if(φ1 < = N-1)
B[φ1] = B[φ1] + A[φ1][φ3]; // S 0 TS 0 (i, j) = (i, 0, j)T

if(φ1 > = 1)
D[φ1-1] = D[φ1-1] + C[φ1-1][φ3]

+ B[φ1-1]; // S 1 TS 1 (i, j) = (i + 1, 0, j)T

}

Fig. 4 A fully nested loop after loop fusion with OLS.

Algorithm OuterLoopShift

OuterLoopShift(S S , sd, TS)
Input S S : a set of statements, sd: starting dimension
Input TS = (φ1

S , ..., φ
d
S)T : multi-dimensional schedules

for all statements S
1: From the starting dimension sd to the innermost dimension d,

Search loop dimensions L and L′ (L < L′) enclosing a sequence
of scalar dimensions

2: foreach statement S in S S
3: S calar[S]← A sequence of values in scalar dimensions

from L + 1 to L′ − 1
4: Make statements with the same S calar[S] value a group
5: Sort groups in the increasing lexicographic order of S calar[S]

as G0,G1, ...,Gq

6: foreach statement S ∈ S S
7: Add the group value i of S ∈ Gi to φL

S , namely φL
S
′
= φL

S + i
8: Reset the values of the scalar dimensions between L and L′

to 0
9: foreach group Gi

10: OuterLoopShift(Gi, L′,TS)

Fig. 5 Procedure for Outer Loop Shifting.

schedules: TS 0 (i, j) = (i, 0, j)T , TS 1 (i, j) = (i + 1, 0, j)T where
the constant 1 in φ2

S 1
is reset to zero and the schedule of the outer

dimension φ1
S 1

is instead added by the constant 1. After OLS, the
elements in the scalar dimension are all set to zero, so the scalar
dimension is removed. As evidenced by Fig. 3 (c), loop fusion
with OLS shifts the execution of S 1 by one in φ1 dimension, the
scalar dimension φ2 is removed and the execution of S 0 and S 1 is
overlapped in the iteration space of 1 ≤ φ1 ≤ N − 1. Because of
the overlap, we expect the reduction of the execution cycles after
HLS. Since the scalar dimension φ2 is removed, the dependence
vector in the case of Fig. 3 (c) is given by −→δ eS 0→S 1 = (1,−2) which
has the same value as −→δ eS 0→S 1 = (0, 1,−2) in the case of Fig. 2. so
that the locality is not deteriorated by OLS in this case compared
to the result by Pluto. Since the loop in the outer dimension φ1

of the scalar dimension φ2 is shifted, we call the transformation
Outer Loop Shifting.

In Fig. 5, we present a procedure for OLS that can be imple-
mented as a post-processing step of Pluto. Initially, we call the
procedure OuterLoopShift(S S , sd, TS) with S S : the set of all
statements and sd: the outermost dimension (sd = 1). By the
recursive call of the procedure, a sequence of scalar dimensions
between loop dimensions L and L′ are removed from the out-
ermost dimension to the innermost dimension. After the call to
OuterLoopShift, we check if the post-processed schedules do not
violate data dependences and apply the OLS only when data de-
pendencies are not violated.

4. Experiments

4.1 Experimental Setups
We demonstrate the effectiveness of the proposed post-

processing with four benchmarks, MMs, TCE, Gemver and DCT
in which the numbers of outermost loops are 2, 4, 4 and 2, and
the numbers of statements in the innermost loops are 2, 4, 4 and
5, respectively. From the second column (Orig) of Table 1, we
see that original code of MMs has two loops each of which is
a 3-dimensional loop with loop index variables i, j and k and
contains statements S 0 and S 1, respectively. Similarly, TCE has
four 5-dimensional loops, Gemver has three 2-dimensional loops
and one 1-dimensional loop, and DCT has two 3-dimensional
loops each of which contains sets of statements {S 0, S 1} and
{S 2, S 3, S 4}, respectively. TCE, Gemver are included in the ex-
ample directory of Pluto tool. MMs, DCT are the code for a
sequence of matrix multiplication and discrete cosine transform,
respectively. Pluto could not successfully fuse loops in any of
the benchmarks into fully nested loops. We implemented the pro-
posed procedure of Fig. 5 in Pluto (ver. 0.6.0) [11] and the to-
tal time of Pluto including OLS was around one second for all
benchmarks. The proposed approach could successfully fuse all
loops in each benchmark into a single fully nested loop. Table 1
shows the resulting multi-dimensional schedules after Pluto and
after Pluto followed by OLS.

To evaluate the impact of OLS, we synthesized original code,
optimized code by Pluto, and optimized code by OLS with a
commercial HLS tool. The clock constraint for HLS was set to
200 MHz and the target cell library was a 0.13 μm library. For
each distinct array, we allocated a single-port local memory. As

c© 2013 Information Processing Society of Japan 73

IPSJ Transactions on System LSI Design Methodology Vol.6 71–75 (Feb. 2013)

Table 1 Multi-dimensional scheduling results after Pluto and Outer Loop Shifting.

Orig After Pluto After Pluto followed by OLS

MMs TS 0 (0, i, j, k) TS 0 (j, i, 0, k) TS 0 (j, i, 0, k)
TS 1 (1, i, j, k) TS 1 (j, k, 1, i) TS 1 (j, k+1, 0, i)

TCE TS 0 (0, a, q, r, s, p) TS 0 (a, s, 0, r, q, 1, 0, p) TS 0 (a, s, 0, r, q, 0, 0, p)
TS 1 (1, a, b, r, s, q) TS 1 (a, s, 0, r, q, 1, 1, b) TS 1 (a, s, 0, r, q+1, 0, 0, b)
TS 2 (2, a, b, c, s, r) TS 2 (a, s, 1, b, c, 0, 0, r) TS 2 (a, s+1, 0, b, c, 0, 0, r)
TS 3 (3, a, b, c, d, s) TS 3 (a, s, 1, b, c, 1, 0, d) TS 3 (a, s+1, 0, b, c+1, 0, 0, d)

Gemver TS 0 (0, i, j) TS 0 (j, 0, i, 2, 0) TS 0 (j, 0, i, 2, 0)
TS 1 (1, i, j) TS 1 (i, 0, j, 2, 1) TS 1 (i, 0, j, 2, 1)
TS 2 (2, i, 0) TS 2 (i, 1, 0, 1, 0) TS 2 (i+1, 0, 0, 1, 0)
TS 3 (3, i, j) TS 3 (j, 2, i, 0, 0) TS 3 (j+2, 0, i, 0, 0)

DCT TS 0 (0, i, j, k, 0) TS 0 (i, 0, j, k, 1, 0) TS 0 (i, 0, j, k, 1, 0)
TS 1 (0, i, j, k, 1) TS 1 (i, 0, j, k, 1, 1) TS 1 (i, 0, j, k, 1, 1)
TS 2 (1, i, j, k, 0) TS 2 (k, 0, i, j, 1, 0) TS 2 (k, 0, i, j, 1, 0)
TS 3 (1, i, j, k, 1) TS 3 (k, 1, i, j, 0, 0) TS 3 (k+1, 0, i, j, 0, 0)
TS 4 (1, i, j, k, 2) TS 4 (k, 1, i, j, 1, 0) TS 4 (k+1, 0, i, j, 1, 0)

Table 2 The achieved minimum initiation intervals (IIs) after HLS.

MMs TCE Gemver DCT

Orig 4 (100%) 8 (100%) 6 (100%) 7 (100%)
Pluto 4 (100%) 8 (100%) 7 (116%) 6 (86%)
OLS 3 (75%) 6 (75%) 5 (83%) 4 (57%)

Table 3 The number of execution cycles (top) and area (bottom) after HLS.

MMs TCE Gemver DCT

Orig 124 K 204 M 61 K 897 K
Pluto 121 K 203 M 70 K 772 K
OLS 96 K 161 M 51 K 540 K

MMs TCE Gemver DCT

Orig 5.5 K 13.8 K 11.6 K 6.8 K
Pluto 5.2 K 10.8 K 10.7 K 7.6 K
OLS 5.0 K 17.0 K 15.0 K 8.1 K

behavioral-level transformations, the commercial tool performs
standard compiler optimizations such as common sub-expression
elimination (CSE) and constant propagation. Loop fusion by
Pluto increases the chances for CSE and enhances the advantage
of CSE. Loop unrolling was disabled in the experiment, however,
unrolling the fused loops may further improve the operation-level
parallelism. To each innermost loop of the code, we performed
loop pipelining with HLS.

4.2 Experimental Results
Each entry in Table 2 shows the sum of the achieved minimum

initiation intervals (IIs) for innermost loops in all the deepest loop
nests. In the table, Orig, Pluto and OLS are the HLS results of the
original code, the code after Pluto and the code after OLS. The
values in the parentheses show the IIs that are normalized with re-
spect to those from original code. From Table 2, we see that loop
fusion enhances operation-level parallelism and successfully re-
duces the sums of the achieved minimum IIs.

Table 3 shows the number of execution cycles (top) and area
(bottom) after HLS. The area results are shown in terms of the
number of AND gates. From the table, we see that OLS provides
significant speedups with a moderate increase in area compared
to Orig. Figure 6 shows the numbers of execution cycles (top)
and area (bottom) after HLS that are normalized with respect to
those from original code. As expected, the reduction rate of the
number of execution cycles were almost the same as the reduction

Fig. 6 The number of execution cycles and area after HLS
(relative improvements in %).

rate of the minimum IIs shown in Table 2. On average, OLS could
reduce the numbers of execution cycles by 25%, while Pluto re-
duced those only by 0.5% compared to Orig. This is because OLS
could overlap the execution of statements from different loops
and, as a result, the parallel execution of statements became pos-
sible. In addition, OLS could fuse loops into a single fully nested
loop, so that the controllers are simplified and redundant states
are eliminated. In Gemver, the II (and hence, the number of ex-
ecution cycles) after Pluto were increased, although the loops in
Gemver were partially fused after Pluto and the improvement of
the operational-level parallelism was expected. This is because it
happened the loop pipelining algorithm could not find a pipelined
schedule with a reduced II under the tight clock constraint (5 ns).
By relaxing the clock constraint, the II were successfully reduced.
From Fig. 6, the area results after OLS increased by 15.6% on av-
erage, while the area results after Pluto was reduced by 5.8%. The
area increase after OLS is due to the increasing resource require-
ments by the parallel execution.

c© 2013 Information Processing Society of Japan 74

IPSJ Transactions on System LSI Design Methodology Vol.6 71–75 (Feb. 2013)

5. Conclusion

This paper presented the loop transformation called Outer
Loop Shifting (OLS). The state-of-the-art loop fusion algorithm,
Pluto, optimizes locality and maximizes outer parallelism, how-
ever, fails to fuse loops in some important cases. OLS performs
the post-processing to the schedules generated by Pluto and re-
moves the scalar dimensions that prevent loop fusion by shifting
the scheduling in the outer loop dimensions. Experimental re-
sults with high-level synthesis demonstrated that the synthesized
hardware from the code after OLS took 25% less execution cy-
cles on average than those of the synthesized hardware from the
code after Pluto for the four benchmarks.

References

[1] Gajski, D.D. et al.: High Level Synthesis: An Introduction to Chip and
System Design, Kluwer Academic Publishers (1992).

[2] Kennedy, K. and Allen, J.R.: Optimizing compilers for modern archi-
tectures: A dependence-based approach, Morgan Kaufmann Publish-
ers Inc. (2002).

[3] Singhai, S.K. and McKinley, K.S.: A Parametrized Loop Fusion Al-
gorithm for Improving Parallelism and Cache Locality, The Computer
Journal, Vol.40, No.6, pp.340–355 (1997).

[4] Feautrier, P.: Some efficient solutions to the affine scheduling problem.
Part I. one-dimensional time, Intl. Journal of Parallel Programming,
Vol.21, No.5, pp.313–347 (1992).

[5] Feautrier, P.: Some efficient solutions to the affine scheduling problem.
Part II. Multidimensional time, Intl. Journal of Parallel Programming,
Vol.21, No.6, pp.389–420 (1992).

[6] Lim, A.W., Cheong, G.I. and Lam, M.S.: An Affine Partitioning Al-
gorithm to Maximize Parallelism and Minimize Communication, Intl.
Conf. Supercomputing, pp.228–237 (1999).

[7] Bondhugula, U. et al.: Automatic transformations for communication-
minimized parallelization and locality optimization in the polyhedral
model, Intl. Conf. Compiler Construction (ETAPS CC) (2008).

[8] Derrien, S., Rajopadhye, S., Quinton, P. and Risset, T.: High-Level
Synthesis of Loops Using the Polyhedral Model, High-Level Synthe-
sis: From Algorithm to Digital Circuit, Spinger (2008).

[9] Cong, J., Zhang, P. and Zou, Y.: Optimizing memory hierarchy allo-
cation with loop transformations for high-level synthesis, Design Au-
tomation Conference (DAC), pp.1229–1234 (2012).

[10] Bastoul, C.: Code generation in the polyhedral model is easier than
you think, Intl. Conf. Parallel Architectures and Compilation Tech-
niques (PACT), pp.7–16 (2004).

[11] Pluto, available from 〈http://pluto-compiler.sourceforge.net/〉.

Yuta Kato received his B.S. and M.S. in
electrical and electronic engineering from
Tokyo City University in 2010, 2012, re-
spectively. In 2012, he joined Mitsubishi
Electric Corporation, Japan.

Kenshu Seto received his B.S. in electri-
cal engineering, M.S. and D. Eng. in elec-
tronics engineering from the University of
Tokyo in 1997, 1999 and 2004, respec-
tively. From 2004 to 2006, he was a re-
searcher at VLSI Design and Education
Center (VDEC), the University of Tokyo.
He joined the department of electrical and

electronic engineering, Tokyo City University (renamed from
Musashi Institute of Technology) in 2007. His primary research
interests include high-level synthesis and compiler techniques for
System-on-Chips (SoCs).

(Recommended by Associate Editor: Takashi Takenaka)

c© 2013 Information Processing Society of Japan 75

