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Abstract: This paper describes a Histogram of Oriented Gradients (HOG)-based object detection processor. It fea-
tures a simplified HOG algorithm with cell-based scanning and simultaneous Support Vector Machine (SVM) calcu-
lation, cell-based pipeline architecture, and parallelized modules. To evaluate the effectiveness of our approach, the
proposed architecture is implemented onto a FPGA prototyping board. Results show that the proposed architecture can
generate HOG features and detect objects with 40 MHz for SVGA resolution video (800 × 600 pixels) at 72 frames per
second (fps).

Keywords: image recognition, histograms of oriented gradients, support vector machine, hardware implementation

1. Introduction

In recent years, detecting objects in visual images has posed
a challenging problem in a wide range of application domains
such as surveillance, entertainment, automotive systems, and
robotics. A high-accuracy algorithm used in object detection
systems, Histogram of Oriented Gradients (HOG) [1], is robust
against changes in illumination and also attains high computa-
tional accuracy in detection of variously textured objects.

Recent high-performance general-purpose processors can
achieve real-time HOG-based object detection in spite of a heavy
computational cost. However, these processors suffer from high
power consumption and are therefore unsuitable for mobile sys-
tems under limited battery conditions. Consequently, a low-
power and high-performance HOG feature extraction processor
is necessary to widen the range of applications.

Figure 1 presents the image resolution versus frame rate for
several published descriptions of HOG hardware. Zhang et al. [2]
proposed efficient object detection using GPGPU. Some FPGA
implementations [3], [4], [5], [6], [7] and an FPGA-GPU archi-
tecture [8] have been proposed for real-time applications. Cao et
al. [9] realized the best-performing FPGA implementation when
compared with other implementations. However, this study has
been specified to stop-sign detection. In order to make HOG algo-
rithm adaptable to a wide variety of applications, next-generation
HOG feature extraction processors is required to provide greater
expandability and higher performance.

Most conventional processors employ a window-based ap-
proach. For the window-based approach, an amount of required
computations of 89.2 GOPS and memory bandwidth of 10.9 Gbps
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are required for SVGA resolution because of repetitive computa-
tions. The amount of required computations and memory band-
width are greatly reduced by reusing calculated data or adopting
efficient computation. However, data reuse causes an increase of
memory capacity and circuit area. Consequently, a cooperative
design among algorithm, architecture, and circuit is necessary.

To achieve real-time and low-power HOG feature extraction
for SVGA resolution video, we propose the following three tech-
niques.
• A simplified HOG algorithm with cell-based scanning and

simultaneous Support Vector Machine (SVM) calculation to
reduce amount of required computations.

• A cell-based algorithm and architecture for memory band-
width reduction.

• Parallelized architectures for cell histogram generation, his-
togram normalization, and SVM classification to reduce the
necessary cycle count.

As described in this paper, details of the simplified HOG al-

Fig. 1 Previous works of HOG feature extraction processor.

c© 2013 Information Processing Society of Japan 42



IPSJ Transactions on System LSI Design Methodology Vol.6 42–51 (Feb. 2013)

gorithm are described in Section 2. The proposed architecture is
addressed in Section 3. Then, these are followed by FPGA im-
plementation in Section 4. Section 5 concludes this paper.

2. Algorithm

2.1 Original HOG Algorithm
Figure 2 portrays a flow diagram of object detection using the

original HOG algorithm [1]. Scanning on the input image is based
on the detection window. The window is divided into cells, and
each cell accumulates a histogram of gradient orientations over
the pixels of the cell. For better invariance to illumination, his-
togram normalization can be done by accumulating a measure
of the local histogram energy over blocks and using the results
to normalize all cells in the block. The normalized histograms
(HOG features) are collected over the detection window. The
collected features are fed to a linear SVM for object/non-object
classification.

2.2 Simplified HOG Algorithm for Hardware Implementa-
tion

A simplified HOG algorithm for hardware implementation is

Fig. 2 Original HOG algorithm flow.

Fig. 3 Simplified HOG algorithm flow.

Fig. 4 Amount of required computations.

introduced in this subsection. Figure 3 shows a flow diagram of
object detection using the simplified HOG algorithm. This flow
is modified from the original flow using the following six tech-
niques.

1. Cell-based scanning (Section 2.2.1)
2. Gradient calculation using CORDIC [10]
3. Approximation of weighted voting for spatial and orienta-

tion anti-aliasing (Section 2.2.2)
4. Newton method with approximated initial value (Sec-

tion 2.2.3)
5. Simultaneous SVM calculation (Section 2.2.4)
6. Parameter optimization (Section 2.3)
Figure 4 portrays the amount of required computations for

HOG-based object detection. Assuming the window-based ap-
proach, an amount of required computations of 89.2 GOPS is nec-
essary for SVGA resolution because of repetitive computations.
On the other hand, the simplified HOG algorithm with cell-based
scanning and simultaneous SVM calculation reduces the amount
of required computations to 2.25 GOPS. However, 2.25 GOPS is
still heavy for a processor with low operating frequency. To ac-
commodate the amount of required computations in real time, the
proposed architecture has parallelized modules for cell histogram
generation, histogram normalization, and SVM classification.
2.2.1 Cell-based Scanning Method

Object detection with HOG features is executed by the scan-
ning detection window on an input image, as presented in Fig. 5
left. When one window is finished, the next window is scanned
using an offset of 1 cell. The memory bandwidth is increased by
reloading input pixels for the next window. Consequently, exten-
sive data reuse is desirable for memory bandwidth reduction.

Figure 5 right shows a cell-based scanning approach. HOG
features are extracted from cell-based calculations. No cell over-
laps with another cell. Consequently, sharing and reuse of a cell
have a great impact on memory bandwidth reduction.
2.2.2 Anti-aliasing in Histogram Generation

Gradient vectors within a local region called a cell (8 × 8 pix-
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Fig. 6 Anti-aliasing for spatial/orientation bin.

Fig. 5 Image scanning methods.

els) are classified into nine bins according to its orientation, as
shown in Fig. 6. A cell histogram is generated by adding the
magnitude of the gradient vector into the corresponding bin. To
prevent aliasing from occurring around the border between each
of the bins, the original algorithm votes the magnitude into the
corresponding bin and the adjacent bin. The magnitude of the
adjacent bin is in proportion to the orientation. However, the pro-
posed algorithm adopts a fixed coefficient expressed as a power
of two for the magnitude calculation. The proposed method sup-
presses a hardware cost increase.

Another type of aliasing occurs around the borders between
each of the cells. Strong edges around the borders between each
of the cells degrade the accuracy of feature vectors. To avoid the
phenomenon described above, gradient vectors in a cell are voted
into other cells. The original algorithm adopts a bi-linear inter-
polation method and Gaussian weighting method for calculating
weighted magnitude. However, the proposed algorithm uses a co-
efficient table because the weighting coefficient at one location is
a fixed value. To reduce multiplication for weighting, the weight-
ing coefficients are approximated to bit shift operation.
2.2.3 Histogram Normalization

The cell histograms within a region called a block (2 × 2
cells) are concatenated and normalized. The normalization is
performed by dividing a concatenated cell histogram v by its L2
norm. The values of normalized histograms are clipped to a limit
number and then re-normalized, which requires square root cal-

culation and division. To avoid these burdensome calculations,
the inverse of normalization divisor d is approximated as

d =
1√

‖v‖22 + ε2
(1)

then d is multiplied by v, where ε is a small constant to avoid zero
division.

To obtain d, an approximation method with bit shift operation
is proposed in Ref. [6]. However, this simplification is unsuitable
for re-normalization and causes normalization errors. Therefore,
we take a more accurate approach with additional iterative calcu-
lations. The inverse d is calculated iteratively using the Newton
method as follows.

di+1 = di · (3 − d2
i · ‖v‖22)/2 (2)

One iteration is composed of three multiplications, a subtrac-
tion and a bit shift. Although this iteration converges quadrat-
ically, the initial value d0 is important to reduce the number of
iterations. To obtain d0, we use an approximation method pro-
posed in an earlier report [6]. If the sum of squares of v satisfies
the following inequality,

2n − ε2 ≤ ‖v‖22 < 2n+1 − ε2 (3)

then d0 is given as follows.

d0 = 2−
n+1

2 (4)

d0 is expressed as a binary number instantly if n is an odd number.
d0 is given by multiplying additionally if n is an even number.
2.2.4 Simultaneous SVM Calculation

In the window-based approach, HOG features from 105 blocks
are collected. Then the features are multiplied by SVM coef-
ficients corresponding to one window. However, the cell-based
approach provides partial HOG features after normalization for
one block; after which the features are multiplied by SVM coef-
ficients corresponding to the 105 windows.

Figure 7 presents simultaneous SVM calculations for cell-
based processing. Partial HOG features belong to 105 windows
maximally and are located at different positions in each window.
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Fig. 8 HOG algorithm parameters.

Fig. 7 Simultaneous SVM classification.

Table 1 Optimized bit width.

Partial HOG features are multiplied and accumulated by the SVM
coefficients of each window. The accumulation result is stored
and reused in the subsequent SVM calculation. Simultaneous
SVM calculation is suitable for parallel computing in hardware.

2.3 Parameter Optimization
Figure 8 shows the parameters of each process in object detec-

tion using HOG features. In general, software implementations
employ floating-point calculations to provide high accuracy. On
the other hand, if we implement hardware floating-point unit, it
requires hardware resources to a great degree. Therefore, fixed-
point operation is often used in hardware implementations. The
accuracy of a fixed-point operation depends on the bit width it-
self, although the bit width affects the memory capacity and the
circuit area. Optimized parameters provide reasonable classifi-
cation accuracy and minimize hardware costs. Table 1 presents
the results of parameter adjustment. The other parameters for the
HOG algorithm are shown in Table 2.

Table 2 Other parameters.

2.4 Simulation Results
Performance and accuracy degradation were evaluated by soft-

ware simulation for the simplified algorithm. The test data used
was INRIA Person Dataset [11] which includes several people in
various backgrounds. The simplified algorithm is compared with
the original linear rectangular HOG (Lin. R-HOG) [1]. Figure 9
presents a graph of false positives per window (FPPW) versus
the miss rate. In Fig. 9, simulation results with the original Lin.
R-HOG show higher miss rate in comparison with that in the
Ref. [1] owing to the difference of test condition including the
number of test samples. The simulation results with the simpli-
fied algorithm and the optimized bit width show that the miss rate
degradation is 3% at 0.0001 FPPW. It provides sufficient perfor-
mance for general-purpose applications.

3. Architecture

3.1 Cell-based Pipeline Architecture
Figure 10 depicts a block diagram of the cell-based pipeline

architecture and external peripherals for the demonstration sys-
tem detailed in Section 4. The proposed architecture comprises a
controller, a cell histogram generation module, a histogram nor-
malization module, an SVM classification module, SRAMs for
several image data, a CPU interface, and a memory interface.
The HOG feature extraction processor is controlled by an exter-
nal CPU, and the input grayscale image is loaded to a cell-line
buffer from an external SRAM via a memory interface. The in-
ternal datapath modules process the input image and output the
detection result. The CPU receives the detection result from the
HOG feature extraction processor and then draws the result on an
LCD display.

The proposed architecture adopts a cell-based pipeline flow, as
presented in Fig. 11. Figure 11 above shows a relation between
cells, blocks, windows, and the frame. Cell-based pipeline pro-
cessing is conducted as follows:

1. A cell histogram is generated with cell-based scanning.
2. When the process described above reaches the block level,

the block-level cell histogram is normalized and the block-

c© 2013 Information Processing Society of Japan 45



IPSJ Transactions on System LSI Design Methodology Vol.6 42–51 (Feb. 2013)

Fig. 9 Accuracy degradation by the simplified algorithm.

Fig. 10 HOG feature extraction architecture.

level HOG feature is extracted.
3. Block-level HOG features and SVM coefficients correspond-

ing to each window are multiplied and accumulated.
4. The accumulation result of the window level is compared

with the SVM threshold. Then the detection result is ob-
tained.

The cell-based pipeline architecture greatly reduces the mem-
ory bandwidth because it prevents reloading of input pixels in
different detection windows.

Figure 12 describes the memory bandwidth analysis of HOG-
based object detection. The window-based approach for SVGA
resolution requires a memory bandwidth of 10.9 Gbps. In gen-
eral, mobile systems under limited battery conditions adopt a
lower operating frequency. Therefore, the memory bandwidth
must be reduced as low as possible for low-power and real-time
operation. Our approach adopts a cell-based algorithm and archi-
tecture to reduce the memory bandwidth to 0.116 Gbps.

3.2 Cell Histogram Generation
In cell histogram generation, magnitude and orientation of a

given pixel gradient are calculated; then a weighted magnitude
is voted into a bin corresponding to its orientation. Figure 13
presents the architecture for cell histogram generation. Four-
way architecture is adopted because one cell is commonly used
for four blocks maximally. Block 0 and 2 load an initial value
from the neighboring block. Block 1 loads an initial value from
SRAM. Block 3 loads zero for its initial value. When cell his-
togram generation is finished, Block 0 outputs a cell histogram
to the histogram normalization module. Figure 14 illustrates a
block diagram of the processing element (PE). One PE executes
weighted voting and binning to generate a histogram of one cell.
Spatial anti-aliasing is conducted in four processing elements cor-
responding to one block.

3.3 Histogram Normalization
Figure 15 presents the architecture for histogram normaliza-

tion. The architecture consists of two stages to implement L2-
Hys normalization. The first stage includes four Cell MAC mod-
ules, an approximation module, a Newton method module, and
a threshold module. The second stage comprises four Cell MAC
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Fig. 11 Cell-based pipeline flow.

Fig. 12 Memory bandwidth analysis.

modules and a Newton method module.
In the first stage, Cell MAC modules first calculate the sum of

squares of the input cell histogram. Secondly, an initial value
for the Newton method is approximated to bit shift operation.
Thirdly, the Newton method calculates an inverse number of
square roots. Furthermore, the Cell MAC modules normalize the
cell histogram. Finally, the normalized cell histogram is com-
pared with a threshold and is fed to the second stage.

In the second stage, the sum of squares and an inverse num-
ber of square roots are calculated as in the first stage, after which
Cell MAC modules normalize the cell histogram and extract 36-
dimension HOG features.

3.4 SVM Classification
In SVM classification, extracted features and SVM coefficients

are multiplied and accumulated until the operations reach window
level. Then the accumulation result is compared with an SVM

threshold to judge whether the window includes a target object.
Figure 16 shows a block diagram for simultaneous SVM classifi-
cation. This architecture includes 15 classification cores. One
classification core manages seven blocks of MAC operations.
Consequently, the architecture can accommodate 105 blocks cor-
responding to one detection window. Sufficient parallelism re-
duces the required cycle count to manage the amount of required
computations of 10.6 GOPS.

3.5 Performance Evaluation
The number of cycle counts was estimated using a Verilog-

HDL simulator. The proposed architecture was compared with
architecture without parallelization and without a pipeline. Esti-
mation results are presented in Fig. 17, which demonstrates the
superiority of the proposed architecture for SVGA resolution.
The parallelization in the cell histogram generation and histogram
normalization contributes to a reduction in cycle counts. Intro-
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Fig. 13 Block diagram and processing flow of cell histogram generation.

Fig. 16 Block diagram of SVM classification module.

Fig. 14 Block diagram of a processing element.

duction of the proposed simultaneous SVM calculation architec-
ture enables the reuse of intermediate results, allowing further cy-
cle count reduction. Results show that the number of cycle counts
in cell histogram generation, histogram normalization, and SVM
classification are reduced by 85%, 65%, and 99%, respectively,
compared with the number of cycle counts of architecture with-
out parallelization and without a pipeline. In the proposed archi-
tecture, the overall process requires 0.56 × 106 cycles per frame.

Fig. 15 Block diagram of histogram normalization.

Therefore, it is inferred that the proposed architecture can accom-
modate SVGA resolution video at 72 fps with 40 MHz.

The proposed architecture shows superior performance in com-
parison with previous FPGA implementations [3], [4], [5], [6],
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Table 3 FPGA Implementation Results.

Fig. 17 Reduction of cycle count.

Fig. 18 Architecture verification by FPGA implementation.

[7], [9]. Working memory is reduced by 68%, 84%, 83%,
73% and 78%, respectively, compared with that in Refs. [3], [4],
[6], [7] and [9]. Therefore, the proposed architecture is imple-
mentable even on FPGA with limited block memory. The pro-
posed architecture can process in parallel about ten times as many
detection windows as the architecture in Ref. [5], and it can pro-
cess about fifty times as many detection windows as the architec-
ture in Ref. [6]. Though the cell-base method for HOG feature
extraction was taken in Ref. [7], the architecture in Ref. [7] re-
quires larger memory than our approach. The classification mod-
ule in Ref. [7] adopts no cell-based approach causing overhead of
processing speed.

4. FPGA Implementation

To evaluate the effectiveness of our approach, we implemented
the proposed architecture onto a prototyping board (tPad Multi-
media Development Kit; Terasic Technologies Inc.). The board
has DE2-115 with Cyclone IV EP4CE115 (Altera Corp.), a 5-

megapixel digital image sensor module, and an 8-inch LCD touch
screen module. Figure 18 portrays a demonstration system of
real-time object detection to verify the proposed technique.

Resource utilization and comparison to conventional FPGA
implementations are presented in Table 3. Our FPGA implemen-
tation can generate HOG features and detect objects with 40 MHz
for SVGA resolution video at 72 fps. The FPGA resource utiliza-
tions are as follows: 34,403 LEs, 68 embedded multipliers, and
0.34 Mbit block RAMs. Our implementation shows the best per-
formance with minimum memory usage and minimum operating
frequency.

5. Conclusion

This paper presents a proposal of a novel architecture of real-
time HOG feature extraction for SVGA resolution video. The
proposed scheme has a simplified HOG algorithm with cell-based
scanning, simultaneous SVM calculation, cell-based pipeline ar-
chitecture, and parallelized modules. The simplified algorithm
contributes to a reduction of the amount of required computa-
tions from 89.2 GOPS to 2.25 GOPS with 3% accuracy degrada-
tion. The cell-based algorithm and pipeline architecture provide
a memory bandwidth of 0.116 Gbps at SVGA resolution, which
can be handled by a 32-bit memory bus with a reasonably low op-
erating frequency. Parallelized modules greatly accelerate HOG
feature extraction and object detection. The proposed architec-
ture on a FPGA prototyping board showed the best performance
with minimum memory usage and minimum operating frequency
when compared with the performance of conventional processors.
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