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A new Differential Evolution using Pairwise Exclusive
Hypervolume for Many-objective Optimization
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Abstract: Many-objective Optimization Problem (MOP) has a number of objectives considerably larger than two or
three. In order to obtain a good approximation of the Pareto-optimal solution set for MOP, this paper presents a new
evolutionary algorithm based on Differential Evolution (DE), which uses Pairwise Exclusive Hypervolume (PEH) as
the secondary criterion for sorting non-dominated solutions. Through the numerical experiment and the statistical test
conducted on test problems, the effect of PEH is evaluated in a comparison with conventional secondary criteria.

1. Introduction
Multi-objective optimization problems with a number of ob-

jectives considerably larger than two or three are often referred
to as Many-objective Optimization Problems (MOPs). Conven-
tional Multi-Objective Evolutionary Algorithms (MOEAs) such
as well-known NSGA-II [1] can’t be applied successfully to
MOPs. This is because there is a tendency towards a higher
proportion of non-dominated points, and under certain conditions
these points dominate quickly as the number of objectives rises.
One of the most promising approaches for handling MOPs is

to use a proper secondary criterion for sorting non-dominated
solutions. Therefore, some secondary criteria that can replace
the crowding-distance [1] have been proposed [2]. This paper
presents a new MOEA based on Differential Evolution (DE) [3],
which uses Pairwise Exclusive Hypervolume (PEH) [4] as the
secondary criterion. Through the numerical experiment and the
statistical test conducted on scalable test problems, the effect of
PEH is evaluated in a comparison with other secondary criteria.

2. Formulation of MOP
This paper defines MOP on a continuous space. A decision

vector �x = (x1, · · · , xD) is composed of D decision variables
x j ∈ �, j ∈ ID = {1, · · · , D}. Each decision variable xj ∈ � is
limited by lower xj and upper xj bounds. Thereby, decision space
X ⊆ �D is defined as X = {�x ∈ �D | ∀ j ∈ ID; x j ≤ x j ≤ x j}.
Now, MOP with M (M ≥ 4) objectives is formulated as
⎡⎢⎢⎢⎢⎢⎢⎢⎣
minimize �f (�x) = ( f1(�x), · · · , fM(�x)),
subject to �x = (x1, · · · , xD) ∈ X.

(1)

An objective vector �f (�x) is composed of M objective values
fm(�x) ∈ �, m ∈ IM = {1, · · · , M}. The objective space F ⊆ �M
is defined as F = { �f (�x) ∈ �M | �x ∈ X}. In order to simplify the
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notation, we will use an objective vector �f = ( f1, · · · , fM) ∈ F
to represent a corresponding decision vector or a solution �x ∈ X
where �f = �f (�x) holds. A solution �f ∈ F is said to dominate
�h ∈ F and denoted as �f � �h, if the following condition is true:
(∀m ∈ IM; fm ≤ hm) ∧ (∃n ∈ IM; fn < hn). (2)

Similarly, a solution �f ∈ F is said to weakly dominate �h ∈ F
and denoted as �f � �h, if the following condition is true:
∀m ∈ IM; fm ≤ hm. (3)

3. Proposed PEH
Let consider a set of solutions P ⊂ F . A set of non-dominated

solutions in P is denoted by P̃ ⊆ P. We can make a rectangular
region B({ �f }, �r) ⊂ �M by using a non-dominated solution �f ∈ P̃
and a reference point �r ∈ �M where �f � �r holds. Furthermore, a
region B(P̃, �r) ⊂ �M of the set P̃ ⊆ P is defined as
B(P̃, �r) =

⋃
�f∈P̃
B({ �f }, �r). (4)

The hypervolume of P̃ ⊆ P is defined completely as
H(P̃, �r) = vol(B(P̃, �r)), (5)

where vol(B) ∈ � denotes the volume of a region B ⊂ �M .
The Exclusive Hypervolume (EH) of �f ∈ P̃ is defined as
EH( �f , P̃, �r) = H(P̃, �r) − H(P̃ \ { �f }, �r). (6)

EH can be used to determine which solution �f ∈ P̃ contributes
least to the hypervolume of P̃. However, the main drawback of
EH is the computational cost. PEH is defined for �f ∈ P̃ as
PEH( �f , P̃, �r) = min

�h∈P̃\{ �f }
{EH( �f , { �f , �h}, �r)}. (7)

PEH can be calculated in polynomial complexity [4]. By the
way, the proposed PEH gives an upper bound of EH as

PEH( �f , P̃, �r) ≥ EH( �f , P̃, �r). (8)
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4. Algorithm of DE for MOP
The proposed DE-based MOEA is called DEMO2. DEMO2

has a set of candidate solutions �xi = (x1,i, · · · , xD,i) ∈ P ⊆ X,
i = 1, · · · , NP. In order to generate a new solution called the trial
vector from �xi ∈ P, a basic strategy of DE named “rand/1/exp”
[3] is used. By using the maximum number of generations NG in
the stopping condition, DEMO2 is described as follows:
Step 1 Randomly generate NP decision vectors �xi ∈ X as an

initial population P. Evaluate �f (�xi) for all �xi ∈ P. Set g = 0.
Step 2 If g = NG holds, output the set P̃ ⊆ P and terminate.
Step 3 For each target vector �xi ∈ P (i = 1, · · · , NP), execute

everything from Step 3.1 to Step 3.3.
Step 3.1 Generate a new trial vector �u ∈ X.
Step 3.2 Evaluate the objective vector �f (�u) for �u.
Step 3.3 If �u � �xi holds, �u replaces �xi ∈ P. If �xi � �u holds, �u is

discarded. Otherwise, �u is added in P.
Step 4 If the population size exceeds NP, do the truncation

method to choose the best NP solutions for P.
Step 5 Update generation as g = g + 1, and return to Step 2.
The population size �P comes in the range between NP and

2 NP after NP trial vectors are generated. Truncation method in
Step 4 is used to return �P to NP. DEMO2 is much the same with
DEMO [5] except the truncation method described as follows:
Step 1 By using the non-dominated sorting [1], decide the non-

domination rank for each solution �f ∈ P.
Step 2 Select NP solutions �f from P in the ascending order of

the non-domination rank and preserve those solutions in P.
Step 3 If some solutions need to be selected from Q̃ ⊆ P, where

every solution �f ∈ Q̃ ⊆ P has the same non-domination rank,
execute everything from Step 3.1 to Step 3.3.

Step 3.1 Decide a reference point �r ∈ �M for Q̃.
Step 3.2 Evaluate PEH( �f , Q̃, �r) for each �f ∈ Q̃.
Step 3.3 Select the necessary number of solutions �f from Q̃

in the descending order of a secondary criterion, where
PEH( �f , Q̃, �r) is proposed as the secondary criterion.

5. Experiment and Results
By using Crowding-Distance (CD) [1], ε-DOM [2] and PEH

for the secondary criteria, respectively, three types of DEMO2s
are applied to each of scalable test problems in [6] 50 times.
The program of DEMO2 was coded by the Java language

and run on a personal computer (CPU: Intel� CoreTMi7
@3.33[GHz]; memory: 2[GB]; OS: Microsoft Windows XP).
The control parameters of DEMO2 were chosen as NP = 100
and NG = 400 except DTLZ3 (NP = 200 and NG = 600).
Table 1 shows the run times averaged over 50 runs. The best

result is highlighted by bold type in each problem. From Table 1,
DEMO2 with CD is the fastest in all cases. DEMO2 with PEH
is slightly faster than DEMO2 with ε-DOM. However, there is no
significant difference among three DEMO2s in the run time.
All solutions obtained by DEMO2s became non-dominated

ones in all cases. Table 2 compares the solution sets in Con-
vergence Measure (CM) [6]. The solution sets obtained with CD
have not converged in many cases. Table 3 compares PEH with
CD and ε-DOM by using Wilcoxon test about the above CM, in

Table 1 Run time of DEMO2 [ms]
criteria M DTLZ1 DTLZ2 DTLZ3 DTLZ4

CD
4 404.3 407.1 2170.9 451.8
6 536.8 523.1 2761.5 574.7
8 666.9 645.3 3461.0 665.9

ε-DOM
4 575.6 598.1 3109.0 625.9
6 858.8 888.1 4888.3 899.1
8 1120.3 1173.1 6550.6 1111.6

PEH
4 538.1 557.8 2920.2 586.8
6 748.5 750.0 4269.7 774.6
8 944.0 954.0 5401.2 924.7

Table 2 Convergence Measure (CM)
criteria M DTLZ1 DTLZ2 DTLZ3 DTLZ4

CD
4 0.3625 1.30E-7 0.3559 1.38E-7
6 293.33 0.3448 1.16E+5 0.2564
8 395.13 0.9373 6.09E+5 0.6372

ε-DOM
4 1.4020 1.67E-8 0.7194 1.05E-8
6 1.6572 3.55E-7 4.8763 1.69E-8
8 2.6893 1.41E-6 7.0184 8.36E-8

PEH
4 1.0982 5.56E-9 0.1962 2.16E-9
6 2.3477 3.57E-8 3.3888 6.21E-9
8 2.6445 1.29E-7 6.6024 3.46E-8

Table 3 Statistical test about CM
criteria M DTLZ1 DTLZ2 DTLZ3 DTLZ4

CD
4 — � � �
6 � � � �
8 � � � �

ε-DOM
4 � � � �
6 — � — �
8 — � — —

Table 4 Statistical test about hypervolume
criteria M DTLZ1 DTLZ2 DTLZ3 DTLZ4

ε-DOM
4 � � � �
6 � � � �
8 � � � �

which � (�) denotes PEH is significantly better (worse) than the
other with risk α = 0.01; � (�) denotes PEH is better (worse)
than the other with risk α = 0.05; and “—” means that there is no
difference between two secondary criteria. From Table 3, we can
confirm that PEH is better than the others in many cases.
Table 4 compares PEH with ε-DOM by using Wilcoxon test

about the hypervolume. PEH is significantly better than ε-DOM
in every case. Because the solution sets obtained with CD did not
converge, the hypervolume could not be evaluated for CD.

6. Concluding Remarks
Through the experiment conducted on scalable test problems,

the proposed secondary criterion PEH was compared with CD
and ε-DOM respectively. As a result, it was observed that PEH
was superior to counterparts in the quality of solution sets.
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