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Exhaustive Search of Feature Subsets for Support Vector
Machine Classification
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Abstract: Feature selection in machine learning is an important process for improving the generalization capability
and interpretability of learned models through the selection of a relevant feature subset. In the last two decades, a
number of feature selection methods, such as L1 regularization and automatic relevance determination have been in-
tensively developed and used in a wide range of areas. We can select a relevant subset of features, by using these feature
selection methods. In this study, we apply an exhaustive search, instead of these methods, to the neural data recorded
in the area of brain involved in face recognition. We evaluate how accurately every subset of recorded neurons can
discriminate faces, by using SVM classifiers and cross validation. We show that there are a number of highly accurate
neuron subsets. All of these results demonstrate that we should not select only one feature subset but exhaustively
evaluate every feature subset.
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inferior temporal cortex, face recognition

1. Introduction
Supervised learning algorithms learn from training samples

consisting of pairs of inputs and outputs, and construct an ap-
propriate input-output function that reflects the input-output re-
lation in the training samples. The constructed function is ex-
pected to output correctly based on the input in the training sam-
ples, and even for novel inputs that are not contained in the train-
ing samples. How accurately the function can predict the out-
put for a novel input is referred to as the generalization capabil-
ity. To construct an input-output function with a high generaliza-
tion capability is a shared goal among supervised learning algo-
rithms. Feature selection [1], [2], [3] is an important technique
for improving the generalization capability. Feature selection is a
technique for selecting which features (elements of inputs) are
relevant for making an accurate output prediction. In the last
two decades, a number of feature selection methods, such as L1
regularization [4] and automatic relevance determination (ARD)
[5], [6], [7], [8], [9] have been intensively developed and used in
a wide range of areas. We can select a relevant subset of features,
by using these feature selection techniques.
In this study, we apply an exhaustive search, instead of these

conventional techniques, to the neural data recorded in the infe-
rior temporal (IT) cortex of a macaque monkey. The IT cortex is a
terminal of visual information processing in our brain, and is as-
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Fig. 1 Face images [10]

sociated with object recognition, such as face identification. We
use the data from the activities of 23 neurons recorded using an
electrode, when a monkey is discriminating the identities of face
images (Fig. 1, [10]). This image dataset consists of face images
of four different identities viewed from seven different angles (to-
tally, 4 × 7 = 28 images). We train the support vector machine
[11], [12], [13] to discriminate identities regardless of the viewing
angles using this data. We evaluate how accurately every subset
of neurons can distinguish between identities, by performing a
cross validation [14]. As a result, we show that there are multiple
subsets of neurons that can perfectly distinguish between identi-
ties.

2. Method
In this section, we describe the methods used in this study.

First, we describe the support vector machine [11], [12], [13].
Second, we describe the cross validation. Finally, we illustrate
the exhaustive search for feature subsets.
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2.1 Support Vector Machine
The support Vector Machine classifier, simply called the SVM,

is a state-of-the-art model for classification that has a high gen-
eralization capability [11], [12], [13]. An SVM learns the rela-
tionship between the input data and their classes from training
samples, and predicts the class of novel data.
Let us consider the following training data set.

{
(xi, ti)|xi ∈ RD, ti ∈ {+1,−1}

}N
i=1
, (1)

where xi is a D-dimensional feature vector, ti is a class label of
xi, and N is the number of samples. An SVM can find a hyper-
plane in the feature vector space that separates the samples with
ti = 1 from those with ti = −1 using this data set. The obtained
hyperplane is referred to as a decision boundary. Novel samples
are then classified based on which side of the boundary they fall
on. The decision boundary is expressed as a linear equation as

y(x) = wTx + b = 0, (2)

where w is a weight vector. The SVM finds w and b that satisfy
y(xi) > 0 for ti = 1 and y(xi) < 0 for ti = −1, that is, ty(x) > 0
for all samples.
First, let us consider a case where the samples are linearly sep-

arable, that is, w and b exist such that all the samples satisfy
ty(x) > 0 [11]. The optimization problem to find a w and b that
maximizes the margin is formulated as a quadratic programming
problem as

min
w,b

1
2
||w||2, (3)

subject to

ti(wTxi + b) − 1 > 0 (i = 1, . . . ,N). (4)

This quadratic problem can be solved using a Lagrange multi-
plier.
Next, we consider a case where the samples are not completely

linearly separable, as frequently occurs in real-life data [12], [13].
In this case, SVMs tolerate a restricted number of misclassifica-
tions by introducing slack variables ξi ≥ 0, (i = 1, . . . ,N). The
slack variables represent penalties for misclassifications, in which
ξi = 0 is for the correctly classified samples that are outside the
margin and ξi = |ti − y(xi)| is for the other samples. The resulting
optimization problem is as follows.

min
w,b,ξ

1
2
||w||2 +C

N∑

i=1
ξi, (5)

subject to

ti(wTxi + b) − 1 > 1 − ξi (i = 1, . . . ,N), (6)

ξi > 0 (i = 1, . . . ,N), (7)

where C is a regularization constant. The regularization constant
represents the trade-off between the margin maximization and
misclassification. This quadratic problem can also be solved us-
ing a Lagrange multiplier. This method is called the soft-margin
method.

2.2 Cross Validation
Cross validation (CV) is a technique for estimating how the

capability of a learning model (classifier, regressor, etc.) is gen-
eralized for new data that are not used in the training [14]. A
data set is divided into two parts in the CV. One part is used for
the training of the model, and the other part is for validating the
model’s capability. This training and validating operation is it-
erated using different partitioning. The CV is effective when the
number of the available data is limited. We explain the K-fold
cross validation for a SVM below.
Let us consider the same data set as in subsection 2.1. First, we

segment the data set into K equal size parts C1, . . . ,CK . For each
k = 1, . . . ,K, we train the SVM using the data other than the k-th
part Ck. We denote the decision boundary as y\k(x). Then, we
predict the class labels of the data in Ck using this y\k(x) bound-
ary, and compare them against the true class labels t. We iterate
this operation for every k = 1, . . . ,K, and calculate the following
cross validation error (CVE):

CVE =
1
N

K∑

k=1

∑

i∈Ck
L(ti, y\k(xi)), (8)

L(t, y(x)) =

⎧⎪⎪⎨⎪⎪⎩
0 (ty(x) > 0)

1 (ty(x) < 0)
. (9)

L(t, y(x)) indicates whether the prediction of the class label of
each sample is correct or not. When the prediction is correct,
L(t, y(x)) = 0, and when the prediction is incorrect, L(t, y(x)) =
1. CVE represents the ratio of the number of incorrectly predicted
data to the total number of data. A small CVE indicates that the
generalization capability of the SVM is high. In this study, we
used an N-fold CV, where N is the number of data. The N-fold
CV is called a leave-one-out CV (LOOCV).

2.3 Calculate CVE for All Subsets
We selected subset A of D features and set xiA := (xid )d∈A ∈
R
|A|. We then applied the LOOCV to the data set {(xiS , ti)}Ni=1 and
calculated the CVE. We carry out this process for all the (2D − 1)
subsets.

3. Analyses of Feature Subsets with CVE = 0
As shown in section 4, there are multiple feature subsets with

CVE = 0. We analyze the structures of these subsets. First, we
show all the subsets with CVE = 0. We then visualize the weights
of the decision boundaries w of these subsets by using the prin-
cipal component analysis (PCA) and show that these subsets are
clustered into several groups.

4. Apply Exhaustive Search to Neural Data
We apply the exhaustive search described above to neural data

in this study.

4.1 Data and Settings of Simulations
The data contains the activities of 23 neurons in the anterior

inferior temporal (AIT) cortex measured by conducting a single-
unit recording, when the monkey was performing a sequential
delayed matching-to-sample task requiring the identification of a
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Fig. 2 CVE histograms. Each panel corresponds to (a) Identity 1 vs. 2, (b) Identity 1 vs. 3, (c) Identity 1
vs. 4, (d) Identity 2 vs. 3, (e) Identity 2 vs. 4, and (f) Identity 3 vs. 4. The inset numbers indicate
the number of feature subsets with CVE = 0.

face (I-DMS task). Briefly, in the I-DMS task, a sample face im-
age was presented to the subject and then a test face image was
presented after a short delay period. The subject was required to
answer whether or not the identity in test face image matches that
of the sample face image. The presented image dataset (Fig. 1)
consisted of the face images of four different identities viewed
from seven different angles (totally, 4 × 7 = 28 images). The
sample face was presented from a frontal view, and the test face
was presented from one of seven angles. You can find the details
of the experimental procedure in appendix A.1 and [10]. In this
study, we used a mean firing rate for each neuron during a period
from 64–496 ms after the onset of each test face image.

We used the exhaustive search on the data described above. We
used the firing rates of the neurons and the identities of the faces
as the inputs to and outputs for the SVM, respectively. We set
C = 5 throughout this study. We trained the SVM to discriminate
between the identities regardless of view angles. For example, we
trained the SVM to distinguish seven images of identity 1 from
those of identity 2 (N = 7×2 = 14) using the firing rates of the 23
neurons (D = 23). We evaluated all the subsets of neurons using
CVE.

5. Results
In this section, we present the simulation results. First, we
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Fig. 3 Feature subsets with CVE = 0. The horizontal and vertical axes represent the number of subsets
and neurons, respectively. The black cells indicate that the feature is wihin the subset. (a) Identity
1 vs. 2. (b) Identity 1 vs. 3. (c) Identity 1 vs. 4. (d) Identity 2 vs. 3 (e) Identity 2 vs. 4. (f) Identity
3 vs. 4.

present the results from the exhaustive search. Next, we focus on
the feature subsets with CVE = 0.

5.1 Results of Exhaustive Search
Figure 2 shows the CVE histograms. Each panel corresponds

to (a) Identity 1 vs. 2, (b) Identity 1 vs. 3, (c) Identity 1 vs. 4,
(d) Identity 2 vs. 3, (e) Identity 2 vs. 4, and (f) Identity 3 vs.
4. The inset numbers indicate the number of neuron subsets with
CVE = 0. We can see that these histograms are substantially dif-
ferent from each other. For example, on one hand there are about
one and a half million subsets with CVE = 0 in Fig. 2(a), while
on the other there are about two thousand subsets with CVE = 0
in Fig. 2(c).

5.2 Analyses of Neuron Subsets with CVE = 0
We focus on the Neuron subsets with CVE = 0 and analyze

their structures in this section. We present the weight vectors of
the decision boundaries when using the subsets with CVE = 0 in
Fig. 3. These decision boundaries are calculated using all the N
samples. Rows of this matrix correspond to neurons, and columns
to subsets. The color of cells indicates a value of weight vector.
Red indicates positive value and blue indicates negative value.
Black indicates that a value equals to zero, that is, the neuron is
not contained in the subsets. This figure shows that the subsets
seem to be clustered into several groups. We visualize the deci-
sion boundaries w of the subsets using the principal component
analysis (PCA) in Fig. 4 to confirm this. We can confirm that the
subsets are clustered into several groups. As shown above, the
neuron subsets with CVE = 0 are clustered into several groups.
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Fig. 4 Visualization of decision boundariesw of feature subsets with CVE = 0 using PCA. (a) Identity 1
vs. 2. (b) Identity 1 vs. 3. (c) Identity 1 vs. 4. (d) Identity 2 vs. 3 (e) Identity 2 vs. 4. (f) Identity
3 vs. 4. We ploted 1,938 randomly selected points for visibility in each panel.

6. Summary
We analyzed neural data to show the importance of an exhaus-

tive search of the feature subsets in this study. We showed that
there are a number of subsets of neurons with a low CVE. We
also showed that these subsets are clustered into several groups.
These results might suggest that multiple subsets of neurons may
be used to build a robust classification of faces. Another sug-

gestion might be that these subsets may have different criteria
for classification. Thus, by performing the exhaustive search, we
may discover knowledge that is hidden within the data.
In this study, we analyzed 23 neurons, i.e., the number of fea-

tures is 23. Since the computational complexity of the exhaustive
search grows exponentially with the number of features, the ex-
haustive search is often not impractical. To develop a computa-
tionally efficient method is a future challenge.
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Appendix

A.1 Detail of the Data
In this appendix, we give an account for the data used in this

study. For more technical information, see Eifuku et al., 2004.

A.1.1 Behavioral task
The monkey was trained to perform a sequential delayed

matching-to-sample task, which requires the identification of fa-
miliar individuals by face (I-DMS task). In the I-DMS task, a
sample (480 ms) image was presented after fixation, and then test
(match or nonmatch 480 ms) images were presented after a pe-
riod of interstimulus delay (992 ms). The stimulus set consisted
of 28 faces (7 facial views × 4 facial identities). All visual stim-
uli were presented within the receptive field (RF) center of each
recorded neuron that was mapped in advance of the experiment
(see Recording of neural activity). In the I-DMS task, the im-

ages of the sample faces were always from the frontal view (0◦),
whereas the test stimuli were from one of seven images of the
faces viewed from one of seven different angles (profiles from left
to right:-90, -45, -22.5, 0, 22.5, 45, and 90◦). The monkey was
required to identify the same person who had been shown in the
sample; if the test stimulus was a match, the monkey was trained
to push a lever within 800 ms after the onset of a match. Some in-
tervening (nonmatch) stimuli were presented until a match finally
appeared (range: 0 to 3 intervening stimuli).

A.1.2 Recording of neural activity
First, we retrained the monkey to perform the I-DMS task. Af-

ter the monkeys learned the I-DMS task at a performance level of
more than 95% correct, we began recording the neuronal activ-
ity. We first isolated a single neuronal activity from the anterior
inferior temporal gyrus. In advance of the experiment, the size
and location of the excitatory RF region were mapped by using a
mouse-controlled stimulus during a visual-fixation task. For this
purpose, seven types of stimuli were used: a 2◦ diameter spot,
a 10 × 10◦ random-dot field, and 10 × 10◦ facial stimuli shown
from five different angles (-90, -45, 0, 45, and 90◦). The RF cen-
ter was drawn on a tracing made on a monitor that duplicated the
stimulus seen by the monkey. We then proceeded to record the
neuronal activity during the performance of the I-DMS task.
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