
Algorithm to Generate
All Connected Simple Graphs of Given Order

Matsui Tetsushi1,a) Uno Takeaki1,b)

Abstract: We present an efficient algorithm to generate connected simple graphs of given order. It is based
on the reverse search technique and a new vertex partitioning strategy. By implementing the algorithm in
C, we can generate all connected simple graphs of order 11 in five and a half hours.

Keywords: graph, generate, algorithm, reverse search

1. Introduction

The efforts to generate all graphs date back to 1960s. The

limit of graph generation how big graphs can be cataloged

have been gradually raised as available computing resources

expanded. Heap is the first person who reported generation

of graphs with computer; he completes generating simple

graphs with 8 vertices in 1972 [9]. Baker et al. soon obtain

all 9 vertex graphs on PDP-10 in 1974 [3]. In 1985, Cameron

et al. reach to graphs of order 10 within 15 hours [4].

Checking isomorphisms between graphs is unavoidably

necessary not to yield duplicated graphs. On the one

hand, Graph isomorphism problem, GI in short, is not an

easy problem; it has not been shown to be in polynomial

time [15]. On the other hand, GI is not so hard problem ei-

ther; two random graphs can be distinguished in linear time

with very low error probability [2]. There are several algo-

rithms for graph isomorphism problem, including nauty [12],

VF and VF2 [5], [7], or gSpan [16], [17]. Despite difficulty

of GI, it is known that generating all n vertex graphs is

polynomial delay [8], [14].

Motivated to provide a catalogue of graphs and a practi-

cal program to make it, this paper presents an efficient al-

gorithm to generate connected simple graphs. It is based on

the reverse search technique and a new vertex partitioning

strategy. The reverse search is one of the most prominent

frameworks for generating combinatorial objects [1], though

McKay only reluctantly mentions it in his survey of gener-

ating combinatorial objects [13]. Its merit is that the algo-

rithm needs to check graph isomorphisms for only a small

number of graphs compared with the previous algorithms.

The structure of the paper is as follows. First, we summa-

rize the basic concepts to be used in our graph generation

1 Principles of Informatics Research Division, National Institute
of Informatics

a) tetsushi@nii.ac.jp
b) uno@nii.ac.jp

algorithm. Then, in Section 3, we explain the details of

the algorithm. Section 4 describes an implementation and

experimental results, followed by discussion.

2. Automorphism and Vertex Partition-

ing

Automorphism of graph and vertex partitioning play the

central rôle in graph generation. By considering automor-

phisms, we can reduce the number of duplicatedly checked

graphs during the graph generation process. Vertex par-

titioning provides efficient means to handle automorphism,

and has been used in several isomorphism tests ([6] and [12],

for example).

2.1 Basic Terminology

A graph G is a pair (V,E) of a vertex set V and an edge

set E. An edge of a simple graph connects a pair of distinct

vertices, and no pairs of edges connect the same pair of ver-

tices. For a simple graph G = (V,E), if |V | = n, we often

identify V as [n] = {0, 1, . . . , n− 1}, and E as a set of two-

element subsets of V . For two graphs G0 = (V0, E0) and

G1 = (V1, E1), a one-to-one onto map of vertex sets from V0

to V1 is called an isomorphism if it is also a one-to-one onto

map from E0 to E1 within the identification above. Two

graphs are isomorphic if there is an isomorphism between

them, denoted as G0
∼= G1. In particular, if two graphs

are the same graph, an isomorphism map is called an auto-

morphism. The set of automorphisms of a graph G forms

a group called the automorphism group of G, denoted by

Aut(G); it is naturally a subgroup of the symmetric group

of vertices Sym(V), and the identity map is the identity

element of the group.

For a set S, if there are subsets Si such that S =
∪

Si

and Si ∩ Sj = ∅ for any i ̸= j, we call {Si} a partition of S

and each Si a cell. In the following, we consider partitions

of the vertex set V of G. The most important partition is

1ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-AL-143 No.15
2013/3/1

the automorphism partition: V =
∪

Vi with each cell Vi

is an orbit of Aut(G). However, since to know the auto-

morphism partition is as hard as GI [11], [15], we do not

expect it to be always available. An order of partitions of

a set S is given as the following. For partitions T = {Ti}
and U = {Ui} of S, if for any Ti there exists a superset

Uj , then we say T is finer than U , or U is coarser than T ,

and T ≤ U denotes such a relation. Obviously, the discrete

partition D = {{i} | i ∈ V }, the automorphism partition

A = {∆ | ∆ is an orbit of Aut(G)} and the trivial partition

T = {V } satisfy D ≤ A ≤ T .

A coloring of G, or more precisely a vertex coloring of G,

is a map from the vertex set V to a set of colors. A color-

ing map induces a vertex partitioning, or vice versa. Thus,

we use the terminologies of partitioning and coloring inter-

changeably. Moreover, we assume that colors are linearly

ordered; without loss of generality, colors are supposed to

be integers.

2.2 Stabilization

Stabilization is one of the algorithms to obtain one par-

tition to another finer partition, based on the colors of the

neighbors [6]. It is sometimes called the 1-dim Weisfeiler-

Lehman algorithm.

Let P be a color partition of vertices of G, assuming that

colors are integers in range [1, |V |]. A color partition can

be viewed as a function, so that P (v) denotes the color of a

vertex v in the color partition P . The procedure is described

in Algorithm 1.

Algorithm 1 stabilize(P , G)

repeat

Q = P .

for all v ∈ V do

Nv ← array of zeros with length |V |+ 1.

end for

for all v ∈ V do

Nv[0]← Q(v).

for all u in neighbors of v do

Nu[Q(v)]← Nu[Q(v)] + 1.

end for

end for

Sort list M of Nvs with lexicographic order.

P (v)← min{i |M [i] = Nv}+ 1.

until P = Q.

return P .

3. The Algorithm

3.1 Reverse Search

We describe the algorithm to generate all connected sim-

ple graphs of given order in this section. It is based on

the reverse search technique and a new vertex partitioning

strategy.

Reverse search is one of the most prominent frameworks

for generating combinatorial objects. We refer the reader

to [1] for general description of the reverse search method.

Any generation algorithms using reverse search need their

own “parent-child” relation among generated objects. We

define the parent-child relation for graph generation as the

following: the parent of a graph G is G− v, where v is the

“weakest” vertex of G. Thus, the order of a graph G is one

larger than that of its parent.

Algorithm 2 is the skeleton of the whole generating pro-

cess. Note that a graph which is put into P0 is not out-

put here. Each of those graphs will be used to call an-

other RevSearch with it after finishing the first invocation

of RevSearch. Each commented Step from 1 to 4 is explained

later. Before describing Step 1 of Algorithm 2, we introduce

a new partitioning algorithm called RUMBA in the next sub-

section, and Subsection 3.3 describes how to determine the

weakest vertex in a graph, which is used on Step 2. Because

Step 1 depends on the definition of parent-child relation,

its explanation is deferred until Subsection 3.4. Finally, the

pools used on Steps 3 and 4 are explained in Subsection 3.5.

Algorithm 2 RevSearch (n, G, P0)

if the order of G is n then

Output G, and return.

end if

P ← an empty pool.

C ← a set of next generation graphs constructed by adding a

new vertex v′ and incident edges onto G, including all children

of G. ▷ Step 1

for all G′ ∈ C do

Try to determine the weakest vertex v of G′. ▷ Step 2

if v is found then

if v = v′ then

if any graph H in P with same RUMBA code as G′

are non-isomorphic to G′ then

Put G′ into P .

end if ▷ Step 3

end if

else

Put G′ into P0. ▷ Step 4

end if

end for

for all H ∈ P do

RevSearch(n, H).

end for

3.2 RUMBA

To reduce the redundancy in graph generation, it is de-

sirable to classify the vertices into a partition as close to

the automorphism partition as possible. We use RUMBA

partitioning algorithm; RUMBA stands for RUMBA is Uno-

Matsui BFS Algorithm. The algorithm, as the name sug-

gests, uses BFS trees of a graph to distinguish vertices for

obtaining a finer partition.

Let P = {P0, . . . , Pk} be a coloring partition of the vertex

set V of a fixed graph G. Suppose that a cell Pi includes

two or more vertices in it. Then, we proceed as Algorithm 3.

RUMBA tries to update the current partition with one

step RUMBA for every cell with two or more vertices, and

2ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-AL-143 No.15
2013/3/1

Algorithm 3 one step RUMBA (P , i, G)

Construct BFS trees of G rooted on each p ∈ Pi.

for all v ∈ V do

collect the following information:

(1) The current color c.

(2) The numbers of shallower neighbors for each color.

(3) The numbers of neighbors on the same level for each color.

(4) The numbers of deeper neighbors for each color.

where shallower means that the root is nearer than v, and

deeper means farther.

end for

Group vertices according to the collected color information.

Sort the groups and recolor the vertices.

Stabilize the new partition.

stops when no such cells lead to update the partition.

The RUMBA partitions often coincide with the automor-

phism partitions, but there are exceptions. RUMBA is sim-

ilar to the Corneil-Gotlieb algorithm, and it is easy to show

that if Corneil-Gotlieb algorithm gives the automorphism

partition for a graph then RUMBA also gives it. Corneil

and Gotlieb once conjectured that their algorithm always

gives the automorphism partition [6], however Mathon gives

a counterexample with 25-vertex graph [10]. Unfortunately,

RUMBA also fails to give the automorphism partition for

the counterexample graph.

3.3 Weakness

Calculation of weakness of vertices is carried out on Step 2

of Algorithm 2. We define the weakness by the lexicographic

order of quadruple: connectivity, negated degree, stabilized

degree and RUMBA color. The greater the quadruple of a

vertex is, the weaker the vertex is ranked.

The first component is the connectivity. Since we are con-

structing connected graphs, the parent should be connected

as well. Thus, to eliminate all cut vertices from the candi-

date list, we place 0 for cut vertices and 1 for others.

The second to fourth components are colors of labelings.

The second component is the negated degree of the vertex,

the third component is stabilization of the former, finally

the fourth component is RUMBA color. The weakness of a

vertex is essentially determined by RUMBA partition, and

the second and third components of quadruples are corre-

sponding to shortcuts.

There is a subtle point in this definition; it is automor-

phism. As explained above, RUMBA sometimes does not

give the automorphism partition. In such cases, vertices in

the greatest color might have to be separated into two or

more cells in the automorphism partition. Thus, we should

check whether the greatest colored cell is an orbit of the au-

tomorphism group or not. Note, however, that we do not

know the automorphism group itself. Therefore, the weakest

vertices are the vertices with the greatest color in RUMBA

partition which are known to form an orbit of the automor-

phism group, except cut vertices. If the cell is not an orbit,

we leave undetermined which vertex is the weakest.

3.4 Constructing the Next Generation

For a given parent graph G, we construct a set of next

generation graphs including all children of G in Step 1 of

Algorithm 2. On this stage, though it is desirable to obtain

exactly all children without duplications, we have to tolerate

getting children of other parents or identical child graphs;

those redundancy will be checked later. By the definition

of parent-child relation, constructed graphs have one extra

vertex than G, whose degree is the lowest among non-cut

vertices.

In the following algorithm, k is at most minimum degree

of G plus one. Moreover, the partition P satisfies P ≤ A,

where A is the automorphism partition.

The subroutine subproto takes three arguments: G the

3ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-AL-143 No.15
2013/3/1

Algorithm 4 proto(G, k, P)

µ← the minimum non-cut degree of G.

if k = µ+ 1 then

U ← non-cut vertices with degree µ in G.

if |U | > k then

Error. ▷ There remains vertices with degree µ < k.

else if |U | = k then

Output U .

else

for all W in subproto(G, k − |U |, P , P \ U) do

Output U ∪W .

end for

end if

else

for all W in subproto(G, k, P , P) do

Output W .

end for

end if

graph, k the number of edges to be added, P a partition,

and Q a partial partition from where neighbor vertices are

chosen.

One can obtain a set of next generation graphs, by adding

edges between the newly added vertex and every k vertices

choice among n − 1 vertices of G. One possible realization

is to use all k element subsets from Q, but the procedure

can be more efficient by the presence of P . If one knows

a partition coarser than trivial but finer than the automor-

phism partition, the number of produced graphs may be

decreased, since production of redundant twin graphs may

be suppressed.

In the following algorithm, for the (partial) color partition

Q, Qi denotes a partition colored as i.

Algorithm 5 subproto(G, k, P , Q)

z ← minimum color of Q.

if |Qz | > 1 then

m← min(Qz).

if k = 1 then

Output {m}.
else

Let P ′ be a copy of P except that Pz \ {m} get the color

z + 1.

P ′ ← stabilize(P ′, G).

for all W in subproto(G, k − 1, P ′, P ′ ∩ (
∪

Q \ {m}))
do

Output {m} ∪W

end for

end if

else if the number of cells of Q > 1 then

if k = 1 then

Output Qz .

else

for all W in subproto(G, k − 1, P , Q \Qz) do

Output Qz ∪W

end for

end if

else if |Qz | = k then

Output Qz .

end if

if the number of cells of Q = 1 then Stop.

end if

for all W in subproto(G, k − 1, P , Q \Qz) do

Output W .

end for

3.5 Pool

On Steps 3 and 4 of Algorithm 2, existence of identical

graphs has to be checked and all but one representative have

to be discarded if found. We use pools of graphs to realize

the functionality. On Step 4, the graphs have to be mem-

orized throughout the process, but on Step 3, the memory

has to be kept just for one parent graph G. Then, we call

the pool used on Step 4 the global pool, while ones on Step 3

local pools.

For efficiency of the pools, we need a classification of

graphs as fine-grained as possible but it has to be computed

4ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-AL-143 No.15
2013/3/1

|V | # of graphs Time # of graphs per second
8 11117 0.24 s 4.6× 104

9 261080 5.6 s 4.7× 104

10 11716571 3 m 43 s 5.3× 104

11 1006700565 5 h 23 m 5.2× 104

Table 1 Timing Data

easily. Corneil and Gotlieb uses an induced graph from their

partitioning [6]. It seems reasonable to use similar induced

graph from the RUMBA partitioning.

Since, the Corneil-Gotlieb or the RUMBA partitioning

does not provide a full isomorphism test, as noted in Sec-

tion 3.2, we still need some other isomorphism tests.

4. Discussion

4.1 Implementation Remarks

There are a few implementation remarks.

Though the definition of the weakest vertex in Section 3.3

depends on RUMBA labeling, There are a few shortcut con-

ditions to determine the weakest vertex: (1) a vertex is the

unique non-cut vertex with the smallest degree; (2) a ver-

tex is the unique non-cut vertex with the smallest neigh-

bor degrees among the smallest degree non-cut vertices.

These shortcut conditions reduce the need for labeling with

RUMBA, which is rather heavy.

As a nature of the reverse search framework, graph gen-

eration can be parallelized. In principle, generations from

one parent graph and another are independent. The only

hindrance is the global pool.

Pools have to check graph isomorphisms, and there are

choices of algorithms. On the one hand, in case that there

are only a few graphs classified in the same invariant class,

a matching type isomorphism is preferable. On the other

hand, in case that there are several graphs, a canonical code

type isomorphism is preferable.

4.2 Implementation and Experiments

We have written a program implementing the algorithm

above. The program is written in C99. The timing data

presented in Table 1 are the results of execution on Apple

MacBook Pro with Intel Core i5 2.53 GHz CPU and 8 GiB

memory. The program was compiled with GCC 4.2.1, with

the optimization flag -O3 -fomit-frame-pointer. Mem-

ory consumption during each execution was only a few MiB.

The number of graphs per second, the fourth column of the

table, is nearly constant in this range of order. Then, if

we extrapolate the total time for order 12, it takes about a

month to output all 164059830476 graphs.

The nauty package includes a utility called geng to gen-

erate graphs. Currently, geng is faster than our implemen-

tation of the algorithm, but we hope our implementation

will be improved to beat geng. The most significant differ-

ence is the use of the group theory. The present algorithm

uses mainly the RUMBA labeling, but explicitly considering

automorphism groups can reduce operations, such as those

needed to obtain lower labelings for Algorithms 4 and 5.

4.3 Future Works

Possible future extensions of the algorithm are (1) to gen-

erate all disconnected simple graphs of given order, (2) to

generate all connected simple graphs of given order and max-

imum degree, or (3) to generate all connected simple graphs

of given order and minor graphs.

References

[1] Avis, D. and Fukuda, K.: Reverse Search for Enumeration,
Discrete Applied Mathematics, Vol. 65, No. 1–3, pp. 21–46
(1996).

[2] Babai, L. and Kučera, L.: Canonical Labeling of Graphs in
Linear Average Time, 20th Annual Symposium on Founda-
tions of Computer Science, IEEE, pp. 39–46 (1979).

[3] Baker, H. H., Dewdney, A. K. and Szilard, A. L.: Gener-
ating the Nine-Point Graphs, Mathematics of Computation,
Vol. 28, No. 127, pp. 833–838 (1974).

[4] Cameron, R. D., Colbourn, C. J., Read, R. C. and Wormald,
N. C.: Cataloguing the Graphs on 10 Vertices, Journal of
Graph Theory, Vol. 9, No. 4, pp. 551–562 (1985).

[5] Cordella, L. P., Foggia, P., Sansone, C. and Vento, M.: Per-
formance Evaluation of the VF Graph Matching Algorithm,
International Conference on Image Analysis and Processing,
IEEE, pp. 1172–1177 (1999).

[6] Corneil, D. G. and Gotlieb, C. C.: An Efficient Algorithm
for Graph Isomorphism, Journal of the Association for Com-
puting Machinery, Vol. 17, No. 1, pp. 51–64 (1970).

[7] Foggia, P., Sansone, C. and Vento, M.: A performance com-
parison of five algorithms for graph isomorphism, Proceedings
of the 3rd IAPR TC-15 Workshop on Graph-based Represen-
tations in Pattern Recognition, pp. 188–199 (2001).

[8] Goldberg, L. A.: Efficient Algorithms for Listing Unlabeled
Graphs, Journal of Algorithms, Vol. 13, pp. 128–143 (1992).

[9] Heap, B. R.: The production of graphs by computer, Graph
theory and computing, Academic Press, pp. 47–62 (1972).

[10] Mathon, R.: Sample Graphs For Isomorphism Testing, Pro-
ceedings of ninth Southeastern Conference of Combinatorics,
Graph Theory, and Computing, Congressus numerantium,
Utilitas Mathematica Pub., pp. 499–517 (1978).

[11] Mathon, R.: A Note of the Graph Isomorphism Counting
Problem, Information Processing Letters, Vol. 8, No. 3, pp.
131–132 (1979).

[12] McKay, B. D.: Practical Graph Isomorphism, Proceedings of
the Tenth Manitoba Conference on Numerical Mathematics
and Computing, Vol. I, Congressus numerantium, Utilitas
Mathematica Pub., pp. 45–87 (1981).

[13] McKay, B. D.: Isomorph-free Exhaustive Generation, Jour-
nal of Algorithms, Vol. 26, pp. 306–324 (1998).

[14] Ramon, J. and Nijssen, S.: Polynomial-Delay Enumeration
of Monotonic Graph Classes, Journal of Machine Learning
Research, Vol. 10, pp. 907–929 (2009).

[15] Read, R. C. and Corneil, D. G.: The Graph Isomorphism
Disease, Journal of Graph Theory, Vol. 1, No. 4, pp. 339–
363 (1977).

[16] Yan, X. and Han, J.: gSpan: Graph-Based Substructure Pat-
tern Mining, Proceedings of 2002 International Conference
on Data Mining (2002).

[17] Yan, X. and Han, J.: gSpan: Graph-Based Substructure
Pattern Mining, Technical report, University of Illinois at
Urbana-Champaign (2002).

5ⓒ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2013-AL-143 No.15
2013/3/1

